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Abstract This paper presents an investigation on
the nonlinear dynamic response of carbon nanotube-
reinforced composite (CNTRC) plates resting on elas-
tic foundations in thermal environments. Two configu-
rations, i.e., single-layer CNTRC plate and three-layer
plate that is composed of a homogeneous core layer
and two CNTRC surface sheets, are considered. The
single-walled carbon nanotube (SWCNT) reinforce-
ment is either uniformly distributed (UD) or function-
ally graded (FG) in the thickness direction. The ma-
terial properties of FG-CNTRC plates are assumed
to be graded in the thickness direction, and are esti-
mated through a micromechanical model. The motion
equations are based on a higher-order shear deforma-
tion theory with a von Kármán-type of kinematic non-
linearity. The thermal effects are also included and
the material properties of CNTRCs are assumed to
be temperature-dependent. The equations of motion
that includes plate-foundation interaction are solved
by a two-step perturbation technique. Two cases of
the in-plane boundary conditions are considered. Ini-
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tial stresses caused by thermal loads or in-plane edge
loads are introduced. The effects of material property
gradient, the volume fraction distribution, the founda-
tion stiffness, the temperature change, the initial stress,
and the core-to-face sheet thickness ratio on the dy-
namic response of CNTRC plates are discussed in de-
tail through a parametric study.

Keywords Nanocomposites · Functionally graded
materials · Temperature-dependent properties ·
Dynamic response · Elastic foundation

1 Introduction

Recently, a new class of promising materials known
as carbon nanotubes (CNTs) has drawn considerable
attention. CNTs are considered as a potential candi-
date for the reinforcement of polymer composites. It
has been reported that the aligned nanotube-reinforced
composites were fabricated [1, 2]. Sun et al. [3] re-
ported that carbon nanotubes (CNTs) have extraor-
dinary mechanical properties over carbon fibers. The
considerable advantages offered by carbon nanotube-
reinforced composites (CNTRCs) have prompted an
increased use of laminated structures with CNTRC
layers. The major difference between the carbon
fiber-reinforced composites and the carbon nanotube-
reinforced composites lies in that the latter contain a
low percentage of CTNs (2 ∼ 5 % by weight) [4–7].
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This is due to the fact that their mechanical proper-
ties will deteriorate if the volume fraction increases
beyond certain limit [8]. Therefore, in the modeling of
CNTRC the concept of functionally graded materials
might be incorporated to effectively make use of the
CNTs. Shen [9] firstly studied the nonlinear bending
behavior of CNTRC plates and found that the load-
bending moment curves of the plates can be consider-
ably improved through the use of a functionally graded
distribution of CNTs in the matrix. Applying the con-
cept of functionally graded materials to the nanocom-
posites, Shen and his coauthors [10–16] investigated
the postbuckling and nonlinear vibration of function-
ally graded CNTRC plates and shells under a low nan-
otube volume fraction. They found that the linear func-
tionally graded CNT reinforcements can increase the
buckling load as well as postbuckling strength of the
plate/shell structures under mechanical load, whereas
this effect is less pronounced for the thermal buckling
of the same plate/shell structure. They also concluded
that the functionally graded CNT reinforcements have
a significant effect on the nonlinear vibration charac-
teristics of CNTRC plates and shells. Moreover, Zhu
et al. [17] presented linear bending and free vibration
of functionally graded CNTRC plates with various
boundary conditions by using finite element method
(FEM). Mehrabadi et al. [18] presented linear buck-
ling of functionally graded CNTRC plates subjected
to uniaxial and biaxial compression. Aragh and He-
dayati [19] studied linear free vibration of function-
ally graded CNTRC cylindrical panels based on the
Eshelby–Mori–Tanaka approach. On the other hand,
Ke et al. [20] investigated the nonlinear free vibration
of functionally graded CNTRC Timoshenko beams.
They found that both linear and nonlinear frequen-
cies of functionally graded CNTRC beams with sym-
metrical distribution of CNTs are higher than those of
beams with uniform or unsymmetrical distribution of
CNTs. Yas and Heshmati [21] presented a dynamic
analysis of functionally graded nanocomposite beams
under the action of moving load.

A functionally graded CNT reinforced aluminum
matrix composite was recently fabricated by a pow-
der metallurgy route to support the concept of func-
tionally graded materials to the nanocomposites [22].
The sandwich construction has become even more at-
tractive to the introduction of CNTRC for the face
sheets [23, 24]. In the present work, we focus our at-
tention on the nonlinear dynamic response of CNTRC

composite plates resting on an elastic foundation of
Pasternak-type. Two configurations, i.e., single-layer
CNTRC plate and three-layer plate that is composed
of a homogeneous core layer and two CNTRC surface
sheets, are considered. Two kinds of CNTRC layers,
namely, uniformly distributed (UD) and functionally
graded (FG) reinforcements, are considered. The ma-
terial properties of FG-CNTRC layers are assumed to
be graded in the thickness direction, and are estimated
through a micromechanical model in which the CNT
efficiency parameter is estimated by matching the elas-
tic modulus of CNTRCs observed from the molecular
dynamics (MD) simulation results with the numeri-
cal results obtained from the extended rule of mixture.
The motion equations are based on Reddy’s higher-
order shear deformation theory [25] and general von
Kármán-type equations [26]. The plate-foundation in-
teraction and thermal effects are also included. The
material properties of both CNTRC layer and homo-
geneous core layer are assumed to be temperature-
dependent. Initial stresses caused by thermal loads or
in-plane edge loads are introduced. All four edges
of the plate are assumed to be simply supported and
two cases of in-plane boundary conditions are consid-
ered. The numerical illustrations show the nonlinear
dynamic response of single-layer CNTRC plates and
sandwich plates with CNTRC face sheets resting on
an elastic foundation under different sets of environ-
mental conditions.

2 Material properties of functionally graded
CNTRCs

We assume that an CNTRC layer is made of a mixture
of single-walled carbon nanotubes (SWCNTs) and the
matrix which is assumed to be isotropic. The SWCNT
reinforcement is either uniformly distributed (UD) or
functionally graded (FG) in the thickness direction.
At the nanoscale, the structure of the carbon nanotube
strongly influences the overall properties of the com-
posite. Several micromechanical models have been de-
veloped to predict the effective material properties of
CNTRCs, e.g., the Mori–Tanaka model [27, 28] and
the Voigt model as the rule of the mixture [29, 30]. The
Mori–Tanaka model is applicable to micro-particles
and the rule of mixture is simple and convenient to
apply for predicting the overall material properties
and responses of the CNTRC structures. At nanoscale,
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both Mori–Tanaka and Voigt models need to be ex-
tended to the case involving the small scale effect. It
has been shown that the Voigt and Mori–Tanaka mod-
els have the same accuracy in predicting the buckling
and vibration characteristics of functionally graded
ceramic-metal beams [31], plates [32], and shells [33].
According to the extended rule of mixture, the effec-
tive Young’s modulus and shear modulus of CNTRCs
can be expressed as [9]

E11 = η1VCNECN
11 + VmEm (1a)

η2

E22
= VCN

ECN
22

+ Vm

Em
(1b)

η3

G12
= VCN

GCN
12

+ Vm

Gm
(1c)

where ECN
11 ,ECN

22 , and GCN
12 are the Young’s and shear

moduli of the CNT, Em and Gm are the correspond-
ing properties for the matrix, and the ηj (j = 1,2,3)

are the CNT efficiency parameters, respectively. In ad-
dition, VCN and Vm are the volume fractions of the
CNT and the matrix, which satisfy the relationship of
VCN + Vm = 1.

As has been shown [27, 34], the load transfer
between the nanotube and polymeric phases is less
than perfect (e.g., the surface effects, strain gradients
effects, intermolecular coupled stress effects, etc.).
Hence, we introduce the CNT efficiency parame-
ter ηj (j = 1,2,3) into Eqs. (1a)–(1c) to consider
the small scale effect and other effects on the ma-
terial properties of CNTRCs. The values of ηj will
be determined later by matching the elastic moduli
of CNTRCs predicted by the MD simulations with
the prediction of the extended rule of mixture in
Eqs. (1a)–(1c).

