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Abstract This paper is concerned with the dissipativ-
ity problem of stochastic neural networks with time
delay. A new stochastic integral inequality is first pro-
posed. By utilizing the delay partitioning technique
combined with the stochastic integral inequalities,
some sufficient conditions ensuring mean-square ex-
ponential stability and dissipativity are derived. Some
special cases are also considered. All the given results
in this paper are not only dependent upon the time
delay, but also upon the number of delay partitions.
Finally, some numerical examples are provided to il-
lustrate the effectiveness and improvement of the pro-
posed criteria.
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1 Introduction

In the past decades, neural networks have received
considerable attention due to their wide applications
in various areas such as image processing, signal pro-
cessing, associative memory, pattern classification, op-
timization, and moving object speed detection [1]. It
has been shown that time delays may be an impor-
tant source of oscillation, divergence, and instability
in systems [2–6], and thus neural networks with time
delay have been widely studied in recent years. For
example, the stability analysis problem has been ad-
dressed in [7–13]. The state estimation problem has
been investigated in [14–16]. The passivity problem
have been studied in [17–21].

In recent years, there has been a growing inter-
est in stochastic models since stochastic modeling has
come to play an important role in many branches of
science and engineering [22]. It has also been shown
that a neural network could be stabilized or destabi-
lized by certain stochastic inputs [23]. Hence, there
has been an increasing interest in neural networks in
the presence of stochastic perturbation, and some re-
lated results have been published. The problem of
stochastic effects to neural networks has been first in-
vestigated in [24]. When time delay appears in the
stochastic neural networks, the problem of stability
has been investigated in [25, 26] based on the de-
lay partitioning approach [27, 28]. The stability analy-
sis problem has been considered for stochastic neu-
ral networks with both the discrete and distributed
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time delays in [29, 30]. It is noted that the results
in [25, 26, 29, 30] are concerned with the constant
time delay. The stability problem of stochastic neural
networks with time-varying delay has been discussed
in [31, 32]. The passivity analysis of stochastic neu-
ral networks with time-varying delays and paramet-
ric uncertainties has been investigated in [33], where
both delay-independent and delay-dependent stochas-
tic passivity conditions have been presented in terms
of LMIs.

On the other hand, it has been shown that the the-
ory of dissipative systems plays an important role in
system and control areas, and the dissipative theory
gives a framework for the design and analysis of con-
trol systems using an input–output description based
on energy-related considerations [34]. Thus, dissipa-
tivity has been attracting a great deal of attention [35].
Very recently, the problem of delay-dependent dissipa-
tivity analysis has been investigated for deterministic
neural networks with distributed delay in [36], where
a sufficient condition has been given to guarantee the
considered neural network dissipative. In [37], some
delay-dependent dissipativity criteria have been estab-
lished for static neural networks with time-varying
or time-invariant delay. Although the importance of
dissipativity has been widely recognized, few results
have been proposed for the dissipativity of stochas-
tic neural networks with time-varying delay or con-
stant time delay, which motivates the work of this pa-
per.

In this paper, we are concerned with the problem
of dissipativity for stochastic neural networks with
time delay. By use of the delay partitioning tech-
nique and the stochastic integral inequalities, some
criteria are derived to ensure the exponential stabil-
ity and dissipativity of the considered neural networks.
Some special cases are also considered. The obtained
delay-dependent results also rely upon the partitioning
size. Finally, several numerical examples are given to
demonstrate the reduced conservatism of the proposed
methods.

Notation: The notations used throughout this pa-
per are fairly standard. R

n and R
m×n denote the n-

dimensional Euclidean space and the set of all m × n

real matrices, respectively. The notation X > Y (X ≥
Y ), where X and Y are symmetric matrices, means
that X − Y is positive definite (positive semidefinite).
I and 0 represent the identity matrix and a zero matrix,
respectively. The superscript “T” represents the trans-

pose, and diag{· · · } stands for a block-diagonal ma-
trix. ‖·‖ denotes the Euclidean norm of a vector and
its induced norm of a matrix. L2[0,+∞) represents
the space of square-integrable vector functions over
[0,+∞). E{x} means the expectation of the stochas-
tic variable x. For an arbitrary matrix B and two sym-
metric matrices A and C,

(
A B
∗ C

)
denotes a symmetric

matrix, where “∗” denotes the term that is induced by
symmetry. Matrices, if their dimensions are not explic-
itly stated, are assumed to have compatible dimensions
for algebraic operations.

2 Preliminaries

Consider the following stochastic neural network with
time-delay:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = [−Cx(t) + Af
(
x(t)

)

+ Bf
(
x
(
t − τ(t)

))+ u(t)
]

dt

+ [
M1x(t) + M2x

(
t − τ(t)

)]
dω(t)

y(t) = f
(
x(t)

)
(1)

where x(t) = [x1(t) x2(t) · · · xn(t)
T, f (x(k)) =

f1(x1(t)) f2(x2(t)) · · · fn(xn(t))]T, xi(t) is the state
of the ith neuron at time t , and fi(xi(t)) denotes
the neuron activation function; y(t) is the output
of the neural network, u(t) ∈ L2[0,+∞) is the in-
put, and ω(t) is a one-dimensional Brownian mo-
tion satisfying E{dω(t)} = 0 and E{dω2(t)} = dt ;
C = diag{c1, c2, . . . , cn} is a diagonal matrix with
positive entries; A = (aij )n×n and B = (bij )n×n are,
respectively, the connection weight matrix and the
delayed connection weight matrix; M1 and M2 are
known real constant matrices; τ(t) is the time-delay
and in this paper, two cases of τ(t), namely, time-
varying and constant, will be discussed, respectively.

Throughout this paper, we shall use the following
assumption and definitions.

Assumption 1 ([12]) Each activation function fi(·) in
(1) is continuous and bounded, and satisfies

l−i ≤ fi(α1) − fi(α2)

α1 − α2
≤ l+i , i = 1,2, . . . , n (2)

where fi(0) = 0, α1, α2 ∈ R, α1 �= α2, and l−i and l+i
are known real scalars and they may be positive, neg-
ative, or zero, which means that the resulting activa-
tion functions may be nonmonotonic and more general
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than the usual sigmoid functions and Lipschitz-type
conditions.

Definition 1 [22] Stochastic time-delay neural net-
work (1) with u(t) = 0 is said to be mean-square ex-
ponentially stable if there is a positive constant λ such
that

lim
t→+∞ sup

1

t
log E

{∥∥x(t)
∥∥2}≤ −λ. (3)

We are now in a position to introduce the defini-
tion on dissipativity. Let the energy supply function of
neural network (1) be defined by

E
{
G(u,y,T )

} = E
{〈y, Qy〉T

}+ 2E
{〈y, Su〉T

}

+ E
{〈u, Ru〉T

}
, ∀T ≥ 0 (4)

where Q, S, and R are real matrices with Q, R sym-
metric, and 〈a, b〉T = ∫ T

0 aTb dt . Without loss of gen-
erality, it is assumed that Q ≤ 0 and denoted that
−Q = QT−Q− for some Q−.

