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Abstract Noether conserved quantities and Mei sym-
metries for non-conservative Hamiltonian difference
systems with irregular lattices are studied. The gener-
alized Hamiltonian equations of the systems are given
on the basis of the transformation operators in the
space of discrete Hamiltonians. The Lie point transfor-
mations acting on the lattice, as well as the difference
equations, and the determining equations of Mei sym-
metries are obtained for the systems. The discrete ver-
sions of Noether conserved quantity are constructed
by the Mei symmetries. An example is presented to
illustrate the results.
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1 Introduction

Symmetries and conserved quantities which are of
considerable theoretical significance have made great
developments in recent years [1–8]. Mei symmetry
is a new kind of symmetry proposed by Mei [5] in
2000. It is different from the Noether symmetry [1]
and Lie symmetry [2, 3], with which we are familiar.
The Noether symmetry is an invariance of the Hamil-
tonian action functional under infinitesimal transfor-
mation groups of time and coordinates. The Lie sym-
metry is an invariance of the motion of differential
equations under infinitesimal transformation groups.
For Mei symmetry, the definition has two expressions.
The first type is that Mei symmetry is the form of the
differential equations of motion of systems keeping
invariance under infinitesimal transformation groups
[9]. The second is that Mei symmetry is an invariance
of the dynamical functions of differential equations of
motion of systems under infinitesimal transformation
groups [10]. A series of important results have been
obtained on the study of the Mei symmetries and the
conserved quantities for mechanical systems [4–7, 9–
13]. Mei symmetry is one of the most important meth-
ods of solving practical problems by obtaining the first
integrals from a certain kind of symmetries of systems.

Symmetries are intrinsic and fundamental features
of the differential equations of mathematical physics,
and symmetries are also the basis of modeling a given
mechanical system of differential equations with the
use of difference equations and meshes. This is one
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of the sources of the interest in continuous symme-
tries of discrete equations [14]. Cadzow [15] proposed
a discrete variational principle and obtained discrete
Euler–Lagrange equation in 1970. Three years later,
Logan [16] constructed the first integrals of discrete
Euler–Lagrange equation by studying the invariance
of discrete Lagrangian, which is called the discrete
Noether theorem. Levi and Winternitz [17–19] pro-
posed approaches on the applications of Lie group
theory to difference equations and discrete mechani-
cal systems, in which the Lie group transformations
act on the equation but not on the lattice. Dorodnit-
syn [20, 21] gave a different approach by which the
Lie group transformations act both on the difference
equations and the lattice. Based on these two philoso-
phies, several authors [22–26] generalized these theo-
ries to many kinds of mechanical systems. However,
there are many evolution equations without appropri-
ate or natural Lagrangian formulation. For these equa-
tions one may prefer to use the Hamiltonian viewpoint.
The Hamiltonian dynamics systems are widespread in
modern physics, engineering science, and nonlinear
science, and have been thoroughly developed recently
[27–31]. Studies on the Hamiltonian difference system
are to be considered. Ahlbrandt [32] studied the equiv-
alence of discrete Euler equations and discrete Hamil-
tonian systems. Chen et al. [33] used the total variation
in Hamiltonian formalism and symplectic-energy in-
tegrators. Zhang et al. [34] obtained the discrete vari-
ational principle in Hamiltonian formalisms and first
integrals. Lall and West [35] constructed the discrete
variational Hamiltonian mechanics. Dorodnitsyn and
Kozlov [36, 37] developed a similar mathematical for-
malism for discrete Hamiltonian equations. They con-
sidered the relation between symmetries and first inte-
grals for the systems. Wang et al. [38] gave the discrete
version of Noether’s identity and the forms of Noether
conserved quantity of the non-conservative and non-
holonomic Hamiltonian system. However, the applica-
tions of Mei symmetries to non-conservative Hamilto-
nian difference systems with irregular lattice have not
been investigated. In this paper, we apply the second
definition of Mei symmetries to the non-conservative
Hamiltonian systems and combine to the two discrete
approaches of Levi [17–19] and Dorodnitsyn [20, 21].