The material properties of functionally graded
ceramic-metal materials vary continuously from one
surface to the other and, therefore, the volume frac-
tions of the constituents may follow a simple power
law [31–33, 35]. In contrast, for functionally graded
fiber-reinforced composites, to avoid abrupt change
of the material properties, only linear distribution can
readily be achieved in practice. Three types of FG-
CNTRC layers are configured. For Type V, the outer
surface (Z = t0) of the layer is CNT-rich, referred to as
FG-V. For Type �, the distribution of CNT reinforce-
ments is inversed and the inner surface (Z = t1) of the
layer is CNT-rich, referred to as FG-�. For Type X,

a mid-plane symmetric graded distribution of CNT
reinforcements is achieved and both outer and inner
surfaces are CNT-rich, referred to as FG-X. Conse-
quently, we assume the volume fraction VCN for the
top layer of the sandwich plate follows as

VCN = 2

(
t1 − Z

t1 − t0

)
V ∗

CN (2a)

and for the bottom layer follows as

VCN = 2

(
Z − t2

t3 − t2

)
V ∗

CN (2b)

in which Z = t0 = −h/2,Z = t3 = h/2 and

V ∗
CN = wCN

wCN + (ρCN/ρm) − (ρCN/ρm)wCN
(2c)

where wCN is the mass fraction of nanotube, and ρCN

and ρm are the densities of carbon nanotube and ma-
trix, respectively, and the mass density of the CN-
TRC is defined by ρ = VCNρCN + Vmρm. In such a
way, the two cases of uniformly distributed (UD), i.e.,
VCN = V ∗

CN, and functionally graded (FG) CNTRCs
will have the same value of mass fraction of nanotube.

The thermal expansion coefficients in the longitu-
dinal and transverse directions can be expressed by

α11 = VCNECN
11 αCN

11 + VmEmαm

VCNECN
11 + VmEm

(3a)

α22 = (
1 + νCN

12

)
VCNαCN

22 + (
1 + νm

)
Vmαm

− ν12α11 (3b)

where αCN
11 , αCN

22 , and αm are thermal expansion co-
efficients, and νCN

12 and νm are Poisson’s ratios, re-
spectively, of carbon nanotube and matrix. Note that
α11 and α22 are also graded in the thickness direction.
Furthermore, we assume that the material properties
of the CNTs and the matrix are temperature depen-
dant. Thus, the effective material properties of FG-
CNTRCs, such as Young’s modulus, shear modulus,
and thermal expansion coefficients, are functions of
temperature and position. Accordingly, the effective
Poisson’s ratio depends weakly on temperature change
and position and is expressed as

ν12 = V ∗
CNνCN

12 + Vmνm (4)
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3 Nonlinear forced vibration of CNTRC sandwich
plates

Sandwich structures represent a special form of a
layered structure that consists of two thin stiff and
strong face sheets separated and a relatively thick,
lightweight, and soft core material [36]. Recently, the
sandwich plate with relatively stiff core has drawn
considerable attention [37]. The length, width, and to-
tal thickness of the sandwich plate are a, b, and h.
The thickness of each CNTRC face sheet is hF , while
the thickness of the homogeneous core layer is hH , as
shown in Fig. 1. The plate is exposed to elevated tem-
perature and is subjected to a transverse dynamic load
Q(X,Y, t) combined with initial in-plane edge loads
if any. As usual, the coordinate system has its origin at
the corner of the plate on the mid-plane. Let Ū , V̄ , and
W̄ be the plate displacements parallel to a right-hand
set of axes (X,Y,Z), where X is longitudinal and Z

is perpendicular to the plate. Ψ̄x and Ψ̄y are the mid-
plane rotations of the normals about the Y and X axes,
respectively. The plate rests on an elastic foundation.
As is customary [38, 39], the foundation is assumed
to be a compliant foundation, which means that no
part of the plate lifts off the foundation in the large de-
flection region. The load-displacement relationship of
the foundation is assumed to be p = K̄1W̄ − K̄2∇2W̄ ,
where p is the force per unit area, K̄1 is the Winkler
foundation stiffness and K̄2 is the shearing layer stiff-
ness of the foundation, and ∇2 is the Laplace operator
in X and Y .

Reddy [25] developed a simple higher order shear
deformation plate theory. This theory assumes that the

transverse shear strains are parabolically distributed
across the plate thickness. The advantages of this
theory over the first order shear deformation the-
ory are that the number of independent unknowns
(Ū , V̄ , W̄ , Ψ̄x , and Ψ̄y ) is the same as in the first order
shear deformation theory, but no shear correction fac-
tors are required. Based on Reddy’s higher order shear
deformation plate theory, Shen [26] derived a set of
general von Kármán-type equations which can be ex-
pressed in terms of a transverse displacement W̄ , two
rotations Ψ̄x and Ψ̄y , and stress function F̄ defined by
N̄x = F̄ ,YY , N̄y = F̄ ,XX , and N̄xy = −F̄ ,XY . Hence,
the motion equations of a sandwich plate, which in-
cludes the plate-foundation interaction and thermal ef-
fects, can be expressed by

L̃11(W̄ ) − L̃12(Ψ̄x) − L̃13(Ψ̄y) + L̃14(F̄ )

− L̃15
(
N̄T

) − L̃16
(
M̄T

) + K̄1W̄ − K̄2∇2W̄

= L̃(W̄ , F̄ ) + L̃17(
¨̄W) + I8

(
∂ ¨̄Ψx

∂X
+ ∂ ¨̄Ψy

∂Y

)
+ Q

(5)

L̃21(F̄ ) + L̃22(Ψ̄x) + L̃23(Ψ̄y) − L̃24(W̄ ) − L̃25
(
N̄T

)

= −1

2
L̃(W̄ , W̄ ) (6)

L̃31(W̄ ) + L̃32(Ψ̄x) − L̃33(Ψ̄y) + L̃34(F̄ )

− L̃35
(
N̄T

) − L̃36
(
S̄T

)

= I9
∂ ¨̄W
∂X

+ I10
¨̄Ψx (7)

Fig. 1 Configuration of a
CNTRC laminated plate
resting on an elastic
foundation



Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations

L̃41(W̄ ) − L̃42(Ψ̄x) + L̃43(Ψ̄y) + L̃44(F̄ )

− L̃45
(
N̄T

) − L̃46
(
S̄T

)

= I9
∂ ¨̄W
∂Y

+ I10
¨̄Ψy (8)

in which

L̃() = ∂2

∂X2

∂2

∂Y 2
− 2

∂2

∂X∂Y

∂2

∂X∂Y
+ ∂2

∂Y 2

∂2

∂X2
(9a)

L̃17() = 4

3h2

(
I5 − I4I2

I1

)(
∂2

∂X2
+ ∂2

∂Y 2

)
− I1 (9b)

and the other linear operators L̃ij () are defined as
in [12], and Ij are defined in Eqs. (18a), (18b) below.
Note that the geometric nonlinearity in the von Kár-
mán sense is given in terms of L̃() in Eqs. (5) and (6).
If the sandwich-type structure is mid-plane symmet-
ric, the stretching/bending coupling is zero-valued,
i.e., Bij = Eij = 0. Hence, L̃14() = L̃15() = L̃22() =
L̃23() = L̃24() = L̃34() = L̃35() = L̃44() = L̃45() = 0.

In the above equations, the superposed dots indi-
cate differentiation with respect to time t . N̄T , M̄T ,
and P̄ T are the thermal forces, moments and higher
order moments caused by elevated temperature, and
are defined by

⎡
⎢⎣

N̄T
x M̄T

x P̄ T
x

N̄T
y M̄T

y P̄ T
y

N̄T
xy M̄T

xy P̄ T
xy

⎤
⎥⎦

=
∑
k=1

∫ tk

tk−1

⎡
⎣ Ax

Ay

Axy

⎤
⎦

k

(
1,Z,Z3)	T dZ (10a)

⎡
⎢⎣

S̄T
x

S̄T
y

S̄T
xy

⎤
⎥⎦ =

⎡
⎢⎣

M̄T
x

M̄T
y

M̄T
xy

⎤
⎥⎦ − 4

3h2

⎡
⎢⎣

P̄ T
x

P̄ T
y

P̄ T
xy

⎤
⎥⎦ (10b)

where 	T = T − T0 is the temperature rise from the
reference temperature T0 at which there are no thermal
strains, and

⎡
⎣Ax

Ay

Axy

⎤
⎦ = −

⎡
⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎦

⎡
⎣1 0

0 1
0 0

⎤
⎦[

α11

α22

]

(11)

in which α11 and α22 are the thermal expansion co-
efficients measured in the longitudinal and transverse

directions, respectively, and Q̄ij are the transformed
elastic constants, details of which can be found in [25,
26]. Note that for an FG-CNTRC layer, Q̄ij = Qij in
which

Q11 = E11

1 − ν12ν21
, Q22 = E22

1 − ν12ν21

Q12 = ν21E11

1 − ν12ν21
, Q16 = Q26 = 0

Q66 = G12, Q44 = G23, Q55 = G13

(12)

where E11,E22,G12, ν12, and ν21 are the effective
Young’s and shear moduli and Poisson’s ratios of the
FG-CNTRC layer, respectively. They are derived from
the corresponding properties of the CNTs and the ma-
trix by the use of a micromechanical model as de-
scribed in Sect. 2.

