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Abstract A geometrically exact mechanical model
for the overall dynamics of elastic isotropic rotating
blades is proposed. The mechanical formulation is
based on the special Cosserat theory of rods which
includes all geometric terms in the kinematics and in
the balance laws without any restriction on the geom-
etry of deformation besides the enforcement of the lo-
cal rigidity of the blade cross sections. All apparent
forces acting on the blade moving in a rotating frame
are accounted for in exact form. The role of internal
kinematic constraints such as the unshearability of the
slender blades is discussed. The Taylor expansion of
the governing equations obtained via an Updated La-
grangian formulation is then employed to obtain the
linearized perturbed form about the prestressed config-
uration under the centrifugal forces. By applying the
Galerkin approach to the linearized equations of mo-
tion, the linear eigenvalue problem is solved to yield
the frequencies and mode shapes. In particular, the nat-
ural frequencies of unshearable blades including cou-
pling between flapping, lagging, axial and torsional
components are investigated. The angular speeds at
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which internal resonances may arise due to specific
ratios between the frequencies of different modes are
determined thus shedding light onto the overall modal
couplings in rotating beam structures depending on the
angular speed regime. The companion paper (part 2)
discusses the nonlinear modes of vibration away from
internal resonances.
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1 Introduction

The study of the dynamics of rotating beams in a va-
riety of rotating structures such as the blades of heli-
copters and turbines is important for design purposes,
optimization, and control. The investigation into the
dynamic performance and stability of these structures
is an essential component of the design process, es-
pecially when dealing with the design of control and
condition monitoring systems.

The majority of previous studies on rotating blades
are based on Euler–Bernoulli beam models for which
the geometric nonlinearities are described by the von
Karman strain–displacement relationships thereby ne-
glecting shear deformations and often assuming lin-
earized expressions for the elastic curvatures, while
a few authors have dealt with more refined nonlinear
models of blades.
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The research on modeling of rotating blades has
been very active in the last three decades and it is dif-
ficult to do justice to all work on the topic. A selection
of the most significant work is given next while good
literature reviews on modeling of composite blades
can be found in [1, 2]. Hodges and Dowell [3] de-
rived the equations of motion for a rotating asym-
metric, long, straight, slender, homogeneous, isotropic
beam with a variable pretwist angle and a small pre-
cone angle, undergoing moderate displacements using
Hamilton’s principle and the Newtonian method. The
ordering scheme was applied according to which the
squares of the bending rotations, the torsional defor-
mation, and the chord-to-radius and the thickness-to-
radius ratios are taken to be negligible with respect to
unity. The strain–displacement relationships were de-
veloped from an exact transformation between the de-
formed and undeformed coordinate systems.

Stafford and Giurgiutiu [4] applied a semi-anal-
ytical method to study linear free vibrations of a rotat-
ing Timoshenko beam. They used the Frobenius power
series method for finding the natural frequencies of
a symmetric isotropic blade with a constant rotation
speed by ignoring the Coriolis forces. They also in-
vestigated the effects of added mass on the flapping
and lagging natural frequencies. Torsional modes ef-
fects were later accounted for in [5]. The formulation
featured the warping effects, based on Saint Venant’s
theory of uniform torsion, and the Coriolis effects for
pre-twisted uniform and slightly tapered symmetric
isotropic blades. The Coriolis effects were ignored in
flapping, lagging and torsional motions.

Wright et al. [6] implemented the Frobenius method
to study linear free vibration features such as the flap-
ping natural frequencies and mode shapes of a rotating
Euler–Bernoulli beam.

Borri and Mantegazza [7] presented the first ge-
ometrically exact equations of motion for rotating
blades. In the same years, Crespo da Silva and
Hodges [8] used Hamilton’s principle to derive the
equations of motion of a general rotating beam with
a precone angle and a variable pitch angle, by con-
sidering the effects of higher-order nonlinearities and
aerodynamic forces.

A nonlinear formulation for rotating composite
beams was developed by Hodges [9]. He derived the
nonlinear intrinsic formulation for the dynamics of ro-
tating pre-curved and twisted anisotropic beams by
considering the warping displacements and account-
ing for the Rodrigues parameters. A mixed approach,

based on Newtonian and variational approaches, de-
livered the equations of motion.

Bauchau and Kang [10] presented a multibody for-
mulation for nonlinear structural dynamic analysis of
helicopter blades based on the finite element method
and consideration of the Rodrigues parameters. Their
model was capable to cover the rigid-body motion as
well as elastic motions of rotating multi-component
structures. They found excellent correlation between
the multibody formulation and analytical solutions for
simple rigid-body problems.