Definition 2 Neural network (1) is said to be strictly
(Q, S, R)-γ -dissipative if, for some scalar γ > 0, the
following inequality:

E
{
G(u,y,T )

}≥ γ E
{〈u,u〉T

}
, ∀T ≥ 0 (5)

holds under zero initial condition for any nonzero dis-
turbance u ∈ L2[0,∞).

The main purpose of this paper is to establish
some delay-dependent conditions, which ensures neu-
ral network (1) is mean-square exponentially stable
and strictly (Q, S, R)-γ -dissipative.

To end this section, we introduce the following in-
tegral inequalities, which will play important roles in
deriving main results.

Lemma 1 (Jensen inequality) [38] For any matrix
W > 0, scalars γ1 and γ2 satisfying γ2 > γ1, a vec-
tor function ω : [γ1, γ2] → R

n, if the following inte-
grations concerned are well defined, then

(γ2 − γ1)

∫ γ2

γ1

ω(α)TWω(α)dα

≥
[∫ γ2

γ1

ω(α)dα

]T

W

[∫ γ2

γ1

ω(α)dα

]
. (6)

Lemma 2 Let n-dimensional vector functions x(t),
ϕ(t), and g(t) satisfy the stochastic differential equa-
tion

dx(t) = ϕ(t)dt + g(t)dω(t) (7)

where ω(t) follows the same definition as that in (1).
For any matrix

[
W S
∗ W

]≥ 0, scalars γ1, γ2, γ (t) satis-
fying γ1 ≤ γ (t) ≤ γ2, if the following integrations con-
cerned are well defined, then

−(γ2 − γ1)

∫ t−γ1

t−γ2

ϕ(α)TWϕ(α)dα

≤ −�(t)T
1

[
W S

∗ W

]
�1(t)

+ 2�1(t)
T
[
W S

∗ W

]
�2(t) (8)

where

�(t)1 =
[
x(t − γ1) − x(t − γ (t))

x(t − γ (t)) − x(t − γ2)

]
,

�2(t) =
[∫ t−γ1

t−γ (t) g(α)dω(α)
∫ t−γ (t)

t−γ2
g(α)dω(α)

]

.

Proof Denote δ1(t) = ∫ t−γ1
t−γ (t) ϕ(α)dα and δ2(t) =

∫ t−γ (t)

t−γ2
ϕ(α)dα. When γ1 < γ (t) < γ2, according to

Lemma 1, we have that

(γ2 − γ1)

∫ t−γ1

t−γ2

ϕ(α)TWϕ(α)dα

= (γ2 − γ1)

∫ t−γ1

t−γ (t)

ϕ(α)TWϕ(α)dα

+ (γ2 − γ1)

∫ t−γ (t)

t−γ2

ϕ(α)TWϕ(α)dα

≥ γ2 − γ1

γ (t) − γ1
δ1(t)

TWδ1(t)

+ γ2 − γ1

γ2 − γ (t)
δ2(t)

TWδ2(t)

= δ1(t)
TWδ1(t) + γ2 − γ (t)

γ (t) − γ1
δ1(t)

TWδ1(t)

+ δ2(t)
TWδ2(t) + γ (t) − γ1

γ2 − γ (t)
δ2(t)

TWδ2(t). (9)
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Based on the lower bounds lemma of [39], we get

⎡

⎣

√
γ2−γ (t)
γ (t)−γ1

δ1(t)

−
√

γ (t)−γ1
γ2−γ (t)

δ2(t)

⎤

⎦

T [
W S
∗ W

]
⎡

⎣

√
γ2−γ (t)
γ (t)−γ1

δ1(t)

−
√

γ (t)−γ1
γ2−γ (t)

δ2(t)

⎤

⎦

≥ 0 (10)

which implies

γ2 − γ (t)

γ (t) − γ1
δ1(t)

TWδ1(t) + γ (t) − γ1

γ2 − γ (t)
δ2(t)

TWδ2(t)

≥ δ1(t)
TSδ2(t) + δ2(t)

TSTδ1(t). (11)

Then, we can get from (9) and (11) that

(γ2 − γ1)

∫ t−γ1

t−γ2

ϕ(α)TWϕ(α)dα

≥ δ1(t)
TWδ1(t) + δ2(t)

TWδ2(t) + δ1(t)
TSδ2(t)

+ δ2(t)
TSTδ1(t)

=
[
δ1(t)

δ2(t)

]T [
W S

∗ W

][
δ1(t)

δ2(t)

]
. (12)

It is noted that when γ (t) = γ1 or γ (t) = γ2, we have
δ1(t) = 0 or δ2(t) = 0, respectively, and thus (12) still
holds based on Lemma 1. On the other hand, it is clear
from (7) that

δ1(t) = x(t − γ1) − x
(
t − γ (t)

)−
∫ t−γ1

t−γ (t)

g(α)dω(α)

(13)

and

δ2(t) = x
(
t − γ (t)

)− x(t − γ2) −
∫ t−γ (t)

t−γ2

g(α)dω(α).

(14)

Substituting (13) and (14) into (12) and considering

�2(t)
T
[
W S

∗ W

]
�2(t) ≥ 0,

we can get (8) immediately. This completes the
proof. �

Remark 1 It is noted that a stochastic integral inequal-
ity is proposed in Lemma 2 based on the lower bounds
lemma of [39]. It can be found that when γ (t) = γ1

or γ (t) = γ2, the stochastic integral inequality (8) re-
duces to the following stochastic integral inequality:

−(γ2 − γ1)

∫ t−γ1

t−γ2

ϕ(α)TWϕ(α)dα

≤ − [
x(t − γ1) − x(t − γ2)

]T

× W
[
x(t − γ1) − x(t − γ2)

]

+ 2
[
x(t − γ1) − x(t − γ2)

]T

× W

∫ t−γ1

t−γ2

g(α)dω(α). (15)

3 Main results

In this section, we make use of the delay partitioning
technique to derive some new delay-dependent dis-
sipativity criteria for neural network (1). Both time-
varying and constant time delays are treated, respec-
tively. For presentation convenience, we denote ei =
[02n×2(i−1)n I2n 02n×2(m+1−i)n] (i = 1,2, . . . ,m + 1)

and

W1 = [
I2mn 02mn×2n

]
, W2 = [

02mn×2n I2mn

]
,

Π1 = [
In 0n×n

]
, Π2 = [

0n×n In

]

L+ = diag
{
l+1 , l+2 , . . . , l+n

}
,

L− = diag
{
l−1 , l−2 , . . . , l−n

}
,

C1 = −CΠ1 + AΠ2, C2 = BΠ2

D1 = Π2 − L−Π1, D2 = L+Π1 − Π2

η(t) =
[

x(t)

f (x(t))

]
, ρ(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

η(t)

η(t − 1
m

τ)

η(t − 2
m

τ)
...