We assume that all the edges of the plate are simply
supported. Depending upon the in-plane behavior at
the edges, two cases will be considered.

Case 1: The edges are simply supported and freely
movable in both the X and Y directions, and the uni-
axial or biaxial edge loads are acting in the X and Y

directions, respectively.
Case 2: Four edges are simply supported with no in-

plane displacements.

The boundary conditions of above two cases can be
expressed as

X = 0, a:

W̄ = Ψ̄y = 0 (13a)

M̄x = P̄x = 0 (13b)
∫ b

0
N̄x dY + σxbh = 0 (for case 1) (13c)

Ū = 0 (for case 2) (13d)

Y = 0, b:

W̄ = Ψ̄x = 0 (13e)

M̄y = P̄y = 0 (13f)∫ a

0
N̄y dX + σyah = 0 (for case 1) (13g)

V̄ = 0 (for case 2) (13h)

where σx and σy are average compressive stresses in
the X and Y directions, M̄x and M̄y are the bending



Z.-X. Wang, H.-S. Shen

moments and P̄x and P̄y are the higher order moments
as defined in [25].

The conditions expressing the immovability con-
ditions (13d) and (13h) are fulfilled on the average
senses as [9]

∫ b

0

∫ a

0

∂Ū

∂X
dX dY = 0 (14a)

∫ a

0

∫ b

0

∂V̄

∂Y
dY dX = 0 (14b)

in which

∂Ū

∂X
= A∗

11
∂2F̄

∂Y 2
+ A∗

12
∂2F̄

∂X2

+
(

B∗
11 − 4

3h2
E∗

11

)
∂Ψ̄x

∂X

+
(

B∗
12 − 4

3h2
E∗

12

)
∂Ψ̄y

∂Y

− 4

3h2

(
E∗

11
∂2W̄

∂X2
+ E∗

12
∂2W̄

∂Y 2

)

− 1

2

(
∂W̄

∂X

)2

− (
A∗

11N̄
T
x + A∗

12N̄
T
y

)
(15a)

∂V̄

∂Y
= A∗

22
∂2F̄

∂X2
+ A∗

12
∂2F̄

∂Y 2
+

(
B∗

21 − 4

3h2
E∗

21

)
∂Ψ̄x

∂X

+
(

B∗
22 − 4

3h2
E∗

22

)
∂Ψ̄y

∂Y

− 4

3h2

(
E∗

21
∂2W̄

∂X2
+ E∗

22
∂2W̄

∂Y 2

)

− 1

2

(
∂W̄

∂Y

)2

− (
A∗

12N̄
T
x + A∗

22N̄
T
y

)
(15b)

In the above equations, the reduced stiffness ma-
trices [A∗

ij ], [B∗
ij ], [D∗

ij ], [E∗
ij ], [F ∗

ij ], and [H ∗
ij ] are

functions of T and Z, determined through relation-
ships [26]

A∗ = A−1, B∗ = −A−1B

D∗ = D − BA−1B, E∗ = −A−1E

F∗ = F − EA−1B, H∗ = H − EA−1E

(16)

where Aij ,Bij , etc., are the plate stiffnesses, defined
by

(Aij ,Dij ,Fij ,Hij )

=
∑
k=1

∫ tk

tk−1

(Q̄ij )k
(
1,Z2,Z4,Z6)dZ

(i, j = 1,2,6) (17a)

(Aij ,Dij ,Fij )

=
∑
k=1

∫ tk

tk−1

(Q̄ij )k
(
1,Z2,Z4)dZ (i, j = 4,5)

(17b)

and the inertias Ii (i = 1,2,3,4,5,7) are defined by

(I1, I2, I3, I4, I5, I7)

=
∑
k=1

∫ tk

tk−1

ρ(Z)
(
1,Z,Z2,Z3,Z4,Z6)dZ (18a)

and

I 2 = I2 − 4

3h2
I4, Ī5 = I5 − 4

3h2
I7

Ī3 = I3 − 8

3h2
I5 + 16

9h4
I7

I8 = I2Ī2

I1
− Ī3 − 4

3h2
Ī5

I9 = 4

3h2

(
Ī5 − Ī2I4

I1

)
, I10 = Ī2Ī 2

I 1
− Ī3

(18b)

4 Solution procedure

Before carrying out the solution process, it is conve-
nient to first define the following dimensionless quan-
tities for such plates, in which the alternative forms k1

and k2 are not needed until the numerical examples are
considered

x = π
X

a
, y = π

Y

b
, β = a

b

W = W̄

[D∗
11D

∗
22A

∗
11A

∗
22]1/4

, F = F̄

[D∗
11D

∗
22]1/2

(Ψx,Ψy) = a

π

(Ψ̄x, Ψ̄y)

[D∗
11D

∗
22A

∗
11A

∗
22]1/4
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γ14 =
[

D∗
22

D∗
11

]1/2

, γ24 =
[
A∗

11

A∗
22

]1/2

γ5 = −A∗
12

A∗
22

, (γT 1, γT 2) = a2

π2

(AT
x ,AT

y )

[D∗
11D

∗
22]1/2

(γT 3, γT 4, γT 6, γT 7)

= a2

π2hD∗
11

(
DT

x ,DT
y ,

4

3h2
FT

x ,
4

3h2
FT

y

)

(Mx,Px)

= a2

π2

1

D∗
11[D∗

11D
∗
22A

∗
11A

∗
22]1/4

(
M̄x,

4

3h2
P̄x

)

(K1, k1) = K̄1

(
a4

π4D∗
11

,
b4

E0h3

)
(19)

(K2, k2) = K̄2

(
a2

π2D∗
11

,
b2

E0h3

)

τ = πt

a

√
E0

ρ0
, ωL = ΩL

a

π

√
ρ0

E0

γ170 = − I1E0a
2

π2ρ0D
∗
11

, γ171 = 4E0(I5I1 − I4I2)

3ρ0h2I1D
∗
11

(γ80, γ90, γ10) = (I8, I9, I10)
E0

ρ0D
∗
11

(λx, λy) = (σxb
2, σya

2)h

4π2[D∗
11D

∗
22]1/2

λq = qa4

π4D∗
11[D∗

11D
∗
22A

∗
11A

∗
22]1/4

in which ρ0 and E0 are the reference values of ρm

and Em at the room temperature (T0 = 300 K), and

AT
x ,AT

y ,DT
x ,DT

y ,F T
x , and FT

x are defined by

[
AT

x DT
x FT

x

AT
y DT

y FT
y

]
	T

= −
∑
k=1

∫ tk

tk−1

[
Ax

Ay

](
1,Z,Z3)	T (Z,T )dZ (20)

where Ax and Ay are given in detail in Eq. (11).

The nonlinear Eqs. (5)–(8) may then be written in

dimensionless form as

L11(W) − L12(Ψx) − L13(Ψy) + γ14L14(F )

− L16
(
MT

) + K1W − K2∇2W

= γ14β
2L(W,F) + L17(Ẅ )

+ γ80

(
∂Ψ̈x

∂x
+ β

∂Ψ̈y

∂y

)
+ λq (21)

L21(F ) + γ24L22(Ψx) + γ24L23(Ψy) − γ24L24(W)

= −1

2
γ24β

2L(W,W) (22)

L31(W) + L32(Ψx) − L33(Ψy)

+ γ14L34(F ) − L36
(
ST

)

= γ90
∂Ẅ

∂x
+ γ10Ψ̈x (23)

L41(W) − L42(Ψx) + L43(Ψy)

+ γ14L44(F ) − L46
(
ST

)

= γ90β
∂Ẅ

∂y
+ γ10Ψ̈y (24)

where

L() = ∂2

∂x2

∂2

∂y2
− 2

∂2

∂x∂y

∂2

∂x∂y
+ ∂2

∂y2

∂2

∂x2
(25a)

L17() = γ170 + γ171

(
∂2

∂x2
+ β2 ∂2

∂y2

)
(25b)

and other nondimensional linear operators Lij () are

defined as in [12].