Hodges [11] highlighted some special aspects
which must be considered in the linear dynamic mod-
eling of rotating Timoshenko beams especially in the
derivation of the boundary conditions and the impor-
tant centrifugal force effects on the linear eigenfunc-
tions. He also stated that the axial instability never
occurs for rotating outward beams when they are not
subject to external forces.

Lin and Hsiao [12] examined linear vibrations of
a rotating Timoshenko beam by means of a method
which resorts to the power series solution. They
showed that the effects of Coriolis forces on the nat-
ural frequencies of the rotating Timoshenko beam are
negligible when the beam is linearly elastic and the
steady-state axial strain is small.

Hodges [13] formulated exact nonlinear equations
of motion for initially curved and twisted anisotropic
beams. By implantation of the Kirchhoff analogy, he
showed that a time-discretization scheme for the non-
linear dynamics of rigid bodies can be applied in the
same manner in space for the nonlinear equilibrium
study of beams.

Ozgumus and Kaya [14] studied free vibrations of
a rotating, double tapered Timoshenko beam featuring
coupling between flapping and torsional vibrations.
They used the differential transform method to solve
the governing differential equations of motion. They
studied the effects of some parameters on the natu-
ral frequencies, among which, the angular speed, the
hub radius, the breadth-to-taper ratio, the height-to-
taper ratio, the flapping-torsional coupling, rotary in-
ertia, and shear deformation.

Avramov et al. [15] derived the equations of motion
for a rotating slender cantilever beam with arbitrary
cross section using Hamilton’s principle. They consid-
ered cross sections having the shear center different
from the mass center. They investigated the interac-
tion between flexural and torsional vibrations within
the linear and nonlinear models.
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Lee et al. [16] investigated the divergence instabil-
ity and vibrations of a rotating Timoshenko beam with
precone and pitch angles. They found that increasing
the precone angle results into decreasing the effects of
the axial centrifugal force and the pitch angle on the
natural frequencies. Moreover, if the precone angle is
large enough, the divergence instability occurs.

Recently, Valverde and Garcia-Vallejo [17] studied
the stability of a rotating beam including the effects of
Coriolis forces by using the absolute nodal coordinate
formulation (ANCF) in comparison with a fully ge-
ometrically exact nonlinear formulation based on the
Cosserat theory of rods. They investigated the effects
of the numbers of elements within the ANCF model
on the stability analysis.

Arvin and Bakhtiari-Nejad [18] applied the method
of multiple scales (MMS) to the discretized equations
of motion obtained via Hamilton’s principle to con-
struct the Nonlinear Normal Modes (NNMs) with or
without internal resonances. They investigated the sta-
bility and bifurcations of the NNMs in the three-to-one
and two-to-one internal resonance cases, respectively,
between two flapping modes and between one flapping
mode and one axial mode.

In this paper, the equations of motion for linearly
elastic, isotropic rotating beams with arbitrary cross
sections are obtained via a geometrically exact ap-
proach which accounts for all geometric terms. The
major differences with respect to the equations of mo-
tion proposed in the literature are related to the dif-
ferent parametrization of finite rotations and different
choices for the generalized nonlinear strain parame-
ters. Moreover, the present geometrically exact model-
ing has been obtained directly from three-dimensional
nonlinear elasticity to justify rationally the adopted
generalized nonlinear strains. The material is assumed
isotropic and the blades, due to their slenderness, are
enforced to be unshearable by the internal unshearabil-
ity kinematic constraint. The rigidity of the cross sec-
tions neglects cross-sectional displacements (which
are scaled by Poisson’s ratio for isotropic materials).
They are not needed to formulate the beam prob-
lem unless one needs to recover the three-dimensional
strain field. The governing equations are expanded in
Taylor series to obtain the linearized perturbed form
about the prestressed configuration under the centrifu-
gal forces. By applying the Galerkin discretization ap-
proach to the equations of motion, a system of or-
dinary differential equations (ODEs) is derived. Lin-
ear free vibrations of unshearable blades featuring

coupling between flapping, lagging, axial, and tor-
sional modes are investigated as the rotation speed
is changed. The results are compared with those of
existing papers. Moreover, finite element computa-
tions of the frequencies and mode shapes are carried
out in COMSOL Multiphysics [19] using the strong
form of the present equations of motion and compared
with those obtained by the Galerkin procedure. Nec-
essary (but not sufficient) conditions for the existence
of 1:1, 2:1 and 3:1 internal resonances are obtained. In
the companion paper (part 2), the method of multiple
scales is employed to construct the backbone curves of
the flapping modes and to investigate how the nonlin-
earity of the flapping modes changes with the angular
speed.

