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Abstract We study the dynamics of a two-degrees-
of-freedom (two-DOF) nonlinear oscillator represent-
ing a quarter-car model excited by a road roughness
profile. Modeling the road profile by means of a har-
monic function, we derive the Melnikov criterion for a
system transition to chaos or escape. The analytically
obtained estimations are confirmed by numerical sim-
ulations. To analyze the transient vibrations, we used
recurrences.

Keywords Nonlinear oscillations - Vehicle
suspension - Recurrence plot

1 Introduction

The dynamics of a quarter-car model is governed
by the road profile excitations and nonlinear suspen-
sion characteristics [1-3, 5]. These elements were dis-
cussed separately using simplified models and jointly
by considering the more realistic description of a ve-
hicle motion. For instance, Verros et al. [1] proposed
a quarter-car model with piecewise linear dynami-
cal characteristics. According to the adapted control
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strategy, the damping coefficient switched between
two different values. Gobbi and Mastinu [2] consid-
ered a two-DOF model to derive a number of ana-
Iytical formulae describing the dynamic behavior of
passively suspended vehicles running on randomly
profiled roads. Their linear model approach was gen-
eralized by Von Wagner [3], who determined a cor-
responding high-dimensional probability density by
solving the Fokker—Planck equations. Finally, in pa-
pers [4-6] dynamics, bifurcations, and appearance of
chaotic solutions were discussed.

However, the main issues of vehicle dynamics stud-
ies were unwanted and harmful vibration responses
generated by vehicle as an effect of a rough surface
road profile kinematic excitation [1, 4, 7-11]. Thus,
the efficient reduction of them is still a subject of re-
search among automotive manufacturers and research
groups [14, 15]. Turkay and Akcay [7] considered
constraints on the transfer functions from the road
disturbance to the vertical acceleration, the suspen-
sion travel, and the tire deflection are derived for a
quarter-car active suspension system using the ver-
tical acceleration and/or the suspension travel mea-
surements for feedback. The recent experimental and
theoretical studies involved many new applications
of active and semi-active control procedures [12-16].
Consequently, previous mechanical quarter-car mod-
els [3, 10, 11, 15] have been reexamined in the con-
text of active damper applications. Dampers based on a
magnetorheological fluid with typical hysteretic char-
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Fig.1 Two-degree-of-freedom quarter-car model (y = x| —x3)

acteristics have a significant expectation for effective
vibration damping in many applications [4, 17-23].

Recent efforts have been also focused on studies
of the excitation of an automobile by a road surface
profile with harmful noise components [3, 24, 25].
Noise-like chaotic vibrations, appearing due to the
system nonlinearities, have been investigated in sim-
plified single-DOF models [4, 6, 19]. These papers fol-
low the rich literature on an escape phenomenon in the
symmetric and nonsymmetric Duffing or Helmholtz
potentials [26-30], where critical system parameters
were determined. Note that the condition for escape
could be applied as a criterion of fractality in basins
of attraction and also as a transition to chaos [29]. On
the other hand, more sophisticated models of vehicle
dynamics, namely half-car and full-car models, in the
context of nonlinear response including chaotic solu-
tions have been studied by Zhu and Ishitobi and also
by Wang et al. [31-33].

To study a transition to the chaotic region and the
corresponding critical parameters in a low-dimensional
dynamical system analytically, the Melnikov theory
[34-38] is often advocated. The application of this ap-
proach to a simple quarter-car model has been recently
proposed by Li et al. [4] and Litak et al. [19]. In the
above papers, a single-DOF model was used because
of its simplicity. Consequently, the analytic consid-
eration included also multiple-scale analysis and har-
monic balance [20, 39]. The present paper is a con-
tinuation of the previous studies with an extension to
a more realistic two-DOF model, which includes the
sprung and unsprung masses (Fig. 1).

Our article is organized in four sections. After in-
troduction in the present section (Sect. 1) we present
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the model and discuss possibility of a global homo-
clinic bifurcation (Sect. 2). By the reduction of di-
mension we introduce the foundations of the Mel-
nikov approach to the model. In this section (Sect. 2)
we obtain the principal result as a critical curve
which defines the system parameter regions of reg-
ular and nonperiodic (chaos, transient chaos, or es-
cape) behavior. The simulation results illustrating
those transition results are also shown. Further re-
sults including recurrence analysis confirming the the-
oretical predictions are provided in Sect. 3. Finally,
in Sect. 4 we end up with conclusions and final re-
marks.