The boundary conditions of Eqs. (13a)–(13h) be-

come

x = 0,π;
W = Ψy = 0 (26a)

1

π

∫ π

0
β2 ∂2F

∂y2
dy + 4λxβ

2 = 0 (for case 1) (26b)

∫ π

0

∫ π

0

[
γ 2

24β
2 ∂2F

∂y2
− γ5

∂2F

∂x2

+ γ24

(
γ511

∂Ψx

∂x
+ γ233β

∂Ψy

∂y

)
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− γ24

(
γ611

∂2W

∂x2
+ γ244β

2 ∂2W

∂y2

)
− 1

2
γ24

(
∂W

∂x

)2

+ (
γ 2

24γT 1 − γ5γT 2
)
	T

]
dx dy = 0 (for case 2)

(26c)

y = 0,π;
W = Ψx = 0 (26d)

1

π

∫ π

0

∂2F

∂x2
dx + 4λy = 0 (for case 1) (26e)

∫ π

0

∫ π

0

[
∂2F

∂x2
− γ5β

2 ∂2F

∂y2

+ γ24

(
γ220

∂Ψx

∂x
+ γ522β

∂Ψy

∂y

)

− γ24

(
γ240

∂2W

∂x2
+ γ622β

2 ∂2W

∂y2

)

− 1

2
γ24β

2
(

∂W

∂y

)2

+ (γT 2 − γ5γT 1)	T

]
dy dx = 0 (for case 2)

(26f)

We assume that the solutions of Eqs. (21)–(24) can
be expressed as

W(x,y, τ ) = W ∗(x, y) + W̃ (x, y, τ )

Ψx(x, y, τ ) = Ψ ∗
x (x, y) + Ψ̃x(x, y, τ )

Ψy(x, y, τ ) = Ψ ∗
y (x, y) + Ψ̃y(x, y, τ )

F (x, y, τ ) = F ∗(x, y) + F̃ (x, y, τ )

(27)

where W ∗(x, y) is an initial deflection due to initial
thermal bending moment, and W̃ (x, y, τ ) is an ad-
ditional deflection. Ψ ∗

x (x, y),Ψ ∗
y (x, y) and F ∗(x, y)

are the mid-plane rotations and stress function cor-
responding to W ∗(x, y). Ψ̃x(x, y, τ ), Ψ̃y(x, y, τ ) and
F̃ (x, y, τ ) are defined analogously to Ψ ∗

x (x, y),
Ψ ∗

y (x, y) and F ∗(x, y), but is for W̃ (x, y, τ ). If the
sandwich-type structure is mid-plane symmetric, no
initial thermal bending occurs under uniform temper-
ature field, and in such a case W ∗(x, y) = Ψ ∗

x (x, y) =
Ψ ∗

y (x, y) = F ∗(x, y) = 0.
Substituting Eq. (27) into Eqs. (21)–(24), we obtain

two sets of equations and can be solved in sequence.
The first set of equations yields the particular solution

of thermal bending which can be obtained in the sim-
ilar form as in [40]. The second set of equations gives
the homogeneous solution of vibration characteristics
on the initial deflected plate that can be expressed by

W̃ (x, y, τ )

= εA
(1)
11 (τ ) sinmx sinny

+ ε3[A(3)
11 (τ ) sinmx sinny

+ A
(3)
31 (τ ) sin 3mx sinny

+ A
(3)
13 (τ ) sinmx sin 3ny

] + O
(
ε4) (28)

Ψ̃x(x, y, τ )

= ε
[
C

(1)
11 (τ ) + C̈

(3)
11 (τ )

]
cosmx sinny

+ ε2C
(2)
20 (τ ) sin 2mx

+ ε3[C(3)
11 (τ ) cosmx sinny

+ C
(3)
31 (τ ) cos 3mx sinny

+ C
(3)
13 (τ ) cosmx sin 3ny

] + O
(
ε4) (29)

Ψ̃y(x, y, τ )

= ε
[
D

(1)
11 (τ ) + D̈

(3)
11 (τ )

]
sinmx cosny

+ ε2D
(2)
02 (τ ) sin 2ny

+ ε3[D(3)
11 (τ ) sinmx cosny

+ D
(3)
31 (τ ) sin 3mx cosny

+ D
(3)
13 (τ ) sinmx cos 3ny

] + O
(
ε4) (30)

F̃ (x, y, τ )

= −B
(0)
00 y2/2 − b

(0)
00 x2/2

+ ε
[
B

(1)
11 (τ ) + B̈

(3)
11 (τ )

]
sinmx sinny

+ ε2(−B
(2)
00 y2/2 − b

(2)
00 x2/2 + B

(2)
02 (τ ) cos 2ny

+ B
(2)
20 (τ ) cos 2mx

)
+ ε3[B(3)

11 (τ ) sinmx sinny

+ B
(3)
31 (τ ) sin 3mx sinny

+ B
(3)
13 (τ ) sinmx sin 3ny

] + O
(
ε4) (31)

λq(x, y, τ )

= ε
[
g41A

(1)
11 (τ ) + g40Ä

(1)
11 (τ )

]
sinmx sinny
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+ (
εA

(1)
11 (τ )

)2
(g20 cos 2mx + g02 cos 2ny)

+ O
(
ε4) (32)

In Eq. (32), (A(1)
11 ε) is taken as the second pertur-

bation parameter relating to the dimensionless ampli-
tude Wm. From Eq. (28), taking (x, y) = (π/2m,π/2n)

yields

A
(1)
11 ε = W̃m − Θ1W̃

3
m + · · · (33)

Substituting Eq. (33) into Eq. (32), and applying
Galerkin procedure, one has

g40
d2(W̃m)

dτ 2
+ g41(W̃m) + g42(W̃m)2 + g43(W̃m)3

= λ̄q(τ ) (34)

in which coefficients g40 to g43 are all functions of Z

and T , and

λ̄q(τ ) = 4

π2

∫ π

0

∫ π

0
λq(x, y, τ ) sinmx sinny dx dy

(35)

All symbols used in Eqs. (28)–(34) are described
in detail in Appendix. If zero-valued initial condi-

tions prevail, i.e., W̃m(0) = ˙̃
Wm(0) = 0, Eq. (34) may

then be solved by using the Runge–Kutta iteration
scheme. Substituting these solved solutions back into
Eqs. (28)–(31), we obtain both displacements and
stress function of the plate.

5 Numerical results and discussion

Numerical results are presented in this section for
single-layer CNTRC plates and sandwich plates with
CNTRC face sheets resting on elastic foundations
in thermal environments. We first need to determine
the effective material properties of CNTRCs. Poly
(methyl methacrylate), referred to as PMMA, is se-
lected for the matrix, and the material properties of
which are assumed to be ρm = 1150 kg/m3, νm =
0.34, αm = 45(1 + 0.0005	T ) × 10−6/K and Em =
(3.52 − 0.0034T ) GPa, in which T = T0 + 	T and
T0 = 300 K (room temperature). In such a way, αm =
45.0 × 10−6/K and Em = 2.5 GPa at T = 300 K.
The (10,10) SWCNTs are selected as reinforcements.

Han and Elliott [6] chose ECN
11 = 600 GPa, ECN

22 =
10 GPa, GCN

12 = 17.2 GPa and νCN
12 = 0.19 for (10,10)

SWCNTs. Such a low value of Young’s modulus is
due to the fact that the effective thickness of CNTs
is assumed to be 0.34 nm or more. However, a re-
cent report [41] suggested that the effective thickness
of SWCNTs should be smaller than 0.142 nm. There-
fore, the material properties and effective thickness of
SWCNTs need to be properly chosen either by ex-
periments or molecular dynamics (MD) simulations.
Typical results are listed in Table 1 [10]. These re-
sults confirm that the material properties of CNTs are
size-dependent and temperature-dependent. It is noted
that the effective wall thickness obtained for (10,10)-
tube is 0.067 nm, which satisfies the Vodenitcharova–
Zhang criterion [41], and the wide used value of
0.34 nm for tube wall thickness is thoroughly inap-
propriate for SWCNTs.