This article is organized as follows. In Sect. 2, we
give the equations of motion of the non-conservative
Hamiltonian systems. In Sect. 3 we consider the Lie
group transformations acting both on the difference

equations and on the lattice, obtain the determining
equations of Mei symmetries, and construct the dis-
crete version of Noether conserved quantity for the
systems. In Sect. 5 we draw the conclusion of the
present paper and give some problems for future re-
search after an illustrated example being presented in
Sect. 4.

2 Hamiltonian difference equations and energy
equations of the systems

Lagrangian mechanics provides a description of mo-
tion of a mechanical system constrained on a con-
figuration space. We are familiar with the language
of Lagrangian formulation of most mechanical sys-
tems. There are evolution equations without appro-
priate or natural Lagrangian formulation of some
kinds of mechanical systems. Because of that, one
may prefer another point of view to describe some
mechanical systems: the Hamiltonian. For the non-
conservative Hamiltonian systems, the equations of
motion of the systems will be obtained on the basis of
the Lagrangian type. We consider a mechanical sys-
tem whose configuration is determined by n gener-
alized coordinates qi (i = 1, . . . , n). The differential
equations of motion of the system can be written in
the form [39]:

d

dt

∂L

∂q̇i

− ∂L

∂qi

= Qi (i = 1, . . . , n), (1)

where L = L(t, qi, q̇i) is the Lagrangian, Qi =
Qi(t, qi, q̇i) are the non-potential generalized forces,
and the repeated subscripts represent the summation.

Introducing the generalized momentum and Hamil-
tonian function

pi = ∂L

∂q̇i

, H = piq̇i − L (2)

and the canonical form of Eq. (1) in phase space is

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

+ Qi, (3)

where Qi are the non-potential generalized forces as
functions of t , qi and pi .

We first introduce the transformation operators in
the space of discrete Hamiltonians, and then obtain the
discrete Hamiltonian equations and energy equations
of the systems on the basis of the discretization theory
of Eq. (3).
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Fig. 1 Elementary schematic for a three-point difference equa-
tion

We consider the space z of sequences (t,q,p), and
denote by D the first-order linear discrete operator

D = ∂

∂t
+ q̇i

∂

∂qi

+ ṗi

∂

∂pi

+ · · · . (4)

We fix arbitrary parameter value h > 0, and we form a
pair of the operators of discrete transformation to the
right and left:

S+h = ehD =
∞∑

i=0

hi

s! D
i,

S−h = e−hD =
∞∑

i=0

(−h)i

s! Di,

(5)

where D is a derivation in z. The operators S+h and
S−h commute with each other and satisfy S+hS−h =
S−hS+h = 1.

Using S+h and S−h, we define a pair of left and
right discrete (finite-difference) differentiation opera-
tors by setting

D−h = 1 − S−h

h
=

∞∑

i=1

hi−1

s! Di,

D+h = S+h − 1

h
=

∞∑

i=1

(−h)i−1

s! Di.

(6)

The operators S+h, S−h,D+h and D−h commute
in any combination, while D+h = D−hS+h,D−h =
D+hS−h. Consider Hamiltonian difference equations
at some lattice points (t,q,p). Generally, the lattice is
irregular. The notation is given in Fig. 1.

The regular lattice is with the same invariance
meshes in the t-direction. Now the irregular lattices
are considered. The method of introducing shift op-
erators and the corresponding discrete differentiation
operators is identical to that of regular lattice. The ex-
pressions are also the same as in Eqs. (5) and (6). But

different results appear while they are applied to vari-
ables. For regular lattice,

D+h(qi) = S+hqi − qi

h
= q+

i − qi

h
, (7)

D−h(qi) = qi − S−hqi

h
= qi − q−

i

h
. (8)

For irregular lattice,

D+h(qi) = S+hqi − qi

t+ − t
= q+

i − qi

h+ , (9)

D−h(qi) = qi − S−hqi

t − t−
= qi − q−

i

h− . (10)

