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Abstract The finite-time synchronization problem of
a class of complex dynamical networks with time-
varying delays is addressed in this paper. The network
topology is assumed to be directed and weakly con-
nected. By introducing a special zero row-sum matrix
and combining the Lyapunov–Krasovskii functional
method and the Kronecker product technique, a suf-
ficient condition is presented, which consist of two
simple low-dimensional matrix inequalities. Illustra-
tive example is given to show the feasibility of the pro-
posed method.
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1 Introduction

In recent years, complex dynamical networks which
consist of a number of interacting dynamical nodes
connected by links have received a great deal of atten-
tion from various fields such as mathematics, physics,
engineering, and economic science [1, 2]. Complex
dynamical networks exist in everywhere in our daily
lives including neural networks, powergrids, ecosys-
tems, Internet, and so on.

Among many dynamical behaviors of complex net-
works, synchronization is one of the most important
ones that has been an ever hot research topic. Works
on this issue have concentrated on the networks with
undirected and strongly connected topology [3–14]. In
[3], a uniform dynamical network model was proposed
and the system decomposition technique was pre-
sented. Based on this seminal work and the introduc-
tion of the delayed coupling, synchronization proper-
ties were investigated in [4]. By the Lyapunov func-
tional method and linear matrix inequalities (LMIs),
global synchronization criterion of coupled delayed
neural networks with hybrid coupling scheme was
proposed in [5–9]. When the complex networks with
adaptive coupling weights and neutral delay weights
are considered, the synchronization results can be
founded in [10] and [12], respectively. In the litera-
ture mentioned above, the coupling configuration ma-
trix is assumed to be symmetric and irreducible, which
is quite restrictive in practice. When the coupling ma-
trix is allowed to be asymmetric, the synchronization
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results can be founded in [15–20]. On the basis of ge-
ometrical analysis of the synchronization manifold, a
new approach for synchronization of coupled oscilla-
tors was provided in [16]. In [18], the synchroniza-
tion condition for complex networks with switching
topology was obtained by using the assumption of si-
multaneous triangularization of the coupling matrix.
However, the quantity or dimension of the inequality
in derived conditions in these works are depended on
nodes’ quantity N even N × N , so that these con-
ditions are not suitable for large-scale complex net-
works. In [21–23], one measure distilled from the cou-
pling matrix was given to characterize the synchroniz-
ability of directed large-scale networks.

Up to now, most of the existing results related
to stability or synchronization focus on Lyapunov
asymptotic stability or synchronization, which are de-
fined over an infinite time interval. Nevertheless, in
the practical engineering process, one is interested in
a bound of system trajectories over a fixed finite time
[24]. Hence, the concept of short time stability, such as
finite-time stability is introduced. There exist two con-
cepts of finite-time stability. One of them means that
for a given bound on the initial condition the state of
system remains within a prescribed bound in a fixed
time interval [25], which is also called as finite-time
boundedness. Another one means that the state con-
verges to 0 with finite time. Generally speaking, the
latter means optimality in convergence time. There are
many results on finite-time stability for linear system
and nonlinear system [24–29]. However, to the best of
our knowledge, there are few results concerning finite-
time synchronization (or finite-time boundedness) for
complex networks.

Motivated by the above discussion, we consider
the problem of finite-time synchronization analysis of
complex dynamical networks with time-varying de-
lays in this paper. First of all, inspired by the concept
of finite-time stability (or finite-time boundedness) for
the general linear system given in [25], definition of
finite-time synchronization for the complex networks
is proposed. Then, by using the Lyapunov functional
method and Kronecker product techniques, the suffi-
cient condition is derived. By utilizing a special zero
row-sum matrix U , only one quantitative measure on
U is included in our condition, which is easy to obtain
even for large-scale networks. The proposed criterion
is expressed as two simple and low-dimensional LMIs
which can be checked easily and conveniently by Mat-
lab Toolbox. It is also worth noting that the coupling

configuration matrix is not assumed to be symmetric
or irreducible, so that the structure of the network can
be directed, weighted, and weakly connected.

Notation Throughout this paper, for real symmet-
ric matrices X and Y , the notation X ≥ Y (respec-
tively, X > Y ) means that the matrix X −Y is positive
semi-definite (respectively, positive definite). λmax(X)

(respectively, λ2(X)) denote the largest (respectively,
second largest) eigenvalue of matrix X. The notation
XT represents the transpose of X. The symmetric
terms in a symmetric matrix are denoted by ∗. The
Kronecker product of matrices X and Y is denoted
as X ⊗ Y . Rn denotes the n-dimensional Euclidean
space. In is the n-dimensional identity matrix. Matri-
ces, if not explicitly stated, are assumed to have com-
patible dimensions.