The key issue for successful application of the ex-
tended rule of mixture to CNTRCs is to determine
the CNT efficiency parameter ηj (j = 1,2,3) prop-
erly. For short fiber composites η1 is usually taken to
be 0.2 [42]. However, there are no experiments con-
ducted to determine the value of ηj for CNTRCs.
In the present study, we estimated the estimation of
CNT efficiency parameters η1, η2, and η3 by match-
ing the Young’s moduli E11 and E22 and shear mod-
ulus G12 of CNTRCs predicted from the extended
rule of mixture to those from the MD simulations
given by Han and Elliott [6] and Griebel and Hamaek-
ers [4], as previously reported in [10]. For exam-
ple, η1 = 0.137, η2 = 1.022 and η3 = 0.715 for the
case of V ∗

CN = 0.12, and η1 = 0.142, η2 = 1.626 and
η3 = 1.138 for the case of V ∗

CN = 0.17, and η1 =
0.141, η2 = 1.585 and η3 = 1.109 for the case of
V ∗

CN = 0.28. These values are used in all the following
examples, in which we assume that G13 = G12 and
G23 = 1.2G12 [5].

5.1 Comparison studies

To ensure the accuracy and effectiveness of the present
method, three test examples were re-solved for forced
vibrations of single-layer isotropic plates and sand-
wich plates with isotropic or composite face sheets.

Firstly, the curves of central deflection and moment
as functions of time for a simply supported isotropic
square plate (a/h = 10, ν = 0.25) subjected to a sud-
denly applied uniform load resting on a Pasternak
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Table 1 Temperature-dependent material properties for (10,10) SWCNT (tube length = 9.26 nm, tube mean radius = 0.68 nm,
tube thickness = 0.067 nm, νCN

12 = 0.175)

Temperature (K) ECN
11 (TPa) ECN

22 (TPa) GCN
12 (TPa) αCN

11 (×10−6/K) αCN
22 (×10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682

500 5.5308 6.9348 1.9643 4.5361 5.0189

700 5.4744 6.8641 1.9644 4.6677 4.8943

Fig. 2 Comparisons of dynamic response of an isotropic plate
resting on a Pasternak foundation subjected to a suddenly ap-
plied uniform load: (a) Center deflection; (b) Center bending
moment

foundation are plotted and compared in Fig. 2 with
the method of fundamental solution (MFS) results of
Wen [43]. In Fig. 2, the dimensionless time is de-
fined by (t/a)[E/2(1+ν)ρ]1/2, and the dimensionless
foundation stiffnesses are defined by KW = K̄1a

4/D

and KS = K̄2a
2/D.

Fig. 3 Comparisons of dynamic response for a sandwich plate
with isotropic face sheets subjected to a suddenly applied uni-
form load

Secondly, the central deflection versus time curves
for a sandwich square plate with isotropic face sheets
subjected to a suddenly applied uniform load are plot-
ted and compared in Fig. 3 with the FEM results of
Ramachandra and Meyer-Piening [44] using their ma-
terial properties, i.e., E = 71.238 GPa, ν = 0.33 for
the aluminum face sheet, and Ec = 60 MPa, Gc =
21 MPa, νc = 0.20 for the PVC foam core. The mass
density of the plate is taken to be ρ = 308.27 kg/m3.
The sandwich plate is made up of 0.5 mm thick alu-
minum face sheets and 13 mm thick PVC foam core,
and a = b = 500 mm. The suddenly applied uniform
load has q0 = 40 Pa.

Finally, the curves of central deflection for a square
sandwich plate with composite face sheets subjected
to a suddenly applied transverse sinusoidal load are
plotted and compared in Fig. 4 with the FEM re-
sults of Nayak et al. [45]. The sandwich plate has
a PVC foam core layer and two face sheets made
of 5 plies of graphite-epoxy composites, referred to
as (0/90/0/90/0/core/0/90/0/90/0). The comput-
ing data adopted are: a = b = 1 m, h = 0.01 m and
face thickness hF = 0.00025 m; E11 = 128.0 GPa,
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Fig. 4 Comparisons of dynamic response for a
(0/90/0/90/0/core/0/90/0/90/0) sandwich plate subjected to
a suddenly applied transverse sinusoidal load

E22 = 11.0 GPa, ν12 = 0.25,G12 = G13 = 4.48 GPa,
G23 = 1.53 GPa, ρ = 1500 kg/m3 for the face
sheets, and Ec = 0.10363 GPa, νc = 0.32,Gcore =
0.050 GPa, ρc = 130 kg/m3 for the core layer.
The transverse sinusoidal load is assumed to be
q0 sin(πX/a) sin(πY/b) where q0 = 1 Pa.

These three comparisons show that the present re-
sults agree well with existing results. Note that in these
examples, the material properties are assumed to be in-
dependent of temperature.

5.2 Dynamic response of single-layer CNTRC plates

Parametric studies are first carried out to examine
the nonlinear dynamic response of single-layer CN-
TRC plates with or without elastic foundations in ther-
mal environments. Three types of FG-CNTRC plates,
i.e., FG-V, FG-� and FG-X, are considered. An UD-
CNTRC plate with the same thickness is also consid-
ered as a comparator. The plate geometric parameter
are taken to be a/b = 1, b/h = 10, h = 2 mm. The de-
flected mode is taken to be (m,n) = (1,1). The time
step for Runge–Kutta iteration method is 	τ = 0.2 µs.
The dynamic load is assumed to be a suddenly applied
uniform load with q0 = 2 MPa. The boundary condi-
tion is assumed to be immovable (case 2) except for
Figs. 9 and 14.

Table 2 presents the nonlinear to linear frequency
ratios ωNL/ωL for single layer CNTRC square plates
resting on elastic foundations at T = 300 and 500 K.
The dimensionless frequency is defined by Ω̃ =
Ω(a2/h)

√
ρ0/E0. The CNT volume fraction is taken

Fig. 5 Effects of CNT reinforcements on the dynamic response
of a single-layer CNTRC plate: (a) Central deflection; (b) Cen-
tral bending moment

to be V ∗
CN = 0.17. As expected, the fundamental fre-

quencies are increased with increase in foundation
stiffness. It can be seen that the fundamental frequen-
cies are reduced, but the nonlinear to linear frequency
ratios are increased with increase in temperature. The
results show that the fundamental frequencies of FG-
X CNTRC plate are higher, but the nonlinear to linear
frequency ratios of the same plate are lower than those
of plates with uniform or unsymmetrical distribution
of CNTs.

Figure 5 presents the dynamic response of three
types of single layer FG-CNTRC plates and compares
with that of the UD-CNTRC plate. The CNT volume
fraction is taken to be V ∗

CN = 0.28. It can be seen that
the FG-CNTRC plate of type X has lowest deflection
and largest bending moment, while the FG-CNTRC
plate of type V has largest deflection and lowest bend-
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Table 2 Nonlinear to
linear frequency ratios
ωNL/ωL for CNTRC square
plates resting on elastic
foundations in thermal
environments (a/b = 1.0,
b/h = 10, h = 2 mm,
V ∗

CN = 0.17)