Now we consider non-conservative Hamiltonian dif-
ference equation at some lattice points (t,q,p). Sup-
pose we have an n-dimensional configuration mani-
fold q = {q1, . . . , qn},p = {p1, . . . , pn} and Hamilto-
nian discrete function H = H(t, t+,q,p+). Hamilto-
nian equations can be obtained by the variational prin-
ciple from the finite-difference functional Hamiltonian
action

Hh =
∑

Ω

(
p+

i

(
q+
i − qi

) − H
(
t, t+,q,p+)

h+)
(11)

and

�Hh = −
∑

Ω

Q̄i

(
t, t+,q,p+)

h+δqi, (12)

where Q̄i = Q̄i(t, t
+,q,p+) is the discrete force,

δqi is the discrete virtual placement satisfying

δqi = �qi − q+
i − qi

h+ �t. (13)

The variation of the function Hh along a curve qi =
φi(t), pi = ψi(t) at some point (t,q,p) will affect
only two terms of the sum (11):

Hh = · · · + pi

(
qi − q−

i

)

− H
(
t−, t,q−,p

)
h− + p+

i

(
q+
i − qi

)

− H
(
t, t+,q,p+)

h+ + · · · . (14)

So

�Hh = ∂Hh

∂pi

�pi + ∂Hh

∂qi

�qi + ∂Hh

∂t
�t

= −Q̄i

(
t, t+,q,p+)

h+δqi . (15)

Substituting Eq. (13) into Eq. (15), we obtain
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∂Hh

∂pi

�pi +
(

∂Hh

∂qi

+ Q̄ih
+
)

�qi

+
(

∂Hh

∂t
− (

q+
i − qi

)
Q̄i

)
�t = 0. (16)

With the help of Eq. (14), we obtained the expression
(

qi − q−
i − h− ∂H−

∂pi

)
�pi

−
(

p+
i − pi + h+ ∂H

∂qi

− Q̄ih
+
)

�qi

−
(

h+ ∂H

∂t
− H + h− ∂H−

∂t
+ H−

+ (
q+
i − qi

)
Q̄i

)
�t = 0, (17)

where H = H(t, t+,q,p+) and H− =
H−(t−, t,q−,p).

For the stationary value of the discrete Hamiltonian
action (12), the systems of 2n + 1 equations can be
derived:

qi − q−
i − h− ∂H−

∂pi

= 0, (18)

p+
i − pi + h+ ∂H

∂qi

− Q̄ih
+ = 0, (19)

h+ ∂H

∂t
− H + h− ∂H−

∂t
+ H− + (

q+
i − qi

)
Q̄i = 0.

(20)

According to the total left shift and right shift opera-
tors and the discrete derivation operators, the expres-
sions (18)–(20) can be written as

D+h(qi) = q+
i − qi

h+ = ∂H

∂p+
i

, (21)

D+h(pi) = p+
i − pi

h+ = −∂H

∂qi

+ Q̄i, (22)

h+ ∂H

∂t
− H + h− ∂H−

∂t
+ H− + D+h(qi)Q̄ih

+ = 0.

(23)

Note that the first 2n equations (Eqs. (21) and (22))
are the first-order difference equations, which are the
generalized non-conservative canonical Hamiltonian
difference equations. Equation (23), which is the en-
ergy equation, is of the second order, and it defines
the lattice on which the non-conservative canonical
Hamiltonian equations are discretized. The above re-
sults are built upon the continuous canonical non-
conservative Hamiltonian equations, but in the con-

tinuous limit, the lattice equation disappears. Equa-
tions (21)–(23) require the discrete equations of non-
conservative Hamiltonian systems.

