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Abstract The concept of exploiting galloping of
square cylinders to harvest energy is investigated. The
energy is harvested by attaching a piezoelectric trans-
ducer to the transverse degree of freedom. A repre-
sentative model that accounts for the coupled cylinder
displacement and harvested voltage is used to deter-
mine the levels of the harvested power. The focus is
on the effect of the Reynolds number on the aerody-
namic force, the onset of galloping, and the level of
the harvested power. The quasi steady approximation
is used to model the aerodynamic loads. A linear anal-
ysis is performed to determine the effects of the elec-
trical load resistance and the Reynolds number on the
onset of galloping, which is due to a Hopf bifurcation.
We derive the normal form of the dynamic system near
the onset of galloping to characterize the type of the
instability and to determine the effects of the system
parameters on its outputs near the bifurcation. The re-
sults show that the electrical load resistance and the
Reynolds number play an important role in determin-
ing the level of the harvested power and the onset of
galloping. The results also show that the maximum
levels of harvested power are accompanied with mini-
mum transverse displacements for both low- and high-
Reynolds number configurations.
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1 Introduction

Converting ambient and aeroelastic vibrations, using
piezoelectric transducers, to electric power has been
proposed for powering micro-electromechanical sys-
tems [1, 2] and heath monitoring and wireless sen-
sors [3] and for replacing small batteries that have a
finite life span and require hard and expensive mainte-
nance [4, 5]. To date, most of energy harvesting from
mechanical vibrations concentrated on exploiting am-
bient vibrations [6–12]. More recently, few investiga-
tions [13–20] focused on the conversion of aeroelastic
vibrations of wings to electrical power. These inves-
tigations have been mostly concerned with aeroelas-
tic responses of streamlined surfaces, such as wings.
In comparison to wing flutter, the galloping aeroe-
lastic instability results in large oscillations. This is
very beneficial when using piezoelectric transducers
because the harvested voltage is directly related to the
oscillation amplitude.

As the wind speed exceeds a critical value, an
elastic bluff body undergoes transverse oscillations,
called galloping. Den Hartog [21] was the first to study
and explain the galloping phenomenon. He used the
quasi steady hypothesis to describe the aerodynamic
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loads. He also developed a criterion for the occur-
rence of galloping. Several studies [22–33] investi-
gated the effects of various parameters on the behav-
ior of the galloping of different structures. Barrero-Gil
et al. [34] investigated theoretically the possibility of
using transverse galloping to extract energy. Specific
methods on how to harvest this energy were not dis-
cussed. Based on previous numerical and experimental
data, Barrero-Gil et al. [33, 34] modeled the transverse
aerodynamic force using a cubic polynomial for high
Reynolds numbers and a seven-order polynomial for
Reynolds numbers below 200. Barrero-Gil et al. [33]
investigated the possibility of transverse galloping of a
square cylinder at low Reynolds numbers (Re < 200).
They showed that a square cylinder cannot gallop be-
low a Reynolds number of 159.

The objective of this work is to investigate the
possibility of designing enhanced piezoelectric energy
harvesters that exploit the galloping of square cylin-
ders. Particularly, we aim to determine the power lev-
els that can be generated from these oscillations for
low and high Reynolds numbers by modeling the aero-
dynamic loads using the quasi steady approximation.
To this end, we attach a piezoelectric transducer to the
transverse degree of freedom of the cylinder. We de-
velop a phenomenological model for the global cou-
pled (transverse displacement and electrical circuit)
system in Sect. 2. In Sect. 3, we perform a linear anal-
ysis to determine the effects of the electrical load re-
sistance and the Reynolds number on the onset of gal-
loping, which is due to a Hopf bifurcation. In Sect. 4,
we perform a nonlinear analysis, based on the normal
form of this bifurcation, to determine the effects of the
load resistance and the Reynolds number on the har-
vested power, voltage output, and transverse displace-
ment. Conclusions are presented in Sect. 5.