2 The model and global bifurcations

We start the analysis from the two-DOF model pre-
sented in Fig. 1. The dynamics of vehicle excited by
the road profile quarter-car model is governed by non-
linear suspension characteristics. To examine a transi-
tion to the chaotic regime of vibrations, the Melnikov
theory has been recently proposed [4, 19]. In this per-
turbation approach the authors of previous works used
a single-DOF model.

In the present note we go beyond this assumption
by considering an extension of a vehicle model with
the defined unsprung and sprung masses (Fig. 1). The
differential equations of motion for both masses have
the following form:

d? Lo d d N 051( )
—x1+— —x1— —x —(x1—x
dr? ! mq \ dt ! dr 2 mi ! 2
+ P i =, (1)
mi

d? Lo d d ¢ (d d
—=X ——=—x2——=—x0)——\| —x1——x
a2 mo \ dt 2T mo \ dt T
o ay
+ —(x2 — x0) — —(x1 — x2)
my my

LI S %)
my

where m; and my denote the corresponding sprung
and unsprung masses (Fig. 1), and xo = acoswt de-
scribes the harmonic corrugation of a road profile. c¢;,
a; (fori =1, 2) and B are damping and stiffness co-
efficients, respectively.

Now we define the new variable y = x| — x of the
relative motion:

. cl . o .
ety 2y Plys_ g 3)
my my my
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To adjust the above equations to application of
the higher-dimensional Melnikov approach [40], the
above equations can be approximated by introducing
a small parameter €:

. €L o Bi "
Jre—y+—y+ -~y =—i )
mj mj mj

Consequently, the second equation (Eq. (2)) gets
the new form

.. [ o
X2+ —Xx2+ —xp

mp my

o] Bi &) . o
=—y+ — 3 _ = waesinwt + —aecoswt.

my my my my

(&)

Using the Melnikov approach [34] in y coordinate
equation (Eq. (3)), we study the Hamiltonian system of
the nodal kinetic energy defined at the saddle points. In
this way, time variability of y and y is negligible. The
above equations can be rewritten in the dimensionless
form:

J+eCray +y + Ay’ = —ia, 6)
X0+ CrA 15 + Ao M x>
= CIM\/T)" + My + AsMy?
—eCoMawsin(wt) + €Ay Ma cos(wt), @)

_«a _a _ N
Wherecl—a.’c2—a1’A1—m’
B

o M = % are dimensionless parameters. For fur-
ther consideration, we assumed that the system pa-
rameters are: C; =0.001, C, =05, A1 =1, A, =1,
A3z = —16, M = 5. The excitation frequency and the
corresponding amplitudes used in the analysis have
been fixed to w = 1.5, a = 0.08, and a = 0.12. In
the numerical simulations we used the sampling time
8t =0.00418.

Ay =32, A3 =

To analyze a homoclinic bifurcation in the sprung
mass vibration, we make further approximation. The
role of the small parameter € is to determine the hete-
roclinic trajectory and decouple the equations of mo-
tion into separate equations for sprung and unsprung
masses. Thus, after above normalizations the equa-
tions can be expressed as
b =—€eCiv—y — A3y’ — s,

®)

y=v,
¥y =—Caxy — AgMxs + M(Crv+y + Asy?
— eChrwa sinwt + € Aya cos wt). O]

Interestingly, in the limit of small € limit, x, can be
approximated as

xy=€eAcos(wt +¢ — V) + x5. (10)

Note that in the above expression, x;;, generated by
slowly changing terms with y and y, is playing a role
of the static displacement, while A is an amplitude.

