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Abstract In the paper, the effects of topographic forc-
ing and dissipation on solitary Rossby waves are stud-
ied. Special attention is given to solitary Rossby waves
excited by unstable topography. Based on the pertur-
bation analysis, it is shown that the nonlinear evolu-
tion equation for the wave amplitude satisfies a forced
dissipative Boussinesq equation. By using the mod-
ified Jacobi elliptic function expansion method and
the pseudo-spectral method, the solutions of homo-
geneous and inhomogeneous dissipative Boussinesq
equation are obtained, respectively. With the help of
these solutions, the evolutional character of Rossby
waves under the influence of dissipation and unstable
topography is discussed.
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1 Introduction

In recent years, much active research effort has been
focused on nonlinear Rossby waves that have emerged
in the atmospheric and oceanic circulation dynamics
[1–8]. It has been shown that Rossby waves represent
a fundamental component of planetary scale oceanic
and atmospheric motion. Forcing factors such as to-
pography play very important roles in fluid motion.
There has been a lot of research on the effect of topo-
graphic forcing on Rossby waves, in most of which is
involved the stable topography, such as concave, con-
vex or Gaussian topography and so on [9–15]. It seems
that very few on unstable topography are available up
to now. On the other hand, as everyone knows that
the real oceanic and atmospheric motion is dissipative,
otherwise the motion would grow explosively because
of the constant injecting of the external forcing energy.
But in many researches dissipation effect is ignored.

In the paper, we will first derive a forced dissipative
Boussinesq equation by using a perturbation method
from the geostrophic potential vorticity equation with
dissipation and topography effect. Especially, here we
restrict ourselves to consider the effect of unstable to-
pography and dissipation on Rossby waves. It is great
different from the previous papers. In fact, people had
noticed the instability of submarine topography in the
late 19th century and made a lot of research. People
found that sediment transport, the shaking of the plat-
form in ocean engineering and the strong earthquake
and so on can cause the seabed instability [16–18].
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Furthermore, waves are also regarded as the main
outer factor to induce the topography to change [19].
So it has important theoretical and practical meaning
to study the effect of unstable topography on Rossby
waves. Then, we will discuss conservation laws and
give an approximate analytic solution of the dissipa-
tive Boussinesq equation by using modified Jacobi el-
liptic function expansion method [20]. Finally, numer-
ical simulation of the forced dissipative Boussinesq
equation is presented by using the pseudo-spectral
method [21]. By comparing the waterfall plots, we dis-
cuss the differences of the solitary Rossby waves un-
der the influence of stable topography and unstable to-
pography.

2 Model and forced dissipative Boussinesq
equation

The theoretical basis is found in the paper of Pedlosky
[1] treating shallow fluid model on a beta plane. In this
model, the vorticity equation governing the inviscid,
quasi-geostrophic fluid motion is, in non-dimensional
form, given by(

∂

∂t
+ ∂ϕ

∂x

∂

∂y
− ∂ϕ

∂y

∂

∂x

)(∇2ϕ + β(y)y + h(x, t)
)

= −μ0∇2ϕ, (1)

where the topography effect and dissipation is con-
sidered, β effect is a nonlinear function of latitudinal
variable y, ϕ represents the geostrophic stream func-
tion, ∇2ϕ expresses the vorticity dissipation which is
caused by the Ekman boundary layer, μ0 is a dissipa-
tion coefficient and 0 ≤ μ0 � 1. Especially, the dis-
tribution function of topography is taken as h(x, t),
i.e. the topography is unstable. We specify the non-
dimensional rigid-wall boundary conditions:

∂ϕ

∂x
= 0, y = 0,1. (2)

In order to consider weakly nonlinear perturbations
on a zonal flow, we assume that the solution of Eq. (1)
has an asymptotic expression of the form

ϕ = Ψ (y) + εϕ
′ = −

∫ y(
u(s) − c0 + εα

)
ds + εϕ0

+ ε
3
2 ϕ1 + ε2ϕ2 + · · · , (3)

where ε � 1 is a small parameter characterizing the
smallness of terms which measures the weakness of

the nonlinearity and O(α) = 1, which is a measure of
the proximity of the system to a resonate state, and
may be referred to as a detuning parameter. c0 is a
constant, which is regarded as a Rossby wave phase
speed. In order to achieve a balance between nonlin-
earity and dispersion, we introduce the following slow
scales:

X = ε
1
2 x, T = εt, (4)

and in order to balance topography, turbulent dissipa-
tion and nonlinearity, we assume

h(x, t) = ε2H(X,T ), μ0 = ε
3
2 μ. (5)