2 Mathematical modeling of transverse galloping

We consider a galloping-based piezo-aeroelastic en-
ergy harvester consisting of an elastically-mounted
square cylinder and a piezoelectric transducer at-
tached to its transverse degree of freedom, as shown
in Figs. 1(a) and 1(b). When this system is subjected
to an incoming flow, the cylinder undergoes galloping
in the transverse direction as the wind speed exceeds a
critical value. The governing equations of the coupled

electromechanical system are written as

m
(
ÿ + 2ξωnẏ + ω2

ny
) − θV = Fy = 1

2
ρU2DCy (1)

CpV̇ + V

R
+ χẏ = 0 (2)

where m is the total mass per unit length, D is the char-
acteristic dimension of the body normal to the incom-
ing flow, U is the velocity of the incoming flow, ρ is
the fluid density, ωn is the cylinder natural frequency,
ξ is the mechanical damping ratio, θ and χ are the
electromechanical coupling coefficients, V is the har-
vested voltage across the load resistance R, Cp is the
capacitance of the piezoelectric layer, and Fy and Cy

are respectively the aerodynamic force per unit length
and force coefficient in the normal direction to the in-
coming flow.

Generally, in transverse galloping, the characteris-
tic time scale of the structure oscillation, which is ap-
proximately equal to 2π

ωn
, is much larger than the char-

acteristic time scale of the flow which is O( D
U

). Fur-
thermore, if the vortex shedding frequency is much
larger than the natural frequency of the oscillating
square cylinder, the quasi steady hypothesis can be
used to evaluate the aerodynamic force [26]. In this
work, we consider two configurations that cover low
and high Reynolds number (Re) regimes of galloping
square cylinders. For Reynolds numbers below 200,
Barrero-Gil et al. [33] showed that the transverse aero-
dynamic force can be estimated by the odd terms in a
seventh-order polynomial function of ẏ

U
, that is,

Fy = 1

2
ρU2D

[
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ẏ

U
+ a3

(
ẏ

U

)3

+ a5

(
ẏ

U

)5

+ a7

(
ẏ

U

)7]
(3)

Here, ẏ
U

= tanα, where α is the angle of attack. Based
on the numerical results of Sohankar et al. [35], the
coefficients in Eq. (3) are estimated by Barrero-Gil et
al. [33] as

a1 = −2.7 + 0.017Re,

a3 = 10 − 0.096Re − 0.001Re2,

a5 = −24 − 0.21Re + 0.011Re2,

a7 = 13 + 1.1Re − 0.024Re2



Power harvesting from transverse galloping of square cylinder 1357

Fig. 1 (a) Simplified and
(b) three-dimensional
schematics of
piezo-aeroelastic energy
harvester based on
transverse galloping of a
square cylinder

The aerodynamic coefficient Cy is directly related to
the lift and drag coefficients Cl and Cd , respectively,
by Cy = −[Cl cos(α) + Cd sin(α)].

At high Reynolds numbers, Barrero-Gil et al. [34]
showed that the aerodynamic force coefficient can
be approximated by a cubic polynomial expansion
of ẏ

U
with the coefficients being independent of the

Reynolds number. Then the transverse aerodynamic
force can be written in the form

Fy = 1

2
ρU2D

[
a1

ẏ

U
+ a3

(
ẏ

U

)3]
(4)

where a1 and a3 are empirical coefficients obtained by
fitting Cy with a cubic polynomial of ẏ/U .

The Den Hartog stability criterion [21] states that
a section of a structure on a flexible support is sus-
ceptible to galloping when the linear coefficient a1 is
positive. For the energy harvester considered here, the
onset of galloping is determined when the electrome-
chanical damping of the system changes from a pos-
itive to a negative value. The nonlinear coefficient a3

is always negative, because as the angle of attack in-
creases, Cy increases, achieves a maximum value, and
then decreases. For this work, our focus is on a square
cylinder. The linear and nonlinear coefficients used to
determine the transverse aerodynamic force are empir-
ically determined from the experiments of Parkinson
and Smith [22]; that is, a1 = 2.3 and a3 = −18.