2 Problem formulation

We consider a complex dynamical network consisting
of N delayed neural networks:

ẋi (t) = −Cxi(t) + B1f
(
xi(t)

) + B2f
(
xi

(
t − τ(t)

))

+ I (t) + c

N∑

j=1

aijΓ xj (t), i = 1,2, . . . ,N

(1)

where xi = [xi1, xi2, . . . , xin]T ∈ Rn is the state vector
of the node i; f (xi(t)) = [f1(xi1(t)), . . . , fn(xin(t))]T .
Diagonal matrix C > 0 describes the rate with which
the each neuron will reset its potential to the resting
state when isolated from other cells and inputs. B1, B2

are the connection weight matrix, the delayed connec-
tion weight matrix, respectively. I (t) is an external in-
put vector. τ(t) represents the transmission delay that
satisfies 0 < τ(t) ≤ τ̄ , τ̇ (t) ≤ μ < 1. Diagonal ma-
trix Γ > 0 describes the inner-coupling between the
subsystems; c is the coupling strength. A = (aij )N×N

is the coupling configuration matrix representing the
topological structures of the networks, and aij is de-
fined as follows: if there is a connection from node j to
i (j �= i), then aij > 0; otherwise, aij = 0. The diago-
nal entries of matrix A satisfy the following diffusive
coupling condition:

aii = −
N∑

j=1,j �=i

aij , i = 1,2, . . . ,N. (2)
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Let

x(t) = [
xT

1 (t), xT
2 (t), . . . , xT

N(t)
]T

,

I (t) = [
IT (t), I T (t), . . . , I T (t)

]T
,

F
(
x(t)

) = [
f T

(
x1(t)

)
, f T

(
x2(t)

)
, . . . , f T

(
xN(t)

)]T
.

Then complex dynamical network (1) can be rewritten
as

ẋ(t) = −(IN ⊗ C)x(t) + (IN ⊗ B1)F
(
x(t)

)

+ (IN ⊗ B2)F
(
x
(
t − τ(t)

))

+ I (t) + c(A ⊗ Γ )x(t). (3)

Remark 1 A is allowed to be asymmetric matrix rep-
resenting the network topology which can be directed
and weighted in this paper. In many existing litera-
ture, A is restricted to be symmetric [3–13], which is
not practical in the real-world networks. In [21], A is
assumed to be irreducible and reducible as two parts
to discuss, respectively. However, in this paper, no as-
sumption on irreducibility is needed; we just discussed
the weakly connected structure. Namely, the reverse of
the graph generated by matrix A must contain a rooted
spanning directed tree [15].

Assumption 1 Real parts of eigenvalues of A are all
negative except an eigenvalue 0 with multiplicity 1
(the reverse of the graph generated by matrix A con-
tains a rooted spanning directed tree).

Assumption 2 The activation function is global Lip-
schitz continuous, and there exists K = diag(k1,

. . . , kn) > 0 such that

∣∣fi(α) − fi(β)
∣∣ ≤ ki |α − β|, i = 1,2, . . . , n (4)

for any α,β ∈ R.

Throughout this paper, the following lemma and
definition are needed to prove our main results.

Lemma 1 ([11]) Let U = (uij )N×N , P ∈ Rn×n, xT =
[xT

1 , xT
2 , . . . , xT

N ], yT = [yT
1 , yT

2 , . . . , yT
N ], xi, yi ∈

Rn, i = 1,2, . . . ,N . If U = U T and each row sum of
U is zero, then

xT (U ⊗ P)y = −
∑

1≤i<j≤N

uij (xi − xj )
T P (yi − yj ).

Definition 1 The complex network (3) is said to be
finite-time synchronization with respect to (c1, c2, T)

with c1 < c2, if for
∑

1≤i<j≤N sup−τ̄≤θ≤0 ‖xi(θ) −
xj (θ)‖2 ≤ c1, one has

∑

1≤i<j≤N

∥∥xi(t) − xj (t)
∥∥2

< c2, ∀t ∈ [0, T]

for i, j = 1,2, . . . ,N .

3 Main results

Now we are in a position to present our main results.
Firstly, we introduce a matrix U with special structure
as follows:

U =

⎡

⎢⎢⎢
⎣

N − 1 −1 · · · −1
−1 N − 1 · · · −1
...

...
. . .

...

−1 −1 . . . N − 1

⎤

⎥⎥⎥
⎦

N×N

.

It can be concluded that U is a zero row-sum symmet-
ric matrix with eigenvalue λmax = N .