Substituting Eq. (3), Eq. (4), and Eq. (5) into Eq. (1)
and Eq. (2) yields

ε0 : ∂

∂X

∂2ϕ0

∂y2
+ (β(y)y)y − uyy

u − c0

∂ϕ0

∂X
= 0,

ε
1
2 : ∂

∂X

∂2ϕ1

∂y2
+ (β(y)y)y − uyy

u − c0

∂ϕ1

∂X

= − 1

u − c0

∂

∂T

∂2ϕ0

∂y2
,

ε1 : ∂

∂X

∂2ϕ2

∂y2
+ (β(y)y)y − uyy

u − c0

∂ϕ2

∂X

= − 1

u − c0

∂

∂T

∂2ϕ1

∂y2
− α

u − c0

∂

∂X

∂2ϕ0

∂y2
− ∂3ϕ0

∂X3

− 1

u − c0
J

[
ϕ0,

∂2ϕ0

∂y2

]

− ∂H

∂X
− μ

u − c0

∂2ϕ0

∂y2
,

(6)

with the boundary conditions ∂ϕi

∂X
= 0 y = 0, 1 i =

0,1,2, where J [a, b] = ∂a
∂x

∂b
∂y

− ∂a
∂y

∂b
∂x

is a Jacobi op-
erator.

For ε0, assuming ϕ0 = A(X,T )φ0(y), then we
have(

d2

dy2
+ (β(y)y)y − uyy

u − c0

)
φ0(y) = 0,

φ0(0) = φ0(1) = 0.

(7)

Equation (7) is a variable coefficient eigenvalue prob-
lem and describes the space structure of the wave
along direction. A(X,T ) is the unknown amplitude
in the order O(ε0), which needs higher order equa-

tions to determine. For ε
1
2 , by analysis, we deduce that

∂ϕ1
∂X

= ∂A
∂T

φ1(y), where φ1(y) satisfies the following
equation:
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(
d2

dy2
+ (β(y)y)y − uyy

u − c0

)
φ1(y)

=
(

(β(y)y)y − uyy

(u − c0)2

)
φ0(y), φ1(0) = φ1(1) = 0.

(8)

To get the mathematical model of the Rossby waves’
amplitude, we need to solve higher order equations.
Based on ϕ0 = A(X,T )φ0(y), ∂ϕ1

∂X
= ∂A

∂T
φ1(y) and

Eq. (6), we get

∂2

∂X2

∂2ϕ2

∂y2
+ (β(y)y)y − uyy

u − c0

∂2ϕ2

∂X2

= α(β(y)y)y − uyy

(u − c0)2
φ0(y)

∂2A

∂X2
− φ0(y)

∂4A

∂X4

+ 1

u − c0

(
(β(y)y)y − uyy

u − c0

)
y

φ2
0(y)

∂2(A2/2)

∂X2

− ∂2H

∂X2
− (β(y)y)y − uyy

u − c0

×
(

φ0(y)

(u − c0)2
− φ1(y)

u − c0

)
∂2A

∂T 2
− μ

u − c0

∂3φ0

∂y2∂X
.

(9)

Finally, utilizing the solvability condition of Eq. (9),
we obtain an equation which governs the evolution of
the amplitude A:

∂2A

∂T 2
+ a1

∂4A

∂X4
+ a2

∂2A

∂X2
+ a3

∂2A2

∂X2
+ μa4

∂A

∂X

= a5
∂2H

∂X2
, (10)

where

a =
∫ 1

0

(β(y)y)y − uyy

u − c0

(
φ2

0

(u − c0)2
− φ0φ1

u − c0

)
dy,

a1 =
∫ 1

0
φ2

0 dy/a,

a2 = −
∫ 1

0
αφ2

0
(β(y)y)y − uyy

(u − c0)2
dy/a

a3 = −
∫ 1

0

φ3
0

2(u − c0)

(
(β(y)y)y − uyy

u − c0

)
y

dy/a,

a4 =
∫ 1

0
φ2

0
(β(y)y)y − uyy

(u − c0)2
dy/a,

a5 = −
∫ 1

0
φ0 dy/a.

(11)

In Eq. (10), the term ∂A
∂X

expresses the dissipation ef-
fect. In the absence of dissipation and topographic

forcing, Eq. (10) degenerates to the standard Boussi-
nesq equation, so we call Eq. (10) forced dissipative
Boussinesq equation.