η(t − m−1
m

τ)

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

θ(t) =
[

ρ(t)

η(t − τ)

]
.

3.1 The case of a time-varying delay

In this subsection, the delay τ(t) is time-varying and
satisfies 0 ≤ τ(t) ≤ τ and τ̇ (t) ≤ μ. It is noted that the
neural network (1) can be rewritten as
{

dx(t) = ϕ(t)dt + g(t)dω(t)

z(t) = Π2η(t)
(16)
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where ϕ(t) = C1e1θ(t) + C2η(t − τ(t)) + u(t) and
g(t) = M1Π1e1θ(t) + M2Π1η(t − τ(t)).

Theorem 1 Given an integer m > 0, neural net-
work (1) is mean-square exponentially stable and
strictly (Q, S, R)-γ -dissipative, if there exist matrices
P > 0,

[Zi Si

∗ Zi

] ≥ 0 (i = 1,2, . . . ,m), Y > 0, Q > 0,
diagonal matrices Fl (l = 1,2, . . . ,m + 2), G1 =
diag{λ1, λ2, . . . , λn} > 0, G2 = diag{δ1, δ2, . . . , δn} >

0, and a scalar γ > 0, such that for any j ∈ J =
{1,2, . . . ,m}
⎡

⎢⎢⎢⎢⎢
⎣

Ξ
j

11 Ξ
j

12 Ξ13 eT
1 C T

1 Ẑ eT
1 ΠT

1 MT
1 P̂

∗ Ξ
j

22 0 C T
2 Ẑ ΠT

1 MT
2 P̂

∗ ∗ Ξ33 Ẑ 0
∗ ∗ ∗ −Ẑ 0
∗ ∗ ∗ ∗ −P̂

⎤

⎥⎥⎥⎥⎥
⎦

< 0

(17)

where Ẑ = ( τ
m

)2∑m
i=1 Zi , P̂ = P + (G1 + G2)(L

+ −
L−), and

Ξ
j

11 = eT
1 ΠT

1

(
P − L−G1 + L+G2

)
C1e1

+ eT
1 C T

1

(
P − G1L

− + G2L
+)Π1e1

+ WT
1 QW1 − WT

2 QW2 + eT
1 ΠT

2 (G1 − G2)C1e1

+ eT
1 C T

1 (G1 − G2)Π2e1

+ eT
1 Ye1 − eT

j ΠT
1 ZjΠ1ej − eT

j+1Π
T
1 ZjΠ1ej+1

+ eT
j+1Π

T
1 ST

j Π1ej + eT
j ΠT

1 SjΠ1ej+1

−
m∑

i=1,i �=j

(ei − ei+1)
TΠT

1 ZiΠ1(ei − ei+1)

+
m+1∑

i=1

eT
i DT

1 Fi D2ei +
m+1∑

i=1

eT
i DT

2 Fi D1ei

− eT
1 ΠT

2 QΠ2e1

Ξ
j

12 = eT
1 ΠT

1

(
P − L−G1 + L+G2

)
C2

+ eT
j ΠT

1 (Zj − Sj )Π1

+ eT
j+1Π

T
1

(
Zj − ST

j

)
Π1

+ eT
1 ΠT

2 (G1 − G2)C2

Ξ
j

22 = −(1 − μ)Y + ΠT
1

(−2Zj + Sj + ST
j

)
Π1

+ DT
1 Fm+2 D2 + DT

2 Fm+2 D1

Ξ13 = −eT
1 ΠT

2 S + eT
1 ΠT

1

(
P − L−G1 + L+G2

)

+ eT
1 ΠT

2 (G1 − G2)

Ξ33 = −R + γ I.

Proof First, let us consider stability of neural network
(1) with u(t) = 0. By Schur complement, we obtain
from (17) that

Ξj =
⎡

⎢
⎣

Ξ
j

11 Ξ
j

12 Ξ13

∗ Ξ
j

22 0
∗ ∗ Ξ33

⎤

⎥
⎦+

⎡

⎢
⎣

eT
1 C T

1

C T
2
I

⎤

⎥
⎦ Ẑ

⎡

⎢
⎣

eT
1 C T

1

C T
2
I

⎤

⎥
⎦

T

+
⎡

⎣
eT

1 ΠT
1 MT

1
ΠT

1 MT
2

0

⎤

⎦ P̂

⎡

⎣
eT

1 ΠT
1 MT

1
ΠT

1 MT
2

0

⎤

⎦

T

< 0. (18)

It is clear from (18) that we can always find two small
enough scalars ε1 > 0 and ε2 > 0 such that

Ξ̂ j =
[
Ξ̂

j

11 Ξ
j

12

∗ Ξ
j

22

]

+
[
eT

1 C T
1

C T
2

]
Z̄

[
eT

1 C T
1

C T
2

]T

+
[
eT

1 ΠT
1 MT

1
ΠT

1 MT
2

]
P̂

[
eT

1 ΠT
1 MT

1
ΠT

1 MT
2

]T

< 0 (19)

where Ξ̂
j

11 = Ξ
j

11 + τ 2ε1e
T
1 ΠT

1 Π1e1 and Z̄ =
( τ
m

)2∑m
i=1 Zi + τ 2ε2. Choose the following Lyapu-

nov–Krasovskii functional for neural network (1) with
u(t) = 0:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (20)

where

V1(t) = x(t)TPx(t) + 2
n∑

i=1

λi

∫ xi (t)

0

(
fi(s) − l−i s

)
ds

+ 2
n∑

i=1

δi

∫ xi (t)

0

(
l+i s − fi(s)

)
ds,

V2(t) =
∫ t

t− τ
m

ρ(s)TQρ(s)ds +
∫ t

t−τ(t)

η(s)TYη(s)ds,

V3(t) = τ

m

m∑

i=1

∫ − i−1
m

τ

− i
m

τ

∫ t

t+α

ϕ̂(s)TZiϕ̂(s)ds dα,

V4(t) = τ

∫ 0

−τ

∫ t

t+α

(
ε1x(s)Tx(s)

+ ε2ϕ̂(s)Tϕ̂(s)
)

ds dα
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where ϕ̂(t) = C1e1θ(t) + C2η(t − τ(t)). By Itô’s for-
mula, we have

dV (t) = LV (t)dt + σ(t)dω(t) (21)

where σ(t) = 2x(t)T(P − L−G1 + L+G2)g(t) +
2f (x(t))T(G1 − G2)g(t). It can be calculated that

LV1(t) ≤ 2x(t)T(P − L−G1 + L+G2
)
ϕ̂(t)

+ 2f
(
x(t)

)T
(G1 − G2)ϕ̂(t)

+ g(t)T(P + (G1 + G2)
(
L+ − L−))g(t)