Two different configurations are considered in this
work: low and high Reynolds number configurations.
In the low Reynolds number configuration, D is set
equal to 1 mm, m = 0.044 kg, ωn = 10 rad/s, ξ =

7.102 × 10−6, and the speed is limited to a maximum
value of 2 m/s so that the Reynolds number remains
below 200. The galloping parameters in this configu-
ration are the same as those used by Barrero-Gil et al.
[33]. The transverse aerodynamic force is estimated by
Eq. (3). In the high Reynolds number configuration, D
is set equal to 1.5 cm, m = 0.44 kg, ωn = 62.83 rad/s,
and ξ = 0.0013.

3 Effects of the electrical load resistance and
Reynolds number on the onset of galloping

Introducing the piezoelectric transducer and load re-
sistance causes the global frequency and damping
of the electromechanical system to be different from
those of the mechanical system (without the piezoelec-
tric transducer). These effects can be determined from
the analysis of the linear system in which only the first
term of the aerodynamic force is considered. Introduc-
ing the following state variables:

X =
⎡

⎣
X1

X2

X3

⎤

⎦ =
⎡

⎣
y

ẏ

V

⎤

⎦ (5)

we rewrite the linear part of the coupled equations of
motion as

Ẋ1 = X2 (6)

Ẋ2 = −
(

2ξωn − ρUDa1

2m

)
X2 − ω2

nX1 + θ

m
X3 (7)
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Ẋ3 = − 1

RCp

X3 − θ

Cp

X2 (8)

Clearly, these equations have the form

Ẋ = BX (9)

where

B =

⎡

⎢⎢
⎣

0 1 0
−ω2

n −(2ξωn − 1
2

ρUDa1
m

) θ
m

0 − θ
Cp

− 1
RCp

⎤

⎥⎥
⎦

and a1 = −2.7 + 0.017Re in the low Reynolds num-
ber configuration and a1 = 2.3 in the high Reynolds
number configuration.

The matrix B(U) has a set of three eigenvalues
λi , i = 1,2,3. The first two eigenvalues are similar
to those of a pure galloping problem in the absence
of the piezoelectricity effect. The third eigenvalue is a
result of the electromechanical coupling. This eigen-
value (λ3) is always real negative as in the case of
piezoelectric systems subjected to base or aeroelastic
excitations [10–12, 17]. The first two eigenvalues are
complex conjugates (λ2 = λ1). The real part of these
eigenvalues represents the damping coefficient and the
positive imaginary part corresponds to the global fre-
quency of the coupled system. Because λ3 is always
real negative, the stability of the trivial solution de-
pends only on the first two eigenvalues. The trivial so-
lution is asymptotically stable if the real part of λ1 is
negative. On the other hand, if the real part of λ1 is
positive, the trivial solution is unstable. The speed Ug

for which λ1 = 0 corresponds to the onset of instabil-
ity or galloping. The matrix B also includes all pa-
rameters that affect the linear part of the system. This
matrix is used to investigate the effects of the load re-
sistance and the Reynolds number on the onset of gal-
loping.

Figure 2 shows the effect of the electrical load re-
sistance on the onset speed of galloping for both con-
figurations. We note that, in the low Reynolds config-
uration, the galloping speed increases with the load re-
sistance to about 2 m/s, corresponding to Re = 200, at
about 300 
. In the absence of the piezoelectric trans-
ducer, Barrero-Gil et al. [33] showed that the consid-
ered square cylinder does not gallop below a Reynolds
number of 159. For the short-circuit configuration in
which the load resistance is very small (approximately
10 
), our predicted Reynolds number for the onset of

Fig. 2 Variations of the galloping speed with the load resistance
for both low and high Reynolds number configurations

galloping matches that obtained by Barrero-Gil et al.
[33].