3 Solitary-wave-like solution of dissipative
Boussinesq equation

In this section, we will take into account the evolu-
tional characters of Rossby waves under the influence
of dissipation. Mathematically, we should note that
the standard Boussinesq equation is completely inte-
grable [22] and this kind of equation can be solved
by many methods, such as the Wronskian technique
[23], Bäcklund transformation [24], the inverse scat-
tering method and so on. Especially very recently, the
linear superposition principle was also presented to
generate exact soliton solutions to bilinear differen-
tial equations [25]. In additional to the exact solution,
some remarkable properties such as Painlevé property,
Lax representation, approximate Group Analysis, an
infinite number of conservation laws were studied in
[26–31]. Based on the above research, it is easy to ob-
tain the clock shape solitary-wave solution of standard
Boussinesq equation:

A(X,T ) = N0 sech2[√a3N0/6a1(X − νT ) + c
]
, (12)

where N0 expresses the maximum amplitude at initial

moment, ν =
√

−(a2 + 2a3N0
3 ) expresses the moving

speed of the solitary waves,
√

6a1/a3N0 expresses the
width of the solitary waves. It is obvious that the am-
plitude and speed of the solitary waves remain con-
stant during propagation without dissipation and topo-
graphic forcing.

In the presence of dissipation, the standard Boussi-
nesq model becomes the so-called dissipative Boussi-
nesq equation:

∂2A

∂T 2
+ a1

∂4A

∂X4
+ a2

∂2A

∂X2
+ a3

∂2A2

∂X2
+ μa4

∂A

∂X
= 0,

(13)

which is not known to be integrable and cannot be
solved by the inverse scattering. Here we will de-
rive the analytic solutions to Eq. (13) by the modi-
fied Jacobi elliptic function expansion method. The
Jacobi elliptic function expansion method is a pow-
erful method and has been applied to atmospheric
and oceanic dynamics and many classical PDEs
[20, 32–35].
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In order to illustrate the basic idea of the mod-
ified Jacobi elliptic function expansion method, we
consider first the nonlinear equation of the following
form:

F(A,AT ,AX,AT T ,AXX, . . .) = 0, (14)

introducing a complex variation ξ defined as ξ =
f (T )X + b(T ). The modified Jacobi elliptic function
expansion method is very simple and straightforward,
it is based on the assumption that traveling wave solu-
tions can be expressed in the following form:

A(ξ) =
n∑

j=0

gj (T )snj ξ. (15)

By choosing suitable n, we balance the derivative
term of highest order in Eq. (14) with the highest or-
der nonlinear term. By simple calculation, the coeffi-
cients gj (T ) are determined and then the solutions to
Eq. (14) are obtained. Furthermore, sn2ξ + cn2ξ = 1,
when m → 1, cnξ → sech ξ , Eq. (15) degenerates to

A(ξ) =
n∑

j=0

hj (T ) sechj ξ, (16)

then we get the solitary-wave-like solutions.
Next, we apply the above method to solve Eq. (13).

Assuming the solution can be expressed in the form of
Eq. (15), balancing the derivative term of highest order
in Eq. (13) with the highest order nonlinear term, we
obtain the solution in the following form:

A(X,T ) = g0(T ) + g1(T ) snξ + g2(T ) sn2ξ. (17)

Substituting Eq. (17) into Eq. (13), assuming
μa4 � a3, vanishing the coefficients of the various
powers of elliptic functions, by direct computations,
we easily get

f (T ) = k, b(T ) = −1

2
μa4kT 2,

g0 = −a2 − 4a1m
2k2 + μ2a2

4T 2 − 4a1k
2

2a3
,

g1 = 0, g2 = −6a1m
2f 2(T )

a3
.

So the solution of Eq. (13) reads

A(X,T ) = −a2 − 4a1m
2k2 + μ2a2

4T 2 − 4a1k
2

2a3

− 6a1m
2f 2(T )

a3
sn2

(
−kX + 1

2
μa4kT 2

)
.

(18)

Fig. 1 Variation of amplitude and width according to the dissi-
pative coefficient μ (a1 = 5, a2 = −10, a3 = 5, a4 = 1, T = 50)

When m → 1, we obtain a solitary-wave-like solution:

A(X,T ) = −a2 + 4a1k
2 + μ2a2

4T 2

2a3

+ 6a1k
2

a3
sech2

(
−kX + 1

2
μa4kT 2

)
.