3 Noether conserved quantities and Mei
symmetries

3.1 Mei symmetries of equations of non-conservative
Hamiltonian difference systems

For dynamical systems, Mei gives a modern method
of searching conserved quantities. It is the form in-
variance (Mei symmetry) which has very important
practical significance in mathematics, mechanics and
physics. Mei symmetry is an invariance of the differ-
ential equation satisfied by physical quantities such
as Lagrangian, non-potential generalized forces and
generalized constrained forces under the infinitesimal
transformation of time and generalized coordinates.
On the basis of Mei’s theory, we generalize Mei sym-
metry to the discrete non-conservative Hamiltonian
equations and try to obtain some useful conserved
quantities. We introduce the infinitesimal transforma-
tions with respect to time, generalized coordinates,
and generalized momentum as

�t = t + εξ(t,q,p),

�qi = qi + εηi(t,q,p), (24)

�pi = pi + εζi(t,q,p),

where ε is a small parameter. The infinitesimal gen-
erators ξ, ηi and ζi constitute the Lie group of the
infinitesimal transformations. The Lie group is com-
pletely defined by the operators

X = ξ(t,q,p)
∂

∂t
+ ηi(t,q,p)

∂

∂qi

+ ζi(t,q,p)
∂

∂pi

,

(25)

where q = {q1, . . . , qn} and p = {p1, . . . , pn}. To con-
sider difference equations, we need three points of a
lattice. Prolongation of the Lie group operator (25) for
left (t−,q−,p−) and right points (t+,q+,p+) is as
follows [40]:

Pr X̄ = ξ
∂

∂t
+ ηi

∂

∂qi

+ ζi

∂

∂pi

+ ξ− ∂

∂t−
+ η−

i

∂

∂q−
i

+ ζ−
i

∂

∂p−
i

+ ξ+ ∂

∂t+
+ η+

i

∂

∂q+
i

+ ζ+
i

∂

∂p+
i

+ (ξ+ − ξ)
∂

∂h+ + (ξ − ξ−)
∂

∂h− , (26)
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where ξ− = ξ(t−,q−,p−), η−
i = ηi(t

−,q−,p−),
ζ−
i = ζi(t

−,q−,p−), ξ+ = ξ(t+,q+,p+), η+
i =

ηi(t
+,q+,p+) and ζ+

i = ζi(t
+,q+,p+).

In this paper we define the symmetries as in
Eq. (24); Lie point transformations act simultaneously
in difference equations (21), (22) and lattice equa-
tion (23). The fact is that the lattice also transforms
in the spirit of Dorodnitsyn’s approach to difference
equations [20, 21].

Under the transformations (24) defined by the
operators (26), the function H becomes H ∗ =
H(t∗, t+∗,q∗,p+∗), H− becomes H−∗ = H−(t−∗,
t∗,q−∗,p∗), and Q̄i becomes Q̄∗

i = Q̄i(t
∗, t+∗,

q∗,p+∗). For non-conservative Hamiltonian differ-
ence systems, if the functions H , H− and Q̄i are re-
placed by the transformed functions H ∗, H−∗ and Q̄∗

i ,
whereas the form of equations of motion (21)–(23) is
invariant, the following definition applies:

Definition Under the transformations (26), if the form
of equations of motion (21)–(23) keeps invariant, i.e.,

D+h(qi) = q+
i − qi

h+ = ∂H ∗

∂p+
i

, (27)

D+h(pi) = p+
i − pi

h+ = −∂H ∗

∂qi

+ Q̄∗
i , (28)

h+ ∂H ∗

∂t
− H ∗ + h− ∂H−∗

∂t
+ H−∗

+ D+h(qi)Q̄
∗
i h

+ = 0, (29)

then invariance is called the Mei symmetry of the dis-
crete non-conservative Hamiltonian systems.

Expanding functions H ∗, H−∗ and Q̄∗
i , substitut-

ing them into Eqs. (27)–(29) and ignoring higher-order
small quantities, together with Eqs. (21)–(23), we can
get the determining equation of the Mei symmetry for
the systems:

∂ Pr X̄H

∂p+
i

= 0, (30)

∂ Pr X̄H

∂qi

− Pr X̄Q̄i = 0, (31)

h+ ∂ Pr X̄H

∂t
− Pr X̄H + h− ∂ Pr X̄H−

∂t
+ Pr X̄H−

+ D+h(qi)(Pr X̄Q̄i)h
+ = 0. (32)

Equations (30)–(32) are thus the determining equa-
tions for the generators ξ, ηi and ζi .