(k1, k2) Temperature Ω̃ W̄max/h

0.2 0.4 0.6 0.8 1.0

(0,0) 300 K UD 15.3875 1.0625 1.2311 1.4698 1.7501 2.0550

FG-V 14.0952 1.0741 1.2706 1.5435 1.8594 2.2000

FG-� 16.0922 1.0569 1.2118 1.4332 1.6952 1.9819

FG-X 20.3576 1.0359 1.1367 1.2874 1.4727 1.6811

500 K UD 13.9017 1.0734 1.2684 1.5395 1.8536 2.1922

FG-V 12.7965 1.0861 1.3109 1.6175 1.9681 2.3431

FG-� 14.8434 1.0642 1.2370 1.4808 1.7665 2.0769

FG-X 18.5859 1.0413 1.1564 1.3263 1.5328 1.7631

(100,0) 300 K UD 18.2319 1.0449 1.1693 1.3515 1.5714 1.8155

FG-V 17.1531 1.0506 1.1895 1.3905 1.6308 1.8955

FG-� 18.8130 1.0420 1.1588 1.3309 1.5398 1.7726

FG-X 22.5658 1.0293 1.1126 1.2390 1.3969 1.5768

500 K UD 16.9978 1.0497 1.1863 1.3844 1.6215 1.8830

FG-V 16.0450 1.0556 1.2070 1.4241 1.6816 1.9637

FG-� 16.9833 1.0494 1.1853 1.3825 1.6186 1.8791

FG-X 20.9793 1.0326 1.1246 1.2632 1.4349 1.6293

(100,10) 300 K UD 22.8289 1.0289 1.1110 1.2358 1.3918 1.5698

FG-V 21.9738 1.0311 1.1193 1.2525 1.4182 1.6063

FG-� 23.2678 1.0276 1.1064 1.2265 1.3771 1.5494

FG-X 26.3877 1.0215 1.0835 1.1795 1.3022 1.4446

500 K UD 21.8578 1.0303 1.1164 1.2467 1.4090 1.5936

FG-V 21.2062 1.0322 1.1232 1.2604 1.4305 1.6233

FG-� 21.8250 1.0302 1.1159 1.2457 1.4075 1.5915

FG-X 25.0410 1.0230 1.0890 1.1909 1.3204 1.4702

ing moment among the four. Hence, in the follow-
ing examples only UD-CNTRC plate and FG-CNTRC
plate of Type X are considered.

Figure 6 shows the effect of CNT volume fraction
V ∗

CN (= 0.12,0.17 and 0.28) on the dynamic response
of a single layer FG-CNTRC plate. It can be seen that
the central deflections are decreased with increase in
CNT volume fraction. In contrast, the bending mo-
ments are weakly increased when the CNT volume
fraction rises.

Figure 7 shows the effect of temperature changes
(T = 300, 500, and 700 K) on the dynamic response of
a single layer FG-CNTRC plate (V ∗

CN = 0.12). It can
be seen that the curve of central deflection versus time
becomes higher, but the curve of bending moment ver-
sus time becomes lower when the temperature rises.

Figure 8 shows the effect of foundation stiffness on
the dynamic response of a single layer FG-CNTRC
plate (V ∗

CN = 0.12) resting on elastic foundations. Two

foundation models are considered. The stiffnesses are
(k1, k2) = (100,10) for the Pasternak elastic founda-
tion, (k1, k2) = (100,0) for the Winkler elastic foun-
dation and (k1, k2) = (0,0) for the plate without any
elastic foundation. As expected, both central deflec-
tions and bending moments are reduced when the
foundation becomes stiffer.

Figure 9 presents the dynamic response of a single
layer FG-CNTRC plate with V ∗

CN = 0.17 under ini-
tial uniaxial in-plane loads. In this example, the in-
plane boundary condition is assumed to be movable
(case 1). The initial uniaxial edge loads are taken to be
P/Pcr = −0.5,0.0, and 0.5, in which Pcr is the critical
buckling load for the UD-CNTRC plate under uniax-
ial compression in the X direction. It can be seen that
the initial in-plane compressive load increases both de-
flection and bending moment of the plate. On the other
hand, the initial in-plane tension load softens both de-
flection and bending moment curves.
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Fig. 6 Effect of CNT volume fraction on the dynamic response
of a single-layer CNTRC plate: (a) Central deflection; (b) Cen-
tral bending moment

5.3 Dynamic response of sandwich plates with
CNTRC face sheets

For all cases below, the plate geometric parameter
a/b = 1, b/h = 10, the thickness of each CNTRC
face sheet is identical and the plate is mid-plane sym-
metric, and the thickness of each CNTRC face sheet
hF = 1 mm whereas the thickness of the homoge-
neous substrate is taken to be hH = 4,6, and 8 mm, so
that the core-to-face sheet thickness ratio hH /hF = 4,
6, and 8, respectively. Titanium alloy, referred to as
Ti-6Al-4V is selected for the homogeneous core layer,
and the material properties of which are assumed to
be nonlinear function of temperature [46], i.e., αH =
7.5788 × (1 + 6.638 × 10−4T − 3.147 × 10−6T 2) ×
10−6 K and EH = 122.56×(1−4.586×10−4T ) GPa.

Fig. 7 Effect of temperature changes on the dynamic re-
sponse of a single-layer CNTRC plate in thermal environments:
(a) Central deflection; (b) Central bending moment

Poisson’s ratio is assumed to be a constant, and νH =
0.29. ρH = 4429 kg/m3.

Table 3 presents the nonlinear to linear frequency
ratios ωNL/ωL for UD and FG sandwich plates with
CNTRC face sheets resting on elastic foundations at
T = 300 and 500 K. The CNT volume fraction is taken
to be V ∗

CN = 0.17. The core-to-face sheet thickness ra-
tios are taken to be hH /hF = 8,6 and 4. It can be seen
that the fundamental frequencies are increased, but the
nonlinear to linear frequency ratios are decreased with
increase in hH /hF . The results show that the funda-
mental frequencies of the sandwich plate with FG-
CNTRC face sheets are higher, but the nonlinear to
linear frequency ratios of the same plate are lower than
those of the plates with UD-CNTRC face sheets.

Figure 10 shows the effect of the core-to-face sheet
thickness ratio hH /hF (= 8,6, and 4) on the dynamic
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Table 3 Nonlinear to
linear frequency ratios
ωNL/ωL for sandwich
plates with CNTRC face
sheets resting on elastic
foundations (a/b = 1.0,
b/h = 10, V ∗

CN = 0.17)

(k1, k2) Temperature Ω̃ W̄max/h

0.2 0.4 0.6 0.8 1.0

h = 10 mm, hH /hf = 8

(0,0) 300 K UD 4.5170 1.0355 1.1353 1.2845 1.4682 1.6749

FG 5.1936 1.0269 1.1037 1.2210 1.3684 1.5373

500 K UD 4.2701 1.0358 1.1365 1.2869 1.4719 1.6800

FG 4.9490 1.0267 1.1030 1.2197 1.3663 1.5344

(100,0) 300 K UD 11.6829 1.0054 1.0214 1.0475 1.0829 1.1269

FG 11.9518 1.0051 1.0204 1.0453 1.0792 1.1213

500 K UD 11.5896 1.0049 1.0196 1.0436 1.0763 1.1169

FG 11.8476 1.0047 1.0187 1.0417 1.0730 1.1119

(100,10) 300 K UD 19.1215 1.0020 1.0080 1.0180 1.0317 1.0492

FG 19.2760 1.0020 1.0079 1.0177 1.0312 1.0483

500 K UD 19.0647 1.0018 1.0073 1.0163 1.0288 1.0447

FG 19.2117 1.0018 1.0072 1.0160 1.0284 1.0440

h = 8 mm, hH /hf = 6

(0,0) 300 K UD 4.2061 1.0416 1.1575 1.3283 1.5359 1.7674

FG 5.0994 1.0284 1.1093 1.2324 1.3865 1.5625

500 K UD 3.9764 1.0421 1.1592 1.3318 1.5412 1.7746

FG 4.8712 1.0282 1.1084 1.2306 1.3836 1.5585

(100,0) 300 K UD 11.7940 1.0054 1.0214 1.0475 1.0830 1.1270

FG 12.1295 1.0051 1.0202 1.0449 1.0784 1.1202

500 K UD 11.7140 1.0049 1.0196 1.0436 1.0763 1.1170

FG 12.0354 1.0047 1.0186 1.0413 1.0723 1.1109

(100,10) 300 K UD 19.4613 1.0020 1.0079 1.0177 1.0313 1.0484

FG 19.6521 1.0019 1.0077 1.0173 1.0306 1.0474

500 K UD 19.4130 1.0018 1.0072 1.0161 1.0284 1.0441

FG 19.5944 1.0018 1.0070 1.0158 1.0279 1.0432

h = 6 mm, hH /hf = 4

(0,0) 300 K UD 3.6924 1.0556 1.2070 1.4241 1.6815 1.9635

FG 4.9944 1.0306 1.1176 1.2490 1.4127 1.5987

500 K UD 3.4915 1.0564 1.2101 1.4299 1.6903 1.9753

FG 4.7916 1.0303 1.1161 1.2462 1.4082 1.5925

(100,0) 300 K UD 12.0430 1.0054 1.0212 1.0472 1.0825 1.1262

FG 12.4870 1.0050 1.0197 1.0438 1.0767 1.1175

500 K UD 11.9830 1.0049 1.0195 1.0434 1.0759 1.1164

FG 12.4074 1.0046 1.0182 1.0404 1.0708 1.1086

(100,10) 300 K UD 20.1100 1.0019 1.0077 1.0172 1.0303 1.0470

FG 20.3585 1.0019 1.0075 1.0167 1.0295 1.0458

500 K UD 20.0741 1.0018 1.0070 1.0157 1.0277 1.0430

FG 20.3100 1.0017 1.0068 1.0153 1.0270 1.0419
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Fig. 8 Effect of foundation stiffness on the dynamic response
of a single-layer CNTRC plate resting on elastic foundations:
(a) Central deflection; (b) Central bending moment

response of sandwich plates with FG-CNTRC face
sheets subjected to a suddenly applied uniform load
at T = 300 K. The CNT volume fraction of CNTRC
face sheets is taken to be V ∗