(19)

In order to simplify the calculation and to focus on the
variation of amplitude A(X,T ) with time T and dis-
sipation coefficient μ, let the former term of A(X,T )

equal zero, then Eq. (18) becomes

A(X,T ) = −3(μ2a2
4T 2 + a2)

2a3
sech2

×
[√

−a1(μ2a2
4T 2 + a2)

4a1

(−2X + μa4T
2)]. (20)

From Fig. 1, we find that when the dissipative co-
efficient μ = 0, the amplitude of solitary waves is the
largest, while the width of the solitary waves is the
smallest. The amplitude decreases and the width in-
creases with the increasing of the dissipative coeffi-
cient μ. Figure 2 shows that the amplitude of the soli-
tary waves becomes smaller and smaller with time T ,
while the width of the solitary waves becomes larger
and larger with time T . It is obvious that the dissipa-
tion effect causes the amplitude of the solitary waves
to decrease and the width of the solitary waves to in-
crease.

4 Numerical simulation and discussion

In Sect. 3, we study the dissipation effect on the soli-
tary Rossby waves and get the conclusion that the
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Fig. 2 Solitary-waves evolution in the presence of dissipation

dissipation effect causes the amplitude of the solitary
waves decrease and the width of the solitary waves in-
crease. But what the solitary Rossby waves happen un-
der the influence of dissipation and topography? Spe-
cially what happens with the solitary Rossby waves
under the influence of dissipation and the unstable to-
pography? In this section, we will take into account
the problem.

In fact, in Sect. 2, we have obtain Eq. (10) which
governs the evolution of the amplitude of the solitary
waves under the influence of dissipation and topogra-
phy. But there is no analytic solution for Eq. (10), here
we will look for the numerical solution of Eq. (10) by
using the pseudo-spectral method. First, let us simply
introduce the method.

This method will be described for Eq. (10). It also
can be written as

∂2A

∂T 2
+ a1

∂4A

∂X4
+ (a2 + 2a3A)

∂2A

∂X2
+ 2a3

(
∂A

∂X

)2

+ μa4
∂A

∂X
= a5

∂2H

∂X2
. (21)

This is a pseudo-spectral method, which uses a Fourier
transform treatment of the space dependence together
with a leap-forg scheme in time. For ease of pre-
sentation the spatial period is normalized to [0,2π].
This intervals is divided into 2N points, then �T =
π/N . The function A(X,T ) can be transformed to the
Fourier space by

Â(v, T ) = FA = 1√
2N

2N−1∑
j=0

A(j�X,T )e−πijv/N ,

v = 0,±1, . . . ,±N.

(22)

The inversion formula is

A(j�X,T ) = F−1Â = 1√
2N

∑
v

Â(v, T )eπijv/N .

(23)

These transformations can use Fast Fourier Transform
algorithm to efficiently perform.

With this scheme, ∂A
∂X

can be evaluated as

F−1{ivFA}, ∂2A

∂X2 as −F−1{v2FA}, ∂4A

∂X4 as

F−1{v4FA}, ∂2H

∂X2 as −F−1{v2FH } and so on. Com-
bined with a leap-frog time step, Eq. (21) would be
approximated by

A(X,T + �T ) − 2A(X,T ) + A(X,T − �T )

+ a1(�T )2F−1{v4FA
} − (a2 + 2a3A)(�T )2

× F−1{v2FA
} − 2a3(�T )2(F−1{vFA})2

+ iμa4(�T )2F−1{vFA} + a5(�T )2

× F−1{v2FH
} = 0. (24)

The computational cost for Eq. (24) is six fast Fourier
transforms per time step.

For a given zonal flow u(y), β-plane approxima-
tion function β(y) and topographic forcing function
H(X,T ) as well the dissipative coefficient μ, it is
easy to find the coefficients of Eq. (10) by using
Eq. (7) and Eq. (8). In order to simplify the calcula-
tion and to focus attention on the time evolution of
the solitary waves under the influence of dissipation
and topographic forcing, we take a1 = 10, a2 = −20,
a3 = 1, a4 = 1, a5 = 1. As an initial condition, we
take A(X,T ) = 0, T = 0. The bottom topography, as
a forcing for wave generation, used for the present nu-
merical computations is

H(X,T ) = −20 ∗ exp
[−(X − 100)2/4 + MT

]
.

where M is a measure for rate of topography vary with
time. In order to compare the effect of stable topogra-
phy and unstable topography, we will consider the case
of M = 0 and M = −0.3. Meanwhile, in order to study
the dissipation effect, we take μ = 0 and μ = 0.01, re-
spectively. The simulated results are shown in Figs. 3
and 4.