Thus, the unperturbed equations (for € = 0) can be
obtained from the gradient of the unperturbed Hamil-
tonian Ho(y, v):

dH" dH"
v = —’ = ——, 1]
y 30 Uy dy 11
where HO is defined as follows:
0 v?
H =7+V(y). (12)

The corresponding effective potential (Fig. 2a) is given
by the expression

2 4
Y Y
Viy)="7"+A3—. 13
() 7 T4 13)
Following the standard Melnikov theory [34-38],
we get the heteroclinic orbits connecting the two hy-

perbolic saddle points (coinciding with the maxima of
. . _ —1
the potential V (y) (Eq. (12)): y =4,/ A5 .
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They can be expressed analytically as

y* = —,/AS_1 tanh[(r — 1) 22A3i|,

ds 2cosh?[ (1 — 1) Y222

(14)

After perturbations of the heteroclinic orbits
(Fig. 2b), the stable and unstable manifolds are cal-
culated. Because of perturbations, they are detracted
(Fig. 3). As the characteristic distance between them
d — 0, the system possibilities of mixed solutions
(regular and escape) appear, which is equivalent to ir-
regular chaotic and chaotic transient solutions. Thus,
d =0 is the ideal criterion for chaos appearance.

Formally, the distance d between perturbed stable
and unstable manifolds are proportional to the Mel-
nikov integral (Fig. 3) d ~ M(ty) [34-36], which can
be written as

~+00
Mto) = f B (), v* () A g(y* (), v* (1)) dir,
(15)

where A denotes a wedge product, the differential
form h is the gradient of the unperturbed Hamiltonian,

d

st.

Fig. 3 Stable and unstable manifolds of perturbed orbits ter-
minated and started in the corresponding saddle points, and the
distance between them d (in y—v plane)

o12f.. 1o

o10f |

0.08

20.06

0.04

0.02

L

0'001 15 2 25 3

() o 35 4

Fig. 4 The Melnikov criterion, a = nC; versus o for system
parameters where A3 = —16, M =5, A, = 1.5, C; = 0.001,
Cp = 0.5. The curve separate the region of regular solutions

(below the curve) from the chaotic and escape solutions (above
the curve). Note that (b) magnifies the marked region in (a),
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g is related to the perturbation part, and #( is an in-
tegration constant. Both forms are defined on unper-
turbed heteroclinic orbit stable and unstable manifolds

WSt(UnSt) = (ys*t(unst) ’ v:t(unst)):

h=vdv+ (—y — A3y*)dy,
(16)
g = (Aw? cos(wt + ¢ — &) — Cyv)dy.

Thus, after substitution the above forms into the
Melnikov function M (ty) (Eq. (14)), we get:

M(to)zM/ (=Civ*

+ Aw* cos(ot + ¢ — W))v* dr. 17)

The condition for a global homoclinic transition,
corresponding to a possible horse-shoe-type cross-
section of stable and unstable manifolds, can be writ-
ten as

IM(to)

0.
arg 7

\/ M()=0  and (18)

fo

Consequently, the critical parameter n = a/C; is
now

_2J=A;5 [(AaM — ?)? + Cio?

" 3rwom A3+ Ci0?
Tw
x sinh| — ). 19
(v—2A3> (1%

The results of the above analysis are presented in
Fig. 4a. The curve separates the region of regular so-
lutions from the chaotic and escape ones. The black

0.12 2
a0.10
0.08 .
;
1.0 15 2.0
(b) o

where the two indicated points symbolize the parameters used
for numerical calculation points above and below the critical
curve for a = 0.08 at the point “1”, and @ = 0.12115 at the
point “2” (w = 1.5 for both cases)
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Fig. 5 Time series (displacements of the sprung mass) of reg-
ular (a) and irregular (or chaotic transient) (b) solutions for the
same system parameters as at points “1” and “2” in Figs. 4a

00

0.15

0.10
0.05
x 0.00
-0.05

-0.10}}

-0.15 ’ ' A :
by O 100 200 300 400 500 600

sample points

and 4b, respectively (the sampling time 6z = 0.00418). Note,
the larger amplitude and additional modulation in (b)

Fig. 6 Phase portraits T
(displacements versus 0.2
velocity of the sprung mass)
of regular (a) and irregular 0.1
(b) solutions for the same v 00 v
system parameters as point
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points represent the parameters used for numerical
simulations. To show this region of parameters, Fig. 4b
magnifies the surrounding area. The corresponding
time histories are presented in Figs. 5a and 5b. Note
that for purpose of simulations, we used Eqgs. (7-8)
with € = 1.