CN = 0.17. It can be seen
that the sandwich plate with FG-CNTRC face sheets
has higher deflection along with higher bending mo-
ment when it has higher core-to-face sheet thickness
ratio.

Figures 11, 12, 13, 14 are dynamic responses of the
sandwich plates with FG-CNTRC face sheets analo-
gous to the dynamic results of Figs. 6, 7, 8, 9, which
are for the single-layer CNTRC plates. To compare
Figs. 11 and 6, it can be seen that now the effect of
CNT volume fraction on the curves of bending mo-
ment versus time for the sandwich plate is more pro-
nounced than that for the single layer CNTRC plate.
Also, to compare Figs. 12 and 7, it can be seen that

Fig. 9 Effect of initial uniaxial in-plane loads P/Pcr on the dy-
namic response of a single-layer CNTRC plate: (a) Central de-
flection; (b) Central bending moment

now both deflections and bending moments of sand-
wich plate keep increasing when the temperature rises.
Otherwise, they lead to broadly the same conclusions
as do Figs. 8 and 9.

6 Conclusions

Nonlinear dynamic responses of single-layer CNTRC
plates and sandwich plates with CNTRC face sheets
resting on a Pasternak elastic foundation in ther-
mal environments have been presented. Two cases of
in-plane boundary conditions are considered. Initial
stresses caused by thermal loads or in-plane edge loads
are examined. The parametric studies have been car-
ried out after three comparisons which demonstrated
the accuracy and effectiveness of the present method.
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Fig. 10 Effect of core-to-face sheet thickness ratio on the dy-
namic response of sandwich plate with FG-CNTRC face sheets:
(a) Central deflection; (b) Central bending moment

The results obtained illustrate that the linear function-
ally graded CNT reinforcement has a quantitative ef-
fect on the nonlinear dynamic responses of CNTRC
plates. The numerical results show that the CNT vol-
ume fraction, the foundation stiffness and initial stress
have a significant effect on the dynamic response of
both single-layer CNTRC plate and sandwich plate
with CNTRC face sheets. The temperature changes
have a significant effect on the deflections of the plate,
whereas this effect is less pronounced on the bending
moments of the same plate. They also show that the
core-to-face sheet thickness ratio has a significant ef-
fect on the dynamic response of sandwich plates with
CNTRC face sheets.

Fig. 11 Effect of CNT volume fraction on the dynamic re-
sponse of a sandwich plate with FG-CNTRC face sheets:
(a) Central deflection; (b) Central bending moment

Appendix

In Eqs. (28)–(31)
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Fig. 12 Effect of temperature changes on the dynamic response
of a sandwich plate with FG-CNTRC face sheets in thermal en-
vironments: (a) Central deflection; (b) Central bending moment

B
(1)
11 = γ24

g05

g06
A

(1)
11 (τ )

B
(2)
20 = γ24n

2β2

32m2γ6

[
A

(1)
11 (τ )

]2 + γ24n
2β2

16m2γ6
A∗

11A
(1)
11 (τ )

B
(2)
02 = γ24m

2

32n2β2γ7

[
A

(1)
11 (τ )

]2 + γ24m
2

16n2β2γ7
A∗

11A
(1)
11 (τ )

B
(3)
11 = γ24

g05

g06
A

(3)
11 , B

(3)
13 = γ24

g135

g136
A

(3)
13

B
(3)
31 = γ24

g315

g316
A

(3)
31 , B̈

(3)
11 = −γ24

g∗
05

g06
Ä
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Fig. 13 Effect of foundation stiffness on the dynamic response
of a sandwich plate with FG-CNTRC face sheets resting on elas-
tic foundations: (a) Central deflection; (b) Central bending mo-
ment
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Fig. 14 Effect of initial uniaxial in-plane loads P/Pcr on the
dynamic response of a sandwich plate with FG-CNTRC face
sheets: (a) Central deflection; (b) Central bending moment

D
(3)
11 = nβ

(
γ14γ24

g01g05

g00g06
− g03

g00

)
A

(3)
11

D
(3)
13 = nβ

(
γ14γ24

g131g135

g130g136
− g133

g130

)
A

(3)
13

D
(3)
31 = nβ

(
γ14γ24

g311g315

g310g316
− g313

g310

)
A

(3)
31

D̈
(1)
11 = nβ

(
g∗

03

g00
− γ14γ24

g01g
∗
05

g00g06

)
Ä
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In Eqs. (33) and (34)

Θ1 = α311 − α313 − α331, g43 = −g41Θ1
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for initially thermal stressed plates (immovable edge
condition)

g41 = Q11 + g42Φ(T )
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+ 2
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24n
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γ 2
24 − γ 2

5

]
(38)

and for initially compressed stressed plates (movable
edge condition)

g41 = Q11

[
1 − P

Pcr

(m2 + ηn2β2)

m2

]

α311 = −γ14γ24

16Q11

[
m4

γ7
+ n4β4

γ6

] (39)

in which Pcr is the critical buckling load for the UD
plate (or sandwich plate) under uniaxial compression
in the X direction, and η is the load proportion ratio,
defined by σy = ησx . In the above equations (with oth-
ers are defined as in [12]).

Q11 = g08 + γ14γ24
g05g07

g06

+ [
K1 + K2

(
m2 + n2β2)]

Q13 = g138 + γ14γ24
g135g137

g136

+ [
K1 + K2

(
m2 + 9n2β2)]

Q31 = g318 + γ14γ24
g315g317

g316

+ [
K1 + K2

(
9m2 + n2β2)]

α313 = γ14γ24n
4β4

16Q13γ6
, α331 = γ14γ24m

4

16Q31γ7

(40)



Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations

References

1. Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.:
Aligned carbon nanotube arrays formed by cutting a poly-
mer resin—nanotube composite. Science 265, 1212–1214
(1994)

2. Thostenson, E.T., Chou, T.W.: Aligned multi-walled carbon
nanotube-reinforced composites: processing and mechani-
cal characterization. J. Phys. D, Appl. Phys. 35, L77 (2002)

3. Sun, C.H., Li, F., Cheng, H.M., Lu, G.Q.: Axial Young’s
modulus prediction of single-walled carbon nanotube ar-
rays with diameters from nanometer to meter scales. Appl.
Phys. Lett. 87, 193101 (2005)

4. Griebel, M., Hamaekers, J.: Molecular dynamics simula-
tions of the elastic moduli of polymer–carbon nanotube
composites. Comput. Methods Appl. Mech. Eng. 193,
1773–1788 (2004)

5. Song, Y.S., Youn, J.R.: Modeling of effective elastic proper-
ties for polymer based carbon nanotube composites. Poly-
mer 47, 1741–1748 (2006)

6. Han, Y., Elliott, J.: Molecular dynamics simulations of the
elastic properties of polymer/carbon nanotube composites.
Comput. Mater. Sci. 39, 315–323 (2007)

7. Bonnet, P., Sireude, D., Garnier, B., Chauvet, O.: Thermal
properties and percolation in carbon nanotube–polymer
composites. J. Appl. Phys. 91, 201910 (2007)

8. Meguid, S.A., Sun, Y.: On the tensile and shear strength of
nano-reinforced composite interfaces. Mater. Des. 25, 289–
296 (2004)