= 2θ(t)TeT
1 ΠT

1

(
P − L−G1 + L+G2

)

× (
C1e1θ(t) + C2η

(
t − τ(t)

))

+ 2θ(t)TeT
1 ΠT

2 (G1 − G2)
(

C1e1θ(t)

+ C2η
(
t − τ(t)

))

+ (
M1Π1e1θ(t) + M2Π1η

(
t − τ(t)

))T

× P̂
(
M1Π1e1θ(t) + M2Π1η

(
t − τ(t)

))

(22)

LV2(t) = ρ(t)TQρ(t) − ρ

(
t − τ

m

)T

Qρ

(
t − τ

m

)

+ η(t)TYη(t) − (
1 − τ̇ (t)

)
η
(
t − τ(t)

)T

× Yη
(
t − τ(t)

)

≤ θ(t)TWT
1 QW1θ(t) − θ(t)TWT

2 QW2θ(t)

+ θ(t)TeT
1 Ye1θ(t)

− (1 − μ)η
(
t − τ(t)

)T
Yη
(
t − τ(t)

)
(23)

LV3(t) =
(

τ

m

)2 m∑

i=1

ϕ̂(t)TZiϕ̂(t)

− τ

m

m∑

i=1

∫ t− i−1
m

τ

t− i
m

τ

ϕ̂(s)TZiϕ̂(s)ds

=
(

τ

m

)2 m∑

i=1

(
C1e1θ(t)

+ C2η
(
t − τ(t)

))T
Zi

(
C1e1θ(t)

+ C2η
(
t − τ(t)

))

− τ

m

m∑

i=1

∫ t− i−1
m

τ

t− i
m

τ

ϕ̂(s)TZiϕ̂(s)ds (24)

LV4(t) = τ 2ε1x(t)Tx(t) + τ 2ε2ϕ̂(t)Tϕ̂(t)

− τ

∫ t

t−τ

(
ε1x(s)Tx(s) + ε2ϕ̂(s)Tϕ̂(s)

)
ds

= τ 2ε1θ(t)TeT
1 ΠT

1 Π1e1θ(t)

+ τ 2ε2
(

C1e1θ(t) + C2η
(
t − τ(t)

))T

× (
C1e1θ(t) + C2η

(
t − τ(t)

))

− τε1

∫ t

t−τ

∥∥x(s)
∥∥2 ds

− τε2

∫ t

t−τ

∥∥ϕ̂(s)
∥∥2

ds. (25)

It is noted that, for any t ≥ 0, there should exist an in-
teger j ∈ J such that τ(t) ∈ [ (j−1)τ

m
,

jτ
m

]. Then based
on Lemma 2, we can get that

− τ

m

∫ t− j−1
m

τ

t− j
m

τ

ϕ̂(s)TZj ϕ̂(s)ds

≤
[

θ(t)

η(t − d(t))

]T [Y1 Y2

∗ Y3

][
θ(t)

η(t − d(t))

]

+ 2

[
θ(t)T

[
Π1ej

−Π1ej+1

]T

+ η
(
t − d(t)

)T
[−Π1

Π1

]T][
Zj Sj

∗ Zj

]

×
⎡

⎣
∫ t− j−1

m
τ

t−τ(t) g(α)dω(α)
∫ t−τ(t)

t− j
m

τ
g(α)dω(α)

⎤

⎦ (26)

where

Y1 = −eT
j ΠT

1 ZjΠ1ej − eT
j+1Π

T
1 ZjΠ1ej+1

+ eT
j+1Π

T
1 ST

j Π1ej + eT
j ΠT

1 SjΠ1ej+1

Y2 = eT
j ΠT

1 (Zj − Sj )Π1 + eT
j+1Π

T
1

(
Zj − ST

j

)
Π1

Y3 = ΠT
1

(−2Zj + Sj + ST
j

)
Π1.

Meanwhile, we can also get from (15) that

− τ

m

m∑

i=1,i �=j

∫ t− i−1
m

τ

t− i
m

τ

ϕ̂(s)TZiϕ̂(s)ds

≤ −
m∑

i=1,i �=j

θ(t)T(ei − ei+1)
TΠT

1 ZiΠ1 (27)

× (ei − ei+1)θ(t)
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+ 2
m∑

i=1,i �=j

θ(t)T(ei − ei+1)
TΠT

1 Zi

×
∫ t− i−1

m
τ

t− i
m

τ

g(α)dω(α).

On the other hand, by (2), we have that for any i ∈
{1,2, . . . ,m + 1}

2

(
f

(
x

(
t − i − 1

m
τ

))
− L−x

(
t − i − 1

m
τ

))T

× Fi

(
L+x

(
t − i − 1

m
τ

)

−f

(
x

(
t − i − 1

m
τ

)))
≥ 0 (28)

which implies

0 ≤ 2
m+1∑

i=1

θ(t)TeT
i DT

1 Fi D2eiθ(t). (29)

We can also get from (2) that

0 ≤ 2η
(
t − τ(t)

)T DT
1 Fm+2 D2η

(
t − τ(t)

)
. (30)

On the other hand, it can be easily obtained from (20)
that there exists a scalar ε3 > 0 such that

V (t) ≤ ε3
∥∥x(t)

∥∥2 + ε3

∫ t

t−τ

∥∥x(s)
∥∥2 ds

+ ε3

∫ t

t−τ

‖ϕ̂(s)‖2 ds. (31)

Thus, we have from (22)–(27) and (29)–(31) that for
τ(t) ∈ [ (j−1)τ

m
,

jτ
m

],
E
{
LV (t) + λV (t)

}

≤
[

θ(t)

η(t − τ(t))

]T

Ξ̂ j

[
θ(t)

η(t − τ(t))

]

− τε1

∫ t

t−τ

∥∥x(s)
∥∥2 ds

− τε2

∫ t

t−τ

∥∥ϕ̂(s)
∥∥2 ds + λε3

∥∥x(t)
∥∥2

+ λε3

∫ t

t−τ

∥∥x(s)
∥∥2 ds + λε3

∫ t

t−τ

∥∥ϕ̂(s)
∥∥2 ds

≤ λmax
(
Ξ̂ j

)∥∥x(t)
∥∥2 − τε1

∫ t

t−τ

∥∥x(s)
∥∥2

ds

− τε2

∫ t

t−τ

∥∥ϕ̂(s)
∥∥2 ds + λε3

∥∥x(t)
∥∥2

+ λε3

∫ t

t−τ

∥
∥x(s)

∥
∥2 ds + λε3

∫ t

t−τ

∥
∥ϕ̂(s)

∥
∥2 ds.