For the high Reynolds numbers, the onset speed
of galloping increases as the load resistance increases
from low values. It reaches a maximum value near
R = 105 
 and decreases to lower speeds for load
resistances near 107 
, as shown in Fig. 2. In the
absence of the piezoelectric transducer, using the
Krylov–Bogoliuvov method, Barrero-Gil et al. [34]
showed that the onset speed of galloping depends on
the damping ratio ξ , the dimensionless mass ration
m∗, and the linear coefficient a1 by the following
relation: U∗ = 4m∗ξ/a1 where U∗ = U/(ωnD) and
m∗ = m/(ρD2). For the short-circuit configuration,
our onset speeds of galloping match those obtained by
Barrero-Gil et al. [34].

4 Nonlinear analysis

4.1 Effect of higher-order terms in the aerodynamic
load

In Fig. 3, we compare the level of the harvested power
when modeling the transverse aerodynamic force us-
ing all terms in Eq. (3) with those obtained when the
higher-order terms a5 and a7 are neglected. The re-
sults show that, for low wind speeds, the first and
third terms are sufficient for predicting the bifurcation
and characterizing the system behavior and instability.
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Fig. 3 Effect of the higher-order nonlinear terms in the model
of the aerodynamic force, Eq. (3), on the harvested power when
R = 100 


However, for higher wind speeds, between 1.85 m/s
and 2 m/s, the level of harvested power is underpre-
dicted when the fifth- and seventh-order terms are ne-
glected. Furthermore, we note that there is no hystere-
sis when including these higher-order nonlinear terms
unlike other systems in which such nonlinear terms
resulted in the appearance of hysteresis and unstable
branches [36].

4.2 Normal form of Hopf bifurcation

Next, we perform a nonlinear analysis of the coupled
system to determine the type of instability or bifur-
cation associated with the proposed galloping-based
harvesters. To this end, we add a perturbation term
σUUf to the onset speed and express the air speed as
U = Uf +σUUf . Using this expansion, we rewrite the
matrix B(U) as

B(U) = B(Uf ) + σUB1(Uf )

where

B1(Uf ) =
⎡

⎢
⎣

0 0 0

0
ρD(b1Uf +2b2U

2
f )

2m
0

0 0 0

⎤

⎥
⎦

and b1 and b2 are related to the linear coefficient a1

by a1 = b1 + b2U . For the low Reynolds number con-
figuration, b1 and b2 are set equal to −2.7 and 1.7,

respectively; and for the high Reynolds number con-
figuration, b1 and b2 are set equal to 2.3 and 0, re-
spectively. Neglecting the higher-order terms (i.e., a5

and a7) in the low Reynolds number configuration, we
write the equations of motion for both configurations
in the following form:

Ẋ = B(Uf )X + σUB1(Uf )X + C(X,X,X) (10)

where

CT =
[

0,
ρD(b3+b4Uf +b5U

2
f )

2mUf
X3

2,0
]

where b3, b4, and b5 are related to the nonlinear co-
efficient a3 by a3 = b3 + b4U + b5U

2. For the low
Reynolds number configuration, b3, b4, and b5 are set
equal to 10, −9.6, and −10, respectively. For the high
Reynolds number configuration, b3, b4, and b5 are set
equal to −18, 0, and 0, respectively.