Theorem 1 For given scalars τ̄ > 0 and μ < 1, un-
der Assumptions 1 and 2, the complex network (3) is
finite-time synchronization with respect to (c1, c2, T)

with c1 < c2, if there exist a matrix Q > 0, diagonal
matrices L > 0, P > 0 and a scalar α > 0, such that
⎡

⎣
−PC − CP + 2KT LK + β − αP PB1 PB2

∗ Q − 2L 0
∗ ∗ (μ − 1)Q

⎤

⎦

< 0, (5)

eαTc1[λmax(P ) + τ̄ λmax(Q)λmax(K
T K)]

λmin(P )
< c2, (6)

where

β = cλ2(UA + AT U)

N
PΓ.

Proof Define a Lyapunov–Krasovskii functional can-
didate for system (3) as

V
(
x(t)

) = xT (t)(U ⊗ P)x(t)

+
∫ t

t−τ(t)

F T
(
x(s)

)
(U ⊗ Q)F

(
x(s)

)
ds.

(7)
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Calculating the time derivative of V (x) along the tra-
jectories of (3) and noting that (U ⊗ P)I(t) = 0, one
has

V̇ (x) = 2xT (t)(U ⊗ P)ẋ(t)

+ FT
(
x(t)

)
(U ⊗ Q)F

(
x(t)

)

− (1 − μ)FT
(
x
(
t − τ(t)

))
(U ⊗ Q)

× F
(
x
(
t − τ(t)

))

= 2xT (t)(U ⊗ P)
[−(IN ⊗ C)x(t) + (IN ⊗ B1)

× F
(
x(t)

) + (IN ⊗ B2)F
(
x
(
t − τ(t)

))

+ c(A ⊗ Γ )x(t)
]

+ FT
(
x(t)

)
(U ⊗ Q)F

(
x(t)

)

− (1 − μ)FT
(
x
(
t − τ(t)

))
(U ⊗ Q)

× F
(
x
(
t − τ(t)

))

= −2xT (t)(U ⊗ PC)x(t) + 2xT (t)(U ⊗ PB1)

× F
(
x(t)

) + 2xT (t)(U ⊗ PB2)

× F
(
x
(
t − τ(t)

))

+ FT (x)(U ⊗ Q)F(x) + 2cxT (t)

× (UA ⊗ PΓ )x(t)

− (1 − μ)FT
(
x
(
t − τ(t)

))

× (U ⊗ Q)F
(
x
(
t − τ(t)

))

+ cλ2(UA + AT U)

N
xT (t)(U ⊗ PΓ )x(t)

− cλ2(UA + AT U)

N
xT (t)(U ⊗ PΓ )x(t).

(8)

From Assumption 2, we have

2
(
xi(t) − xj (t)

)T
KT LK

(
xi(t) − xj (t)

)

≥ 2
(
f

(
xi(t)

) − f
(
xj (t)

))T
L

(
f

(
xi(t)

)

− f
(
xj (t)

))
. (9)

Then, by Lemma 1 and through some calculation, we
obtain

V̇ (x) ≤
∑

1≤i<j≤N

{[
xi(t) − xj (t)

]T

×
(

−2PC + 2KT LK

+ cλ2(UA + AT U)

N
PΓ

)[
xi(t) − xj (t)

]

+ [
xi(t) − xj (t)

]T
(2PB1)

× [
f

(
xi(t)

) − f
(
xj (t)

)]

+ [
xi(t) − xj (t)

]T
(2PB2)

× [
f

(
xi

(
t − τ(t)

)) − f
(
xj

(
t − τ(t)

))]

+ [
f (xi) − f (xj )

]T
(Q − 2L)

× [
f (xi) − f (xj )

]

− (1 − μ)
[
f

(
xi

(
t − τ(t)

))

− f
(
xj

(
t − τ(t)

))]T

× Q
[
f

(
xi

(
t − τ(t)

)) − f
(
xj

(
t − τ(t)

))]}

+ cxT (t)
[(

UA + AT U
) ⊗ PΓ

]
x(t)

− cλ2(UA + AT U)

N
xT (t)(U ⊗ PΓ )x(t).