(32)

Let λ > 0 be sufficiently small such that

λε3 − ε1τ < 0, λε3 − ε2τ < 0 (33)

and for any j ∈ J ,

λε3 + λmax
(
Ξ̂ j

)
< 0. (34)

Then we can get from (32), (33), and (34) that

E
{
LV (t) + λV (t)

}
< 0. (35)

By Itô’s formula, we have

d
[
eλαV (α)

] = eλα
[
LV (α) + λV (α)

]
dα

+ eλασ (α)dω(α). (36)

Integrating from 0 to t and taking expectation on both
sides of (36) yields

E
{
eλtV (t)

}− E
{
V (0)

}

≤ E

{∫ t

0
eλα

[
LV (α) + λV (α)

]
dα

}
. (37)

Combining (20), (35), and (37), we have

λmin(P )E
{∥∥x(t)

∥∥2}≤ E
{
V (t)

}≤ e−λt
E
{
V (0)

}
(38)

which implies (3) holds. Thus, the mean-square expo-
nential stability of neural network (1) is proved.

Now let us proceed to discuss the strictly (Q, S, R)-
γ -dissipativity of neural network (1). To this end,
choose the following Lyapunov–Krasovskii functional
for neural network (1):

V (t) = V1(t) + V2(t) + V3(t) (39)

where V1(t) and V2(t) follow the same definitions as
those in (20), and

V3(t) = τ

m

m∑

i=1

∫ − i−1
m

τ

− i
m

τ

∫ t

t+α

ϕ(s)TZiϕ(s)ds dα.

Applying a similar analysis method employed in the
proof of stability, we have that for τ(t) ∈ [ (j−1)τ

m
,

jτ
m

],
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E

{∫ T

0
LV

(
x(t)

)
dt − G(u,y,T ) + γ 〈u,u〉T

}

≤
∫ T

0
θ̄ (t)TΞj θ̄(t)dt (40)

where

θ̄ (t) = [
θ(t)T η(t − τ(t))T u(t)T

]T
.

We can get from (18) that for any nonzero disturbance
u(t) ∈ L2[0,∞),

E

{∫ T

0
LV

(
x(t)

)
dt − G(u,y,T ) + γ 〈u,u〉T

}
< 0

(41)

which, by Dynkin’s formula, implies under zero initial
condition

γ E
{〈u,u〉T

} ≤ E
{
V (T )

}+ γ E
{〈u,u〉T

}

≤ E
{
G(u,y,T )

}
. (42)

Thus, we find (5) holds. Therefore, neural network (1)
is strictly (Q, S, R)-γ -dissipative. This completes the
proof. �

Remark 2 A dissipativity condition is proposed in
Theorem 1 for neural network (1) based on the de-
lay partitioning technique and stochastic integral in-
equality (8) and (15). It is noted that the Lyapunov–
Krasovskii functional (20) makes full use of the infor-
mation on neuron activation functions and the involved
time delay, and thus our result has less conservatism.
Moreover, the conservatism reduction of the proposed
condition becomes more obvious with the partitioning
getting thinner (i.e., m becoming larger), which will be
demonstrated in Sect. 4. It should be pointed out that
the LMIs in (17) are not only over the matrix variables,
but also over the scalar γ , and thus by setting δ = −γ

and minimizing δ subject to (17), we can obtain the
optimal dissipativity performance γ (by γ = −δ).

Remark 3 If we make use of the free-weighting ma-
trix method together with the delay partitioning tech-
nique to deal with the same problem, then in order
to get a less conservative result, for any subinterval
[ (j−1)τ

m
,

jτ
m

], we need to introduce the following two
equalities:

0 = 2

[
x

(
t − j − 1

m
τ

)T

S1j + x
(
t − τ(t)

)T
S2j

]

×
[
x

(
t − j − 1

m
τ

)T

− x
(
t − τ(t)

)T

−
∫ t− j−1

m
τ

t−τ(t)

ϕ̂(s)ds

−
∫ t− j−1

m
τ

t−τ(t)

g(α)dω(α)

]

and

0 = 2

[
x
(
t − τ(t)

)T
S3j + x

(
t − j

m
τ

)T

S4j

]

×
[
x
(
t − τ(t)

)T − x

(
t − j

m
τ

)T

−
∫ t−τ(t)

t− j
m

τ

ϕ̂(s)ds

−
∫ t−τ(t)

t− j
m

τ

g(α)dω(α)

]
.

Therefore, 4mn2 decision variables should be in-
troduced. But in this paper, we utilize the stochastic
integral inequality (8) to deal with the term
∫ t− j−1

m
τ

t− jτ
m

ϕ̂(s)ds instead of the free-weighting ma-

trix method, and only mn2 decision variables are re-
quired. Thus, our condition has computational advan-
tage over the condition based on the free-weighting
matrix method.

From Theorem 1, it is easily get the following sta-
bility condition for neural network (1) with u(t) = 0.

Corollary 1 Given an integer m > 0, neural network
(1) with u(t) = 0 is mean-square exponentially sta-
ble, if there exist matrices P > 0,

[Zi Si

∗ Zi

] ≥ 0 (i =
1,2, . . . ,m), Y > 0, Q > 0, diagonal matrices Fl

(l = 1,2, . . . ,m + 2), G1 = diag{λ1, λ2, . . . , λn} > 0,
and G2 = diag{δ1, δ2, . . . , δn} > 0, such that for any
j ∈ J ,

⎡

⎢⎢⎢
⎣

Ξ̄
j

11 Ξ
j

12 eT
1 C T

1 Ẑ eT
1 ΠT

1 MT
1 P̂

∗ Ξ
j

22 C T
2 Ẑ ΠT

1 MT
2 P̂

∗ ∗ −Ẑ 0
∗ ∗ ∗ −P̂

⎤

⎥⎥⎥
⎦

< 0 (43)



Dissipativity analysis of stochastic neural networks with time delays

where Ξ
j

12, Ξ
j

22, Ẑ, and P̂ follow the same definitions
as those in Theorem 1, and

Ξ̄
j

11 = eT
1 ΠT

1

(
P − L−G1 + L+G2

)
C1e1

+ eT
1 C T

1

(
P − G1L

− + G2L
+)Π1e1

+ WT
1 QW1 − WT

2 QW2 + eT
1 ΠT

2 (G1 − G2)C1e1

+ eT
1 C T

1 (G1 − G2)Π2e1

+ eT
1 Ye1 − eT

j ΠT
1 ZjΠ1ej − eT

j+1Π
T
1 ZjΠ1ej+1

+ eT
j+1Π

T
1 ST

j Π1ej + eT
j ΠT

1 SjΠ1ej+1

−
m∑

i=1,i �=j

(ei − ei+1)
TΠT

1 ZiΠ1(ei − ei+1)

+
m+1∑

i=1

eT
i DT

1 Fi D2ei +
m+1∑

i=1

eT
i DT

2 Fi D1ei .

Remark 4 It is noted that the stability condition of
[32] is only valid for the case of l−i = 0. More-
over, if setting m = 1, λi = 0, δi = 0, Q = [

Q1 0
0 0

]
,

and Y = [ Y1 0
0 Y2

]
, the Lyapunov–Krasovskii functional

(20) coincides with that of [32]. Thus, our Lyapunov–
Krasovskii functional is much more general than that
of [32] even for the case of m = 1, that is, our result
has less conservatism than the condition of [32] even
when m = 1.