Note that Fig. 5a shows the mono-frequency,
while Fig. 5b shows more complex responses (multi-
frequency or irregular). This is clearly visible in
Figs. 6a and 6b, where we show the corresponding
phase diagrams. In Fig. 6a one can see a single line,
while in Fig. 6b lines are split into characteristic three-
line patterns. It is worth mentioning that the Melnikov

@ 0 5000 15000 25000 35000 45000
sample point

(b)

criterion (Eq. (18) and Fig. 4) specifies the global tran-
sition associated with the destruction of borders be-
tween basins of attractions belonging to different solu-
tions. In our case, one of basins is related to an escape
from the potential well. The irregular solution denoted
as no. 2 in Fig. 4 (see also Figs. 5b and 6b) must be
related to such an escape. Indeed, continuing the cal-
culations for long enough time interval, one observes
the escape in the plot on time series (Fig. 7a) and on
the phase portrait (Fig. 7b), respectively.

Focusing on the above solutions, we discuss the re-
currence properties of numerical results with more de-
tails in the next section.
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3 Recurrence plot analysis

The numerical solutions of the regular and transient
nature can be analyzed more carefully by the recur-
rence plots [41, 42]. This method is based on the statis-
tics of recurrences and can be described by the matrix
form R™-¢ with corresponding 0 and 1 elements:

R =0(e—Ixi —x;|) forli—jlzw, (20)
where x; and x; are usually defined in the embedding
space of dimension m, and ¢ is the threshold value.
Here indices i and j denote the sampling instants. In
our case we decided to use the m = 2 and the embed-
ding space including the displacements of sprung and
unsprung masses: X; = [y, x2] (Egs. (7-8) withe = 1).

Having 0 and 1 values, they are translated into
the recurrence diagram as an empty place and col-
ored dots, respectively (see Fig. 9). Here w denotes
the Theiler window used to exclude identical and
neighboring points from the analysis [44]. Webber and
Zbilut [45] and later Marwan and collaborators [43, 44]
developed the recurrence quantification analysis (RQA)
for recurrence plots.

Shortly after its invention, RQA was addressed to
the biological and physiologic systems [45, 46]. Re-
cently this method has been applied for several techni-
cal systems [47—49]. The first parameter of the RQA

Fig. 8 The idea of states
summation idea in the
embedded space and the
sphere of radius &

defining the correlation function is the recurrence rate
RR,

N
RR = % Z RS, 1)
i,j=1

which calculates the number of recurrences. In our
case, the Theiler window w = 0 in order to get the con-
sistency with correlation sum [44]. In this language,
¢ expresses the correlation length of the characteristic
sphere radius in the embedded space (Fig. 8). Note that
the correlation sum is an important tool which could
be used to derive correlation dimension D;. For small
enough ¢,

D, — logRR(¢)

loge/eg

where g is the arbitrary length.

Furthermore, the RQA can be used to identify topo-
logical structures of diagonal and vertical lines. In its
frame, RQA provides us with the probability p(l) or
p(v) of line distribution according to their lengths / or
v (for diagonal and vertical lines). Practically they are
calculated as

() = =
PX)==N—"_"

> PEG)
where x = [ or v, depending on diagonal or ver-
tical structures in the specific recurrence diagram.
P?(x) denotes the unnormalized probability for a
given threshold value ¢. In this way, the Shannon in-
formation entropies (LgnTR) can be defined for diag-
onal line collections:

-+ const, (22)

(23)

N
Lenir=— Y p()Inp(). (24)
I=lmin
Other properties, the determinism DET and lami-
narity LAM, are defined as

Fig. 9 Recurrence plots for 600 600
regular (a) and irregular (b) 7
solutions for the same 500 500
system parameters as point 400 400l
“1” and “2” in Figs. 4a -
and 4b, respectively Xj 300 Xj 300
(e=0.0D) 200 200

100 / 100

0 A 0 s . ‘ 4
(@) 0 100 200 300 400 500 600 (b) 0O 100 200 300 400 500 600
Xj
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Table 1 Summary of recurrence quantification analysis (RQA)
for m =2 and ¢ = 0.01 for “1” and “2” solutions (see Figs. 4, 5
and 6)

Type of motion RR DET LAM LENTR
“17) 0.0348 1.0000 0.6078 1.3135
(“2”) 0.0080 0.9578 0.4743 1.7928
N
V1P
DET — Zlglmm ’
YN _ 1P
(25)
N
LAM = L=y VPV

Zf)vzl vPE(v) '

where [ and vyin denote the minimal values which
should be chosen for a specific dynamical system.
In our calculations we have assumed that [, =
Umin = 2.