Letting G be the matrix whose columns are the
eigenvectors of the matrix B(Uf ) corresponding to the
eigenvalues ±jω1 and −μ3 and defining a new vector
Y such that X = GY, we rewrite Eq. (10) as

GẎ = B(Uf )GY + σUB1(Uf )GY

+ C(GY,GY,GY) (11)

Multiplying Eq. (11) from the left by the inverse G−1

of G yields

Ẏ = JY + σUKY + G−1C(GY,GY,GY) (12)

where K = G−1B1(Uf )G and J = G−1B(Uf )G is
a diagonal matrix whose elements are the eigenval-
ues ±jω1 and −μ3. We note that Y2 = Y1, and hence
Eq. (12) can be written in component form as

Ẏ1 = jω1Y1 + σU

3∑

1

K1iYi + N1(Y) (13)

Ẏ3 = −μ3Y3 + σU

3∑

1

K3iYi + N3(Y) (14)

where the Ni(Y) are trilinear functions of the compo-
nents of Y.

According to the center-manifold theorem [37],
there exists a center manifold

Y3 = H3(Y1, Ȳ1)
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such that the dynamics on this manifold is similar to
the dynamics of the system represented by Eqs. (13)
and (14). Equation (14) is then rewritten as

Ẏ1 = jω1Y1 + σU(K11Y1 + K12Ȳ1 + K13H3)

+ N1(H1, H̄1, Y3, Ȳ3,H3) (15)

Because σU is small and N1 and N3 are cubic func-
tions of the components of Y, H3 is zero to the third
approximation. Keeping only the resonance terms [37]
in Eq. (15), we obtain the complex-valued normal
form

Ẏ1 = jω1Y1 + σUK11Y1 + αeY
2
1 Ȳ1 (16)

where αe depends on the cubic nonlinear coefficients
b3, b4, and b5, as shown in Table 1 for both Reynolds
number configurations when the load resistance is set
equal to 104 
.

Next, we express Y1 in the polar form

Y1 = 1

2
aej (ω1t+γ ) (17)

where a is the amplitude of oscillation and γ is its
phase. Substituting Eq. (17) into Eq. (16) and separat-
ing the real and imaginary parts, we obtain the follow-
ing real-valued normal form of the Hopf bifurcation:

ȧ = βra + 1

4
αera

3 (18)

γ̇ = βi + 1

4
αeia

2 (19)

where β = σUK11 and the subscripts r and i denote
the real and imaginary parts, respectively.

Equation (18) has three equilibrium solutions:

a = 0 and a = ±
√

−4βr

αer

where a = 0 is the trivial solution. The two other solu-
tions are nontrivial. The origin is asymptotically stable
for βr < 0 or βr = 0 and αer < 0, unstable for βr > 0
or βr = 0 and αer > 0. The nontrivial solutions exist
when βrαer < 0. They are stable (supercritical Hopf
bifurcation) for βr > 0 and αer < 0 and unstable (sub-
critical Hopf bifurcation) for βr < 0 and αer > 0.

The effective nonlinearity αe is a function of the
system parameters, including the load resistance and
the linear and nonlinear coefficients a1, b3, b4, and b5.
Table 1 shows βr and αer when the electrical load re-
sistance is set equal to 100 
 for the low Reynolds
number configuration and 104 
 for the high Reynolds
number configuration.

For the low Reynolds number configuration, we
note that the effective nonlinearity depends on b3, b4,
and b5. On the other hand, for the high Reynolds num-
ber configuration, it depends only on b3 because the
nonlinear coefficient in this configuration is indepen-
dent of the Reynolds number. For the proposed values
of the bi , we note that the instability is a supercritical
Hopf bifurcation for both configurations, as presented
in Table 1.

The transverse displacement y, the voltage out-
put V , and harvested power P are related to the am-
plitude a of the limit cycle by

y = a

√
G[1,1]2

r + G[1,1]2
i (20)

V = a

√
G[3,1]2

r + G[3,1]2
i (21)

P = V 2

R
(22)

where (·)r and (·)i denote the real part and imagi-
nary part, respectively. To validate this analytical so-
lution (normal form of Hopf bifurcation), we compare
in Fig. 4 its predictions with those obtained by numer-
ically integrating the high Reynolds number configu-
ration when the electrical load resistance is set equal
to R = 104 
. The results show that the normal form