Next, we specialize Theorem 1 to the problem of
passivity analysis of neural network (1). Choosing
Q = 0, S = I , and R = 2γ I , we can get the following
corollary based on Theorem 1.

Corollary 2 Given an integer m > 0, neural network
(1) is passive, if there exist matrices P > 0,

[Zi Si

∗ Zi

]≥
0 (i = 1,2, . . . ,m), Y > 0, Q > 0, diagonal matrices
Fl (l = 1,2, . . . ,m + 2), G1 = diag{λ1, λ2, . . . , λn} >

0, G2 = diag{δ1, δ2, . . . , δn} > 0, and a scalar γ > 0,
such that for any j ∈ {1,2, . . . ,m}
⎡

⎢⎢⎢⎢⎢
⎣

Ξ̄
j

11 Ξ
j

12 Ξ̄13 eT
1 C T

1 Ẑ eT
1 ΠT

1 MT
1 P̂

∗ Ξ
j

22 0 C T
2 Ẑ ΠT

1 MT
2 P̂

∗ ∗ −γ I Ẑ 0
∗ ∗ ∗ −Ẑ 0
∗ ∗ ∗ ∗ −P̂

⎤

⎥⎥⎥⎥⎥
⎦

< 0

(44)

where Ξ̄
j

11 follows the same definition as that in Corol-

lary 1, Ξ
j

12, Ξ
j

22, Ẑ, and P̂ follow the same defini-
tions as those in Theorem 1, and Ξ̄13 = −eT

1 ΠT
2 +

eT
1 ΠT

1 (P − L−G1 + L+G2) + eT
1 ΠT

2 (G1 − G2).

Remark 5 It should be pointed out that when λi = 0,
δi = 0, Q = 0, Y = [ Y1 0

0 Y2

]
, and Zi = mZ, the

Lyapunov–Krasovskii functional (20) coincides with
that of [33]. Thus, our Lyapunov–Krasovskii func-
tional is much more general than that of [33]. More-
over, the passivity condition of [33] is only valid for
the case of l−i = 0. Thus, our result is more effective
that of [33].

3.2 The case of a constant time delay

For simplicity, we rewrite neural network (1) as
{

dx(t) = ϕ̌(t)dt + ĝ(t)dω(t)

z(t) = Π2η(t)
(45)

where ϕ̌(t) = (C1e1 + C2em+1)θ(t) + u(t) and ĝ(t) =
(M1Π1e1 + M2Π1em+1)θ(t).

Theorem 2 Given an integer m > 0, neural network
(1) is mean-square exponentially stable and strictly
(Q, S, R)-γ -dissipative, if there exist matrices P > 0,
Zi > 0 (i = 1,2, . . . ,m), Q > 0, diagonal matrices Fl

(l = 1,2, . . . ,m + 1), G1 = diag{λ1, λ2, . . . , λn} > 0,
G2 = diag{δ1, δ2, . . . , δn} > 0, and a scalar γ > 0,
such that
⎡

⎢
⎢
⎣

Ω11 Ξ13 Ω13 Ω14

∗ −R + γ I Ẑ 0
∗ ∗ −Ẑ 0
∗ ∗ ∗ −P̂

⎤

⎥
⎥
⎦< 0 (46)

where Ξ13, Ẑ, and P̂ follow the same definitions as
those in Theorem 1, and

Ω11 = eT
1 ΠT

1

(
P − L−G1 + L+G2

)
C1e1

+ eT
1 C T

1

(
P − G1L

− + G2L
+)Π1e1

+ WT
1 QW1 − WT

2 QW2 − eT
1 ΠT

2 QΠ2e1

+ eT
1 ΠT

2 (G1 − G2)C1e1

+ eT
1 C T

1 (G1 − G2)Π2e1

+eT
1 ΠT

2 (G1 − G2)C2em+1

+ eT
m+1 C T

2 (G1 − G2)Π2e1
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−
m∑

i=1

(ei − ei+1)
TΠT

1 ZiΠ1(ei − ei+1)

+
m+1∑

i=1

eT
i DT

1 Fi D2ei +
m+1∑

i=1

eT
i DT

2 Fi D1ei

+ eT
1 ΠT

1

(
P − L−G1 + L+G2

)
C2em+1

+ eT
m+1 C T

2

(
P − G1L

− + G2L
+)Π1e1

Ω13 = (
eT

1 C T
1 + eT

m+1 C T
2

)
Ẑ

Ω14 = (
eT

1 ΠT
1 MT

1 + eT
m+1Π

T
1 MT

2

)
P̂ .

Proof First, let us consider stability of neural network
(1) with u(t) = 0. By Schur complement, we obtain
from (46) that

Ω = Ω11 + Ω13ẐΩT
13 + Ω14P̂ΩT

14 < 0. (47)

It is clear from (47) that we can always find two small
enough scalars ε1 > 0 and ε2 > 0 such that

Ω̄ = Ω̂11 + Ω13
(
Ẑ + τ 2ε2

)
ΩT

13 + Ω14P̂ΩT
14 < 0

(48)

where Ω̂11 = Ω11 + τ 2ε1e
T
1 ΠT

1 Π1e1. Choose the fol-
lowing Lyapunov–Krasovskii functional for neural
network (1) with u(t) = 0:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (49)

where V1(t) follows the same definition as that in (20),
and

V2(t) =
∫ t

t− τ
m

ρ(s)TQρ(s)ds

V3(t) = τ

m

m∑

i=1

∫ − i−1
m

τ

− i
m

τ

∫ t

t+α

ϕ̄(s)TZiϕ̄(s)ds dα

V4(t) = τ

∫ 0

−τ

∫ t

t+α

(
ε1x(s)Tx(s) + ε2ϕ̄(s)Tϕ̄(s)

)
ds dα

where ϕ̄(t) = (C1e1 + C2em+1)θ(t). By Itô’s formula,
we have

dV (t) = LV (t)dt + σ(t)dω(t) (50)

where σ(t) = 2x(t)T(P − L−G1 + L+G2)ĝ(t) +
2f (x(t))T(G1 − G2)ĝ(t). It can be calculated that

LV1(t) ≤ 2x(t)T(P − L−G1 + L+G2
)
ϕ̄(t)

+ 2f
(
x(t)

)T
(G1 − G2)ϕ̄(t)

+ ĝ(t)T(P + (G1 + G2)
(
L+ − L−))ĝ(t)

= 2θ(t)TeT
1 ΠT

1

(
P − L−G1 + L+G2

)

× (C1e1 + C2em+1)θ(t)

+ 2θ(t)TeT
1 ΠT

2 (G1 − G2)