(10)

From matrix analysis theory, we can conclude that

UA + AT U is a zero row-sum symmetric matrix

with negative diagonal elements. The eigenvalues of

UA+AT U can be obtained as 0 = λ1(UA+AT U) >

λ2(UA+AT U) ≥ λ3(UA+AT U) ≥ · · · ≥ λN(UA+
AT U). It follows that there exists a unitary matrix

Υ such that Υ T (UA + AT U)Υ = Λ, where Λ =
diag{0, λ2(UA + AT U), . . . , λN(UA + AT U)}, and

Υ = [Υ1,Υ2, . . . ,ΥN ] with Υ1 = [υc,υc, . . . , υc]T ,

υc ∈ R is a constant. Set x(t) = (Υ ⊗ In)y(t). Then

one has

cxT (t)
[(

UA + AT U
) ⊗ PΓ

]
x(t)

= cyT (t)
[
Υ T

(
UA + AT U

)
Υ ⊗ PΓ

]
y(t)

= cyT (t)(Λ ⊗ PΓ )y(t)

= c

N∑

i=1

λi

(
UA + AT U

)
yT
i (t)PΓ yi(t)

≤ cλ2
(
UA + AT U

) N∑

i=2

yT
i (t)PΓ yi(t). (11)
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Now recall the structure of matrix U , one can obtain
that UΥ1 = ON×1, and

Υ T UΥ =
[

0 O1×(N−1)

O(N−1)×1 Ῡ T UῩ(N−1)×(N−1)

]
,

where Ῡ = [Υ2,Υ3, . . . ,ΥN ]. Let ȳ(t) = [yT
2 (t), . . . ,

yT
N(t)]T , it follows that

−cλ2(UA + AT U)

N
xT (t)(U ⊗ PΓ )x(t)

= −cλ2(UA + AT U)

N
yT (t)

(
Υ T UΥ ⊗ PΓ

)
y(t)

= −cλ2(UA + AT U)

N
ȳT (t)

(
Ῡ T UῩ ⊗ PΓ

)
ȳ(t)

≤ −cλ2(UA + AT U)

N
λmax(U)ȳT (t)

× (
Ῡ T Ῡ ⊗ PΓ

)
ȳ(t)

= −cλ2
(
UA + AT U

) N∑

i=2

yT
2 (t)PΓ yi(t). (12)

Then, it follows from (10)–(12) that

V̇
(
x(t)

) ≤
∑

1≤i<j≤N

ξT
ij (t)Ωξij (t), (13)

where

ξT
ij (t) = [(

xi(t) − xj (t)
)T (

f
(
xi(t)

) − f
(
xj (t)

))T

(
f

(
xi

(
t − τ(t)

)) − f
(
xj

(
t − τ(t)

)))T ]
,

and

Ω =
⎡

⎣
−2PC + 2KT LK + β PB1 PB2

∗ Q − 2L 0
∗ ∗ (μ − 1)Q

⎤

⎦.

(14)

Notice that

V
(
x(t)

) ≥
∑

1≤i<j≤N

[
xi(t) − xj (t)

]T
P

[
xi(t) − xj (t)

]
.

(15)

According to (5)

Ω +
⎡

⎣
−αP 0 0

0 0 0
0 0 0

⎤

⎦ < 0.

We have

V̇
(
x(t)

)
< αV

(
x(t)

)
. (16)

Multiplying (16) by e−αt , it obtains that

d

dt

(
e−αtV

)
< 0. (17)

Integrating (17) from 0 to t , with t ∈ [0, T], it follows
that

e−αtV
(
x(t)

)
< V

(
x(0)

)
. (18)

Since

V
(
x(0)

) = xT (0)(U ⊗ P)x(0)

+
∫ 0

−τ(0)

F T
(
x(s)

)
(U ⊗ Q)F

(
x(s)

)
ds

≤ λmax(P )
∑

1≤i<j≤N

∥∥xi(0) − xj (0)
∥∥2

+ τ̄ λmax(Q)λmax
(
KT K

)

×
∑

1≤i<j≤N

sup
−τ̄≤θ≤0

∥∥xi(θ) − xj (θ)
∥∥2

≤ c1
[
λmax(P ) + τ̄ λmax(Q)λmax

(
KT K

)]
.

(19)

Therefore,
∑

1≤i<j≤N

[
xi(t) − xj (t)

]T
P

[
xi(t) − xj (t)

]

< eαtc1
[
λmax(P ) + τ̄ λmax(Q)λmax

(
KT K

)]
. (20)

Namely,
∑

1≤i<j≤N

∥
∥xi(t) − xj (t)

∥
∥2

<
eαTc1[λmax(P ) + τ̄ λmax(Q)λmax(K

T K)]
λmin(P )

. (21)

From (6), for all t ∈ [0, T], ∑
1≤i<j≤N ‖xi(t) −

xj (t)‖2 < c2. The proof is completed. �

Remark 2 Theorem 1 provide the finite-time synchro-
nization condition for complex network (3). Follow-
ing a similar line as in the proof of it, asymptotic syn-
chronization and exponential synchronization condi-
tions can also be presented, which will be considered
in our future work.
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Remark 3 From a viewpoint of computation, it should
be noted that the conditions in Theorem 1 are not stan-
dard LMIs conditions. However, we can utilize the al-
gorithm proposed in [24, 25] to transform the condi-
tion (6) to standard LMIs condition.