Table 1 Values of the
onset speed of galloping
and the real parts of β and
αe when R = 100 
 and
R = 104 
 for the low and
high Reynolds number
configurations, respectively

Parameters Low Reynolds number configuration High Reynolds number configuration

Uf (m/s) 1.723 4.441

βr 0.03864 0.1088

αer 0.01196 b3 + 0.02061 b4 + 0.0355 b5 0.0000299 b3

αer −0.43323 −0.000538
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Fig. 4 Comparison between the analytical predictions and the numerical integration of the full system: (a) transverse displacement
and (b) harvested power for the high Reynolds number configuration when R = 104 


Fig. 5 Variations of the (a) transverse displacement and (b) harvested power with the freestream velocity for different values of the
load resistance in the low Reynolds number configuration

predicts accurately all amplitudes near the onset of
galloping. Thus, we conclude that the developed lin-
ear and nonlinear analyses provide a methodology to
characterize the behavior of transverse galloping near
bifurcation for both Reynolds number configurations.
In the rest of this investigation, only numerical results
are presented.

5 Effects of the load resistance and Reynolds
number on the level of harvested power and
transverse displacement

The effects of the load resistance on the transverse dis-
placement and harvested power in the low Reynolds
number configuration are shown in Figs. 5(a) and 5(b),
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Fig. 6 Variations of the (a) transverse displacement and (b) harvested power with the freestream velocity for different values of the
load resistance in the high Reynolds number configuration

respectively. The plots show that increasing the load
resistance results in an increase in the onset speed of
galloping. Furthermore, the transverse displacement
decreases at higher load resistances. This is due to
the increase in the electromechanical damping with in-
creasing load resistance. On the other hand, we note
that the harvested power increases with the load re-
sistance. Particularly, the level of harvested power is
around 0.015 mW for a freestream velocity near 2 m/s.

In the high Reynolds number configuration (free-
stream velocity between 2 m/s and 15 m/s), we show in
Figs. 6(a) and 6(b) variations of the oscillation ampli-
tudes and harvested power with the freestream veloc-
ity over a wide range of electrical load resistance. The
results show that varying the load resistance changes
the onset speed of galloping. Particularly, this speed is
the largest when the load resistance has a value near
R = 105 
. The results also show that the load resis-
tance impacts the amplitude of the transverse displace-
ment. Particularly, for R = 105 
, the transverse dis-
placement is the smallest because the electromechan-
ical damping is the highest. Inspecting the curves in
Fig. 6(b), we note that an increase in the load resis-
tance is not accompanied with an increase in the har-
vested power. Rather, there is an optimum value of the
load resistance for maximizing the harvested power.
This maximum level is associated with the minimum
transverse displacement obtained by using a load re-

sistance of about 105 
. For this load resistance, the
power that can be generated is around 1.7 W for a
wind speed of about 15 m/s. However, the onset of
galloping for this configuration is the highest with the
wind speed being near 10 m/s. Furthermore, for a wind
speed of 4 m/s, this harvester can generate 0.9 mW
and 1.2 mW when R = 103 
 and R = 107 
, respec-
tively, and the displacement is 0.75D.

6 Conclusions

We have investigated the concept of exploiting the gal-
loping phenomenon of a square cylinder to harvest en-
ergy over different ranges of wind speeds (Reynolds
numbers). The analysis shows that the electrical load
resistance and the Reynolds number play an important
role in determining the onset of galloping and the har-
vested power. The harvested energy at high Reynolds
numbers is much larger than that at Reynolds numbers
below 200. In the low Reynolds number applications,
the harvested power can be enhanced by increasing the
load resistance. In the high Reynolds number appli-
cations, the harvested power can be optimized, with
minimum displacement, by properly choosing the load
resistance. However, this choice may result in a con-
figuration in which the onset speed of galloping is rel-
atively high.
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