The determinism DET is a measure of the pre-
dictability of the examined time series and gives the
ratio of recurrent points formed in diagonals to all
recurrent points. Note that in a periodic system all
points should be included in the lines. On the other
hand, the laminarity LAM is a similar measure which
corresponds to points formed in vertical lines. This
measure indicates the dynamics behind sampling point
changes.

The results of our analysis calculated for time se-
ries “1” and “2” (see Figs. 4, 5 and 6) are presented in
Fig. 9, where we present the results of RP for ¢ = 0.01.
Note that both plots show regular features. However,
Fig. 9a is composed of full diagonals lines only, while
in Fig. 9b each fifth line is full, and between them
one observes short line pieces or even insulated points.
This would indicate a multi-frequency modulated so-
lution. There can be also a transient with basic regu-
lar and superimposed chaotic solutions. To shine this
difference with more lights, we show some estimated
RQA parameters in Table 1. Obviously, RR is smaller
for “2” (Fig. 9b) as we have broken lines instead of full
ones (Fig. 9a). Moreover, the determinism and lami-
narity (DET and LAM) are smaller, telling us that the
system is less regular. Consequently the more pecu-
liar distribution of line lengths is confirmed by LgNTR,
which is larger for the solution “2”. Additionally, in
Fig. 10 we present the results of RR versus ¢ (for rel-
atively small ¢). One can see a significant difference
between both solutions.

1.0
0.8 ’1'

0.6
RR
0.4 o

0.2

0'0().0 0.1 0.2 0.3 0.4

€

Fig. 10 Recurrence rate RR versus threshold value ¢ for regu-
lar “1” and irregular “2” solutions (“1” and “2” as in Figs. 4a
and 4b, respectively)

4 Summary and conclusions

We have analyzed the two-DOF quarter-car model, as-
suming that damping and suspension through the un-
sprung mass excited by the road profile corrugation
can act as a perturbation on the main sprung mass.
The obtained Melnikov criterion was latter confirmed
by numerical simulations. The main conclusion com-
ing from that point would be loss of stability of the
system appearing as the chaotic or transient chaotic or
escape solution. The present investigation is going be-
yond research dealing with a single-DOF quarter-car
model [4, 18, 19, 24]. In particular, the single-DOF
model assumes that the unsprung mass is significantly
smaller than the sprung mass.

One should note that the model used in this pa-
per, although more realistic than the previous single-
degree-of-freedom ones, is relatively simple and would
not be sufficient to simulate a detailed response of a
vehicle or compare to experimental results from real
vehicles. Unfortunately, more sophisticated half-car
and full-car models [31-33] cannot be used in the
frame of the presented approach as the heteroclinc tra-
jectories could not be defined reliably. Furthermore, in
higher-DOF systems the analytic perturbation calcula-
tions are not possible.

However, the present quarter-car model is able to
capture the major nonlinear effects that occur in ve-
hicle dynamics and has demonstrated the transition
to chaotic vibrations and synchronization phenomena
[25, 32, 39]. Interestingly, the resulting critical ampli-
tude curve (Fig. 4a, Eq. (19)) has the maximum for
w ~ 3.1 and the minimum for w & 2.2. The minimum
is obviously related to the resonance region of the de-
coupled unsprung solution x; (Egs. (8) and (9)).
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It should be also noted that the recurrence plot tech-
nique appeared to be very useful to study the tran-
sient signals. Thus, the conclusions that came from the
analytic approach have been confirmed. Indeed, this
method is designed for the short time series [44, 49]
Interestingly, it also works for nonstationary signals
[44, 48]. The recurrences for RP and RQ analyses have
been obtain using the available command line code
written by Marwan [50]. The recurrence approach can
be also used to higher-DOF models of vehicle dynam-
ics. The corresponding results on half- and full-vehicle
models will reported in a separate paper.
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