Criterion For the non-conservative Hamiltonian dif-
ference systems (21)–(23), if the generators ξ, ηi and
ζi satisfy Eqs. (30)–(32), then the symmetry is called
the Mei symmetry for the systems.

3.2 Noether conserved quantities associated with the
Mei symmetries

Mei symmetries are carried over from the continuous
case to discrete one in this paper. One of our main
aims is to find first integrals through Mei symmetries
of discrete equations because the preservation of first
integrals in different fields is of great importance. For
different kinds of applied problems, an analogous dis-
crete framework would allow one to construct many
schemes with conservation laws. In the following, we
state the discrete versions of the theorem associated
with the Mei symmetry for the non-conservative me-
chanical systems.

In the non-conservative Hamiltonian formulation,
under certain conditions, the Mei symmetry can have
Noether conserved quantity.

Just as in the continuous case, the invariance of
non-conservative Hamiltonian difference systems on
a specified mesh yields first integrals of the difference
systems. Based on Refs. [36, 37], Dorodnitsyn and Ko-
zlov gave the discrete Hamiltonian identity for discrete
Hamiltonian equations as follows:

ζ+
i D+h(qi) + p+

i D+h(ηi) − X(H)

− HD+h(ξ) + D+h(Gi)

≡ ξ

(
D+h

(
H−) − ∂H

∂t
− h−

h+
∂H−

∂t

)

− ηi

(
D+h(pi) + ∂H

∂qi

)
+ ζ+

i

(
D+h(qi) − ∂H

∂p+
i

)

+ D+h

(
ηipi − ξ

(
H− + h− ∂H−

∂t

)
+ Gi

)
.

(33)

Similarly we get the discrete Hamiltonian identity for
discrete non-conservative Hamiltonian:
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ζ+
i D+h(qi) + p+

i D+h(ηi) − X(H) − HD+h(ξ)

+ Q̄i

[
ηi − D+h(qi)ξ

] + D+h(Gi)

≡ ξ

(
D+h

(
H−) − ∂H

∂t
− h−

h+
∂H−

∂t
− Q̄iD+h(qi)

)

− ηi

(
D+h(pi) + ∂H

∂qi

− Q̄i

)

+ ζ+
i

(
D+h(qi) − ∂H

∂p+
i

)
+ D+h

(
ηipi

− ξ

(
H− + h− ∂H−

∂t

)
+ Gi

)
.

(34)

The method is identical to that in Dorodnitsyn and Ko-
zlov’s [36, 37] paper and we will not reproduce it here.
If the left-hand side of Eq. (34) equals zero, i.e.

ζ+
i D+h(qi) + p+

i D+h(ηi) − X(H) − HD+h(ξ)

+ Q̄i

(
ηi − D+h(qi)ξ

) + D+h(Gi) = 0, (35)

then it is called the discrete version of generalized
Noether-type identity for the systems. If the right-hand
side of Eq. (34) equals zero, when there exist some
other equations,

D+h(qi) − ∂H

∂p+
i

= 0, (36)

D+h(pi) + ∂H

∂qi

− Q̄i = 0, (37)

D+h

(
H−) − ∂H

∂t
− h−

h+
∂H−

∂t
− Q̄iD+h(qi) = 0,

(38)

which are called the generalized quasi-extremal equa-
tions for this non-conservative Hamiltonian systems,
then the systems possess the discrete version of con-
servation law:

D+h

(
ηipi − ξ

(
H− + h− ∂H−

∂t

)
+ Gi

)
= 0, (39)

namely

I = ηipi − ξ

(
H− + h− ∂H−

∂t

)
+ Gi = const. (40)

The discrete equations (40) are called the difference
version of Noether conservation laws associated with
a non-conservative Hamiltonian difference system.

Theorem If a discrete gauge function Gi = Gi(t, t
+,

q,p+) exists such that the infinitesimal transforma-

tion generators ξ, ηi, ζi or the symmetry operators X

satisfy the discrete Noether identity (35), then the non-
conservative Hamiltonian systems (21)–(23) possess
the discrete conserved quantities (40).