9. Shen, H.-S.: Nonlinear bending of functionally graded car-
bon nanotube-reinforced composite plates in thermal envi-
ronments. Compos. Struct. 91, 9–19 (2009)

10. Shen, H.-S., Zhang, C.-L.: Thermal buckling and post-
buckling behavior of functionally graded carbon nanotube-
reinforced composite plates. Mater. Des. 31, 3403–3411
(2010)

11. Shen, H.-S., Zhu, Z.H.: Buckling and postbuckling behav-
ior of functionally graded nanotube-reinforced composite
plates in thermal environments. Comput. Mater. Continua
18, 155–182 (2010)

12. Wang, Z.-X., Shen, H.-S.: Nonlinear vibration of nanotube-
reinforced composite plates in thermal environments. Com-
put. Mater. Sci. 50, 2319–2330 (2011)

13. Shen, H.-S.: Postbuckling of nanotube-reinforced com-
posite cylindrical shells in thermal environments, part I:
axially-loaded shells. Compos. Struct. 93, 2096–2108
(2011)

14. Shen, H.-S.: Postbuckling of nanotube-reinforced com-
posite cylindrical shells in thermal environments, part II:
pressure-loaded shells. Compos. Struct. 93, 2496–2503
(2011)

15. Shen, H.-S.: Thermal buckling and postbuckling behavior
of functionally graded carbon nanotube-reinforced com-
posite cylindrical shells. Composites, Part B, Eng. 43,
1030–1038 (2012)

16. Shen, H.-S., Xiang, Y.: Nonlinear vibration of nanotube-
reinforced composite cylindrical shells in thermal environ-
ments. Comput. Methods Appl. Mech. Eng. 213–216, 196–
205 (2012)

17. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration
analyses of carbon nanotube-reinforced composite plates

using finite element method with first order shear deforma-
tion plate theory. Compos. Struct. 94, 1450–1460 (2012)

18. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V., Taher-
pour, A.: Mechanical buckling of nanocomposite rectangu-
lar plate reinforced by aligned and straight single-walled
carbon nanotubes. Composites, Part B, Eng. 43, 2031–2040
(2012)

19. Aragh, B.S., Hedayati, H.: Eshelby–Mori–Tanaka approach
for vibrational behavior of continuously graded carbon
nanotube-reinforced cylindrical panels. Composites, Part
B, Eng. 43, 1943–1954 (2012)

20. Ke, L.-L., Yang, J., Kitipornchai, S.: Nonlinear free vi-
bration of functionally graded carbon nanotube-reinforced
composite beams. Compos. Struct. 92, 676–683 (2010)

21. Yas, M.H., Heshmati, M.: Dynamic analysis of function-
ally graded nanocomposite beams reinforced by randomly
oriented carbon nanotube under the action of moving load.
Appl. Math. Model. 36, 1371–1394 (2012)

22. Kwon, H., Bradbury, C.R., Leparoux, M.: Fabrication of
functionally graded carbon nanotube-reinforced aluminum
matrix composite. Adv. Eng. Mater. 13, 325–329 (2011)

23. Wang, Z.-X., Shen, H.-S.: Nonlinear vibration and bend-
ing of sandwich plates with nanotube-reinforced composite
face sheets. Composites, Part B, Eng. 43, 411–421 (2012)

24. Shen, H.-S., Zhu, Z.H.: Postbuckling of sandwich plates
with nanotube-reinforced composite face sheets resting on
elastic foundations. Eur. J. Mech. A, Solids 35, 10–21
(2012)

25. Reddy, J.N.: A refined nonlinear theory of plates with trans-
verse shear deformation. Int. J. Solids Struct. 20, 881–896
(1984)

26. Shen, H.-S.: Kármán-type equations for a higher-order
shear deformation plate theory and its use in the thermal
postbuckling analysis. Appl. Math. Mech. 18, 1137–1152
(1997)

27. Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis
of the effective elastic properties of carbon nanotube rein-
forced composites. Mech. Mater. 38, 884–907 (2006)

28. Li, X., Gao, H., Scrivens, W.A., Fei, D., Xu, X., Sutton,
M.A., Reynolds, A.P., Myrick, M.L.: Reinforcing mecha-
nisms of single-walled carbon nanotube-reinforced poly-
mer composites. J. Nanosci. Nanotechnol. 7, 2309–2317
(2007)

29. Esawi, A.M.K., Farag, M.M.: Carbon nanotube reinforced
composites: potential and current challenges. Mater. Des.
28, 2394–2401 (2007)

30. Anumandla, V., Gibson, R.F.: A comprehensive closed
form micromechanics model for estimating the elastic mod-
ulus of nanotube-reinforced composites. Composites, Part
A, Appl. Sci. Manuf. 37, 2178–2185 (2006)

31. Librescu, L., Oh, S.-Y., Song, O.: Thin-walled beams made
of functionally graded materials and operating in a high
temperature environment: vibration and stability. J. Therm.
Stresses 28, 649–712 (2005)

32. Shen, H.-S., Wang, Z.-X.: Assessment of Voigt and Mori–
Tanaka models for vibration analysis of functionally graded
plates. Compos. Struct. 94, 2197–2208 (2012)

33. Shen, H.-S.: Nonlinear vibration of shear deformable FGM
cylindrical shells surrounded by an elastic medium. Com-
pos. Struct. 94, 1144–1154 (2012)



Z.-X. Wang, H.-S. Shen

34. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load
transfer and deformation mechanisms in carbon nanotube–
polystyrene composites. Appl. Phys. Lett. 76, 2868–2870
(2000)

35. Yang, J., Shen, H.-S.: Dynamic response of initially
stressed functionally graded rectangular thin plates. Com-
pos. Struct. 54, 497–508 (2001)

36. Yang, J., Shen, H.-S., Zhang, L.: Nonlinear local response
of foam-filled sandwich plates with laminated faces under
combined transverse and in-plane loads. Compos. Struct.
52, 137–148 (2001)

37. Schwaar, M., Gmür, T., Frieden, J.: Modal numerical–
experimental identification method for characterising the
elastic and damping properties in sandwich structures with
a relatively stiff core. Compos. Struct. 94, 2227–2236
(2012)

38. Shen, H.-S., Yang, J., Zhang, L.: Free and forced vibration
of Reissner–Mindlin plates with free edges resting on elas-
tic foundations. J. Sound Vib. 244, 299–320 (2001)

39. Yang, J., Zhang, L.: Nonlinear analysis of imperfect lam-
inated thin plates under transverse and in-plane loads and
resting on an elastic foundation by a semianalytical ap-
proach. Thin-Walled Struct. 38, 195–227 (2000)

40. Shen, H.-S.: Nonlinear thermal bending response of FGM
plates due to heat conduction. Composites, Part B, Eng. 38,
201–215 (2007)

41. Wang, C.Y., Zhang, L.C.: A critical assessment of the elas-
tic properties and effective wall thickness of single-walled
carbon nanotubes. Nanotechnology 19, 075705 (2008)

42. Fukuda, H., Kawata, K.: On Young’s modulus of short fibre
composites. Fibre Sci. Technol. 7, 207–222 (1974)

43. Wen, P.H.: The fundamental solution of Mindlin plates rest-
ing on an elastic foundation in the Laplace domain and its
applications. Int. J. Solids Struct. 45, 1032–1050 (2008)

44. Ramachandra, L.S., Meyer-Piening, H.R.: Transient re-
sponse of sandwich plates in contact with water. Comput.
Struct. 60, 677–681 (1996)

45. Nayka, A.K., Shenoi, R.A., Moy, S.S.J.: Dynamic response
of composite sandwich plates subjected to initial stresses.
Composites, Part A, Appl. Sci. Manuf. 37, 1189–1205
(2006)

46. Touloukian, Y.S.: Thermophysical Properties of High Tem-
perature Solid Materials. McMillan, New York (1967)


	Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments
	Abstract
	Introduction
	Material properties of functionally graded CNTRCs
	Nonlinear forced vibration of CNTRC sandwich plates
	Solution procedure
	Numerical results and discussion
	Comparison studies
	Dynamic response of single-layer CNTRC plates
	Dynamic response of sandwich plates with CNTRC face sheets

	Conclusions
	Appendix
	References