× (C1e1 + C2em+1)θ(t)

+ θ(t)T(M1Π1e1 + M2Π1em+1)
TP̂

× (M1Π1e1 + M2Π1em+1)θ(t), (51)

LV2(t) = ρ(t)TQρ(t) − ρ

(
t − τ

m

)T

Qρ

(
t − τ

m

)

≤ θ(t)TWT
1 QW1θ(t) − θ(t)TWT

2 QW2θ(t),

LV3(t) =
(

τ

m

)2 m∑

i=1

ϕ̄(t)TZiϕ̄(t)

− τ

m

m∑

i=1

∫ t− i−1
m

τ

t− i
m

τ

ϕ̄(s)TZiϕ̄(s)ds (52)

=
(

τ

m

)2 m∑

i=1

θ(t)T(C1e1 + C2em+1)
TZi

× (C1e1 + C2em+1)θ(t)

− τ

m

m∑

i=1

∫ t− i−1
m

τ

t− i
m

τ

ϕ̄(s)TZiϕ̄(s)ds, (53)

LV4(t) = τ 2ε1x(t)Tx(t) + τ 2ε2ϕ̄(t)Tϕ̄(t)

− τ

∫ t

t−τ

(
ε1x(s)Tx(s) + ε2ϕ̄(s)Tϕ̄(s)

)
ds

= τ 2ε1θ(t)TeT
1 ΠT

1 Π1e1θ(t) + τ 2ε2θ(t)T

× (C1e1 + C2em+1)
T(C1e1 + C2em+1)θ(t)

− τε1

∫ t

t−τ

∥∥x(s)
∥∥2 ds

− τε2

∫ t

t−τ

∥∥ϕ̄(s)
∥∥2 ds. (54)

We can get from (15) that

− τ

m

m∑

i=1

∫ t− i−1
m

τ

t− i
m

τ

ϕ̄(s)TZiϕ̄(s)ds

≤ −
m∑

i=1

θ(t)T(ei − ei+1)
TΠT

1 ZiΠ1(ei − ei+1)θ(t)
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+ 2
m∑

i=1

θ(t)T(ei − ei+1)
TΠT

1

× Zi

∫ t− i−1
m

τ

t− i
m

τ

g(α)dω(α). (55)

On the other hand, it can be easily obtained from (49)
that there exists a scalar ε3 > 0 such that

V (t) ≤ ε3
∥∥x(t)

∥∥2 + ε3

∫ t

t−τ

∥∥x(s)
∥∥2 ds

+ ε3

∫ t

t−τ

∥∥ϕ̄(s)
∥∥2 ds. (56)

Thus, we have from (51)–(56) and (29) that

E
{
LV (t) + λV (t)

}

≤ θ(t)TΩ̄θ(t) − τε1

∫ t

t−τ

∥
∥x(s)

∥
∥2 ds

− τε2

∫ t

t−τ

∥∥ϕ̄(s)
∥∥2 ds + λε3‖x(t)‖2

+ λε3

∫ t

t−τ

∥∥x(s)
∥∥2 ds + λε3

∫ t

t−τ

∥∥ϕ̄(s)
∥∥2 ds

≤ λmax(Ω̄)
∥∥x(t)

∥∥2 − τε1

∫ t

t−τ

‖x(s)‖2 ds

− τε2

∫ t

t−τ

‖ϕ̄(s)‖2 ds + λε3‖x(t)‖2

+ λε3

∫ t

t−τ

‖x(s)‖2 ds + λε3

∫ t

t−τ

‖ϕ̄(s)‖2 ds.

(57)

Let λ > 0 be sufficiently small such that

λε3 + λmax(Ω̄) < 0, λε3 − ε1τ < 0,

λε3 − ε2τ < 0 (58)

which combining with (57) implies

E
{
LV (t) + λV (t)

}
< 0. (59)

Then, by using a similar method as employed in The-
orem 1, we can get prove the mean-square exponential
stability of neural network (1).

Now let us proceed to discuss the strictly (Q, S, R)-
γ -dissipativity of neural network (1). To this end,
choose the following Lyapunov–Krasovskii functional

for neural network (1):

V (t) = V1(t) + V2(t) + V3(t) (60)

where V1(t) follows the same definition as that in (20),
V2(t) follows the same definition as that in (49), and

V3(t) = τ

m

m∑

i=1

∫ − i−1
m

τ

− i
m

τ

∫ t

t+α

ϕ̌(s)TZiϕ̌(s)ds dα.

Then, by using a similar method as employed in The-
orem 1, we can easily get that neural network (1) is
strictly (Q, S, R)-γ -dissipative. This completes the
proof. �

Similarly, it is easy to get the following stability
and passibility conditions for neural network (1) with
constant time delay.

Corollary 3 Given an integer m > 0, neural net-
work (1) with u(t) = 0 is mean-square exponen-
tially stable, if there exist matrices P > 0, Zi > 0
(i = 1,2, . . . ,m), Q > 0, diagonal matrices Fl (l =
1,2, . . . ,m + 1), G1 = diag{λ1, λ2, . . . , λn} > 0, and
G2 = diag{δ1, δ2, . . . , δn} > 0, such that

⎡

⎣
Ω̄11 Ω13 Ω14

∗ −Ẑ 0
∗ ∗ −P̂

⎤

⎦< 0 (61)

where Ẑ, and P̂ follow the same definitions as those in
Theorem 1, Ω13 and Ω14 follow the same definitions
as those in Theorem 2, and

Ω̄11 = eT
1 ΠT

1

(
P − L−G1 + L+G2

)
C1e1

+ eT
1 C T

1

(
P − G1L

− + G2L
+)Π1e1

+ WT
1 QW1 − WT

2 QW2 + eT
1 ΠT

2 (G1 − G2)

× C1e1 + eT
1 C T

1 (G1 − G2)Π2e1

+ eT
1 ΠT

2 (G1 − G2)C2em+1 + eT
m+1 C T

2

× (G1 − G2)Π2e1

−
m∑

i=1

(ei − ei+1)
TΠT

1 ZiΠ1(ei − ei+1)

+
m+1∑

i=1

eT
i DT

1 Fi D2ei +
m+1∑

i=1

eT
i DT

2 Fi D1ei

+ eT
1 ΠT

1

(
P − L−G1 + L+G2

)
C2em+1
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+ eT
m+1 C T

2

(
P − G1L

− + G2L
+)Π1e1.

Remark 6 It is noted that compared with the Lyapu-
nov–Krasovskii functionals applied in [25, 26], the
Lyapunov–Krasovskii functional (49) includes more
information on neuron activation functions and the in-
volved constant delay. Thus, our Lyapunov–Krasovskii
functional is more general and leads to an improved
stability criterion.