Remark 4 In many existing literature, whatever A is
asymmetric or symmetric, the quantity of inequalities
in the conditions is very large, e.g., N(N−1)

2 in [5–11],
(N − 1) in [3, 4, 12], N in [18]. Therefore, such con-
ditions are not applicable for large-scale networks. In
contrast, there is just one inequality in (5) of Theo-
rem 1 in this paper, which is dependent on the second
largest eigenvalue of (UA+AT U) and the quantity of
nodes. Notice that these two quantitative measures can
be checked very easily, even for large-scale networks.

Remark 5 In [21–23], the author utilizes the normal-
ized left eigenvector of the coupling configuration ma-
trix A with respect to eigenvalue 0 to deduce the syn-
chronization criterion. However, by proposing a spe-
cial symmetric matrix U with zero row-sum and neg-
ative off-diagonal elements, the redundant calculation
is avoided in this paper.

4 Simulation example

In this section, we will give an example to demonstrate
the effectiveness of the proposed approach.

Example 1 Consider the complex dynamical network
(1) consisting of N linearly coupled nodes. The iso-
lated neural network can be described as follows:

ẋ(t) = −Cx(t) + B1f
(
x(t)

)

+ B2f
(
x
(
t − τ(t)

)) + I (t), (22)

where

C =
[

0.95 0.0
0.0 0.95

]
, B1 =

[
1.8 −0.15

−5.2 3.1

]
,

B2 =
[−1.7 −0.1
−0.3 −2.4

]
, I (t) =

[
0
0

]
,

and

f (α) = tanh(α), τ (t) = 1.

Fig. 1 The phase trajectories of chaotic system (22)

Fig. 2 The corresponding
graph generated by A

For initial values x(θ) = [0.2,−2]T , ∀θ ∈ [−1,0], the
phase trajectories of this chaotic neural network is
show in Fig. 1.

In this example, we consider complex network con-
taining 4 subsystems of (22). The inner coupling ma-
trix Γ and the coupling strength c are chosen as Γ =
diag{2,2} and c = 2, respectively. The coupling con-
figuration matrix A is chosen as

A =

⎡

⎢⎢
⎣

0 0 0 0
1 −1 0 0
0 1 −1 0
1 0 0 −1

⎤

⎥⎥
⎦ .

The reverse of the graph generated by A can been
shown in Fig. 2. It is obvious that the graph contains a
rooted spanning directed tree. It is easy to check that
λ1(UA + AT U) = 0, λ2(UA + AT U) = −3.101. Let
c1 = 7, c2 = 10, T = 10, by using the Matlab LMI
control Toolbox to solve the LMIs in Theorem 1, we
obtain a set of feasible solutions,

P =
[

53.2443 0
0 10.4685

]
,

Q =
[

128.4912 13.4847
13.4847 29.1429

]
,
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Fig. 3 System trajectories x11 − xi1 (i = 2,3,4)

Fig. 4 System trajectories x12 − xi2 (i = 2,3,4)

L =
[

209.4192 0
0 30.8423

]
.

Therefore, the complex network (1) with parame-
ters given in this example is finite-time synchro-
nization. With initial conditions x1(θ) = [0.2,−2]T ,
x2(θ) = [0.4,−3]T , x3(θ) = [0.6,−1.8]T , x4(θ) =
[0.5,−3.5]T , ∀θ ∈ [−1,0], the numerical simulations
are presented in Figs. 3–4.

5 Conclusions

This paper has considered the finite-time synchroniza-
tion problem for a class of complex dynamical net-
works with time-varying delays. Concerning with the

mild assumption that the coupling configuration ma-
trix can be asymmetric, weighted or reducible, the syn-
chronization criterion has been obtained by Lyapunov
functional method and the Kronecker product tech-
niques. The provided criterion is simple and applica-
ble to large-scale complex networks, and the criterion
can be checked easily by Matlab LMI Toolbox. The
numerical example has demonstrated the effectiveness
of the proposed approach.

There are still a number of related interesting prob-
lems deserving further investigation. For instance, it is
desirable to study synchronization problem for com-
plex dynamical networks with stochastic disturbances,
sampled data, switching topology, and so on, some of
which will be investigated in the near future.
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