From Fig. 3, it is easy to find that a solitary wave is
generated in the topographic forcing region. Two sym-
metric modulated wavetrains propagating toward both
upstream and downstream are generated. It is very
different from the modulated wavetrains expressed
with the forced KdV equation and mKdV equation
[13, 14]. This is because the topographic forcing term
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Fig. 3 Wavetrains excited
by topography in the
absence of dissipation
(μ = 0), (a) M = 0;
(b) M = −0.3

Fig. 4 Wavetrains excited
by topography in the
presence of dissipation
(μ = 0.01), (a) M = 0;
(b) M = −0.3

in Eq. (10) is the second order derivative with respect
to X, the forcing term remains the original symmetric
feature of the topography. By comparison of Figs. 3(a)
and 3(b), it is not difficult to find that the solitary wave
in stable topographic forcing region is excited and its
amplitude increases rapidly and then remains invari-
ant with time T . While the solitary wave in unsta-
ble topographic forcing region is also excited, but its

amplitude increases rapidly and then decreases slowly
with time T . At the end of the calculation time, the
amplitude in Fig. 3(b) is much less than the ampli-
tude in Fig. 3(a). The amplitudes of the modulated
wavetrains excited in upstream and downstream in-
crease with time T both in Figs. 3(a) and 3(b), the
variation of M has almost no effect on the propaga-
tion speed and quantity of the modulated wavetrains,
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but make the amplitudes of the modulated wavetrains
vary slowly. Additionally, between the solitary wave
and the modulated wavetrains, there exists a buffer re-
gion. The buffer region located in the horizontal plane
and is steady in Fig. 3(a), while it is unsteady and there
is a convex above the horizontal plane in Fig. 3(b).

By comparing Figs. 3 and 4, we will find that the
dissipation effect makes the amplitude of the solitary
wave, the modulated wavetrains in the upstream and
downstream, the buffer region between the solitary
wave and the modulated wavetrains change. First, the
dissipation effect makes the amplitude of the solitary
wave in the forcing region decrease. From Fig. 4, we
see that the solitary wave in stable topographic forcing
region is excited and its amplitude increases rapidly
and then decreases slowly with time T . The ampli-
tude in Fig. 4 is less than the amplitude in Fig. 3. Es-
pecially, the solitary wave in Fig. 4(b) almost disap-
pears at the end of the calculation time under the influ-
ence of dissipation and unstable topographic forcing.
Because of dissipation effect, the symmetric feature
of modulated wavetrains in upstream and downstream
is destroyed. Two asymmetric modulated wavetrains
propagating toward both upstream and downstream
are generated. The amplitudes of modulated wave-
trains in upstream region increase slowly with time T ,
the buffer region between the solitary wave and mod-
ulated wavetrains in upstream region lies a concave
below the horizontal plane. On the contrary, the am-
plitudes of modulated wavetrains in downstream re-
gion increase quickly with time T , the buffer region
between the solitary wave and modulated wavetrains
in downstream region lies a convex above the horizon-
tal plane.

In conclusion, by comparing Figs. 3 and 4, we will
find that the dissipation effect and topographic forcing
have great effect on the solitary wave and the modu-
lated wavetrains.

5 Conclusions

In the paper, the effects of topographic forcing and
dissipation on solitary Rossby waves are studied. Spe-
cial attention is given to solitary Rossby waves excited
by unstable topography. The dissipative Boussinesq
equation which is derived by the perturbation method
is solved by using the modified Jacobi elliptic func-
tion expansion method and pseudo-spectral method.

By analyzing the plots, we obtain the following con-
clusions.

(1) The dissipation effect causes the amplitude of the
solitary waves decrease and the width of the soli-
tary waves increase in the absence of topographic
forcing.

(2) The solitary wave in stable topographic forcing re-
gion is excited and its amplitude increases rapidly
and then remains invariant with time T ; While the
solitary wave in unstable topographic forcing re-
gion is also excited, but its amplitude increases
rapidly and then decreases slowly with time T in
the absence of dissipation.

(3) The unstable topography has almost no effect on
the propagate speed and quantity of the modulated
wavetrains, but make the amplitude of the modu-
lated wavetrains and the buffer region between the
solitary wave and the modulated wavetrains vary
slowly.

(4) Because of dissipation effect, the symmetric fea-
ture of modulated wavetrains in upstream and
downstream which excited by topography is de-
stroyed.
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