Corollary 4 Given an integer m > 0, neural net-
work (1) is passive, if there exist matrices P > 0,
Zi > 0 (i = 1,2, . . . ,m), Q > 0, diagonal matrices Fl

(l = 1,2, . . . ,m + 1), G1 = diag{λ1, λ2, . . . , λn} > 0,
G2 = diag{δ1, δ2, . . . , δn} > 0, and a scalar γ > 0,
such that

⎡

⎢⎢
⎣

Ω̄11 Ξ̄13 Ω13 Ω14

∗ −γ I Ẑ 0
∗ ∗ −Ẑ 0
∗ ∗ ∗ −P̂

⎤

⎥⎥
⎦< 0 (62)

where Ω̄11 follows the same definition as that in Corol-
lary 3, Ξ̄13 follows the same definitions as those in
Corollary 2, Ẑ, and P̂ follow the same definitions as
those in Theorem 1, Ω13 and Ω14 follow the same def-
initions as those in Theorem 2.

4 Numerical examples

In this section, we shall give several numerical exam-
ples to show the validity and potential of our devel-
oped theoretical results.

Example 1 Consider neural network (1) with u(t) = 0
and the following parameters:

C = diag{4.1989, 0.7160, 1.9985},

B =
⎡

⎣
−0.1052 −0.5069 −0.1121
−0.0257 −0.2808 0.0212
0.1205 −0.2153 0.1315

⎤

⎦

M1 =
⎡

⎣
−0.1038 −0.4879 −0.1088
−0.0268 −0.2798 0.0245
0.1209 −0.2098 0.1311

⎤

⎦

M2 =
⎡

⎣
−0.1064 −0.5073 −0.1125
−0.0253 −0.2811 0.0202
0.1197 −0.2136 0.1289

⎤

⎦

Table 1 Maximum admissible upper bounds of τ

[25] [26] Corollary 3

m = 1 1.552 2.019 2.022

m = 2 1.732 2.302 2.417

m = 3 1.762 2.355 2.493

m = 4 1.773 2.374 2.519

m = 5 1.776 2.383 2.532

Table 2 Maximum admissible upper bounds of τ

μ 0.8 2

[32] 2.35 1.01

Corollary 1 (m = 1) 3.49 2.16

Corollary 1 (m = 2) 4.22 2.56

Corollary 1 (m = 3) 4.68 2.79

Corollary 1 (m = 4) 4.97 2.93

and A = 0, l−1 = l−2 = l−3 = 0, l+1 = 0.4129, l+2 =
3.8993, l+3 = 1.0160.

In this example, we suppose the time delay is a
constant time delay. Applying the stability criteria in
[25, 26], and Corollary 3 in this paper, the maximum
admissible upper bounds of τ are listed in Table 1,
from which it can be found that Corollary 3 in this
paper has less conservative than the those criteria in
[25, 26].

Example 2 Consider neural network (1) with u(t) = 0
and the following parameters:

C = diag{1.2, 1.15}, A =
[−0.1 0.4

0.2 −0.5

]

B =
[

0.1 −1
−1.4 0.4

]
, M1 =

[
0.23 0.1
0.3 0.2

]

M2 =
[

0.1 0.2
0.2 0.3

]

and take the activation functions f1(s) = f2(s) =
tanh(0.5s). It is clear that the activation functions sat-
isfy Assumption 1 with l−1 = l−2 = 0 and l+1 = 0.5,
l+2 = 0.5.

In this example, we suppose the time delay is a
time-varying delay. By using the stability criteria in
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[32] and Corollary 1 in this paper, the maximum ad-
missible upper bounds of τ for various μ are listed in
Table 2, from which it can be found that Corollary 1
in this paper gives better results than the condition in
[32] even for m = 1.

It is assumed that τ(t) = 3.97 + sin(0.8t). A
straightforward calculation gives τ = 4.97 and μ =
0.8. The corresponding state responses of the consid-
ered neural network are shown at Fig. 1, where the
initial condition x(t) = [3 2]T t ∈ [−4.97, 0]. We can
find from Fig. 1 that the corresponding state responses
converge to zero.

Fig. 1 State responses of the considered neural network

Example 3 Consider neural network (1) with the fol-
lowing parameters:

C = diag{3, 4}, A =
[

1.2 −0.3
0.5 1.5

]

B =
[

0.8 0.6
−0.2 −0.5

]
, M1 =

[
0.4 0
0 0.4

]

M2 =
[

0.3 0
0 0.3

]
.

In this example, we suppose the time delay is a
time-varying delay. We first compare the passivity
condition in Corollary 2 of this paper with that of
[33]. To this end, we let τ = 1.5, l−1 = l−2 = 0, and
l+1 = l+2 = 1. Table 3 provides the minimum passivity
performance γ for different methods. It is clear that
Corollary 1 in this paper greatly improves the crite-
rion in [33]. In particular, when μ = 0.8, the method
of [33] fails, but Corollary 2 of this paper is still valid.

Next, let us pay attention to the dissipativity of the
considered neural network and choose

Q =
[−1 0

0 −1

]
, S =

[
1 0
1 1

]
, R =

[
3 0
0 3

]

τ = 1, l−1 = −0.1, l−2 = 0.1, and l+1 = l+2 = 0.9. The
optimal dissipativity performance γ for different m

and μ can be found in Table 4, from which we can
find that the optimal dissipativity performance γ de-
pends on m and μ. Specifically, when m is fixed, the

Table 3 Minimum passivity performance γ

μ 0.6 0.8

[33] 0.2094 –

Corollary 2 (m = 1) 0.0805 1.1631

Corollary 2 (m = 2) 0.0796 0.5309

Corollary 2 (m = 3) 0.0789 0.3795

Corollary 2 (m = 4) 0.0785 0.3198

Table 4 Optimal dissipativity performance γ

μ 0.6 0.8 ≥ 1

Theorem 1 (m = 1) 2.6952 2.4730 2.4400

Theorem 1 (m = 2) 2.7020 2.5997 2.5479

Theorem 1 (m = 3) 2.7038 2.6179 2.5608

Theorem 1 (m = 4) 2.7044 2.6234 2.5644
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larger μ(≤ 1) corresponds to the smaller γ , and when
μ is fixed, the larger m corresponds to the larger γ .
Furthermore, when μ(≥ 1), the conservatism of The-
orem 1 is dependent on m and independent of μ.

5 Conclusion

In this paper, the problem of dissipativity analysis has
been investigated for stochastic neural networks with
time delay using the delay partitioning technique. A
stochastic integral inequality has been given. Several
delay-dependent sufficient conditions have been pro-
posed to guarantee the exponential stability and dissi-
pativity of the considered neural networks. Some other
cases have also been considered. All the results given
in this paper are delay-dependent as well as partition-
dependent. The effectiveness as well as the reduced
conservatism of the derived results has been shown by
several numerical examples. We would like to point
out that it is possible to extend our main results to
more general neural networks with mixed time-delays,
uncertainties, and Markov jump parameters, and the
corresponding results will appear in the near future.
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