This theorem is the difference version of general-
ized Noether theorem associated with non-conserva-
tive Hamiltonian systems.

4 An example

We give an example to illustrate how Mei symmetry of
non-conservative Hamiltonian systems can be reduced
and how to obtain conservation laws of the systems.
The dynamical system with Hamiltonian and the non-
conservative force are, respectively,

H = 1

2

(
p+2

1 + p+2
2

) + q1 + q2, (41)

Q̄1 = p+
1 p+

2 + t, Q̄2 = p+
1 p+

2 − t. (42)

The Hamiltonian equations and the lattice can be
rewritten as

D+h(q1) = p+
1 , D+h(q2) = p+

2 , (43)

D+h(p1) = p+
1 p+

2 + t − 1,

D+h(p2) = p+
1 p+

2 − t − 1,
(44)

1

2

(
p2

1 + p2
2

) + q−
1 + q−

2 − 1

2

(
p+2

1 + p+2
2

)

− q1 − q2 + p+
1

(
p+

1 p+
2 + t

)
h+

+ p+
2

(
p+

1 p+
2 − t

)
h+ = 0. (45)

Using the prolongation equation of the Lie group
operator for the left and right points, we will check
the invariance of the determining equations (30)–(32)
of the Mei symmetry for the systems with the opera-
tors

X = ∂

∂p1
− ∂

∂p2
. (46)

The operator (46) satisfies the determining equations
of Mei symmetries of the non-conservative Hamil-
tonians. The symmetry (46) is called the Mei sym-
metry of the discrete non-conservative Hamiltoni-
ans.

The symmetry operator (46) fulfills the equations
(30)–(32) and the Noether identity (35) with the func-
tions

G = −t2. (47)
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Using Eq. (40), we can obtain the discrete version of
Noether conserved quantity of the systems:

I = p1 − p2 − t2 = const. (48)

It should be noted that the Lie symmetries can lead
to conserved quantities as well. The determining equa-
tions of Lie point symmetry of difference equations
and lattices were obtained in Ref. [41]. Similarly, the
determining equations of Lie point symmetry of dis-
crete non-conservative Hamiltonian systems are

Pr X̄

(
∂H

∂p+
i

)
= 0, Pr X̄

(
−∂H

∂qi

+ Q̄i

)
= 0, (49)

Pr X̄

(
h+ ∂H

∂t
− H + h− ∂H−

∂t
+ H−

+ D+h(qi)Q̄ih
+
)

= 0. (50)

In the present example, the operator X = ∂
∂p1

− ∂
∂p2

is not satisfied with the determining equation of Lie
symmetries. Therefore, it is not the Lie symmetry for
the system. However, the operator is satisfied with the
determining equations of Mei symmetries. The con-
served quantity I = p1 −p2 − t2 can be obtained when
it satisfies the theorem of Sect. 3.2. In short, this sym-
metry operator is the Mei symmetry, but not the Lie
symmetry.

5 Conclusion

In this paper, the Mei symmetries and the Noether’s
theorem are proposed for non-conservative Hamilto-
nian difference systems. The form invariance (the Mei
symmetry) of a non-conservative Hamiltonian func-
tional and its relation to first integrals of the sys-
tems are introduced. For Mei symmetries of non-
conservative Hamiltonian, the determining equations
(30)–(32) and Noether identity (35) are sufficient con-
ditions of getting Noether conserved quantities (40).
One needs to have the appropriate Lie group operators
to satisfy them, as well as make sure the Noether con-
served quantities are nontrivial, the operators of Mei
symmetry for the systems are of significance. That
is why not every infinitesimal transformation of Mei
symmetry of the non-conservative Hamiltonian equa-
tions can provide a conserved quantity.

The present approach might also be extended on the
Hamiltonian systems with nonholonomic constraints.

The Appell–Chetaev condition and restriction equa-
tions should be considered. So it is harder to find the
infinitesimal generators and the regular functions to
obtain conserved quantities than the non-conservative
Hamiltonian systems.
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