Notation In this paper, Gibbs notation is adopted for
vectors and tensors. Euclidean vectors and vector-
valued functions are denoted by lower-case, italic,
bold-face symbols. The dot product and cross product
of (vectors) u and v are denoted by u · v and u × v,
respectively. On the other hand, the tensor product be-
tween vectors u and v is denoted by uv instead of the
more common u ⊗ v. The value of the second-order
tensor A at vector u is expressed as A · u. The nota-
tion Aᵀ represents the transpose of tensor A. The par-
tial derivative of a function f with respect to the scalar
argument s is denoted by either f s or ∂sf or by f ′.
The operator ∂s is assumed to apply only to the term
immediately following it. Notation like ∂s for a total
derivative (i.e., a derivative of a composite function)
will always be used. The time derivative of a function
v is denoted either by ∂tv or v̇ (according to Newton’s
notation for time derivatives). In some places, there
may a switch in notation, in the above stated sense,
without an explicit warning.

2 Equations of motion

The fully nonlinear equations of motion of rotating
blades are obtained through the classical steps of the
special Cosserat theory of rods. One of the key steps
of the derivation process is associated with the choice
of the various reference frames to be used so as to sim-
plify the kinematic and dynamic descriptions [21]. The
inertial frame is denoted by {O, i1, i2, i3} where i1 is
the unit vector collinear with the axis of the rotor about
which the blade rotates with angular velocity Ω(t) and
the origin O lies on this axis (see Fig. 1).
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Fig. 1 Rotating blade in two configurations: one is the stress-free configuration (dashed lines) while the other is rigidly rotating about
i1 (solid lines). (i1, i2, i3) denotes the inertial frame while (e1, e2(t), e3(t)) is the rotating reference frame

Fig. 2 The blade cross
section and the reference
frames

A body-fixed rotating frame, denoted by {C, e1,

e2(t), e3(t)}, is considered taking {e1, e2(t), e3(t)}
collinear, respectively, with {i1, i2, i3}, at time t = 0.
Unit vector e3 is collinear with a longitudinal base
line of the (stress-free) blade considered rigidly rotat-
ing about i1. Along the base line, the arclength s is
chosen to parametrize the positions of the blade cross
sections. C is the center of mass of the root cross sec-
tion through which the blade is connected to the ro-
tor.

A schematic representation of a generic cross sec-
tion is shown in Fig. 2 where the eccentricity between
the shear center, denoted by CE, and the mass center C

is described by (cE
1 , cE

2 ) along the (e1, e2) directions,
respectively.

The orientation of the (undeformed) cross section
is defined by {a1(s, t),a2(s, t),a3(t)} with (a1, a2)
collinear with the principal inertia axes of the cross
section and a3 = a1 × a2. If e2 is assumed to be
collinear with the chord of the blade cross section in a
convenient initial orientation, the principal inertia axes
(a1, a2) are rotated with respect to (e1, e2) by an an-
gle denoted by φo(s). The cross section is further pre-
twisted by the angle θo(s). For convenience, the prin-
cipal inertia axes are centered in the shear center CE.

The rigidly rotating (stress-free) configuration (see
Fig. 3) can be expressed as Bo = {p̆o(s, t) = rE

o (t) +
ro(s, t) + xo(s, t), xo(s, t) = x1(s)a1(s, t) + x2(s) ×
a2(s, t), s ∈ [s1, s2], t ∈ [0,∞)} where ∂tak(s, t) =
ωo(s, t) × ak(s, t) and ωo(s, t) = Ω(t)e1 is the pre-
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Fig. 3 The rotating blade in various configurations: initially stress-free configuration (dotted lines), rigidly rotating configuration Bo
(dashed lines), prestressed Bo (dashed-dotted lines) and actual configuration B (solid lines)

scribed angular velocity vector. rE
o (t) = rC

o (t) + x̄E(t)

is the position of the elastic center of the root cross
section with respect to O at time t and ro(s, t) =
sa3(t) = se3(t) is the position vector of the shear
center of the cross section at s along the base line.
The position of the mass center with respect to O is
rC

o (t) = d = d2e2(t) + d3e3(t). On the other hand, the
position of a material particle of the cross section at s

with respect to CE is described by xo(s, t).
The prestressed effects induced by the centrifu-

gal forces on the rotating blade cause an intermediate
(equilibrium) configuration (see Fig. 3) described by
Bo = {p̆o(s, t) = rE

o (t)+ro(s, t)+xo(s, t), xo(s, t) =
x1(s)b

o
1(s, t)+x2(s)b

o
2(s, t), s ∈ [s1, s2], t ∈ [0,∞)},

where ro(s, t) is the position vector of the shear cen-
ter of the cross section at s in the prestressed con-
figuration with respect to the root cross section. The
unit vectors {bo

1(s, t),b
o
2(s, t),b

o
3(s, t)} describe the

orientation of the cross section in Bo and are related
to ak(s, t) through the orthogonal tensor Ro(s, t) ac-
cording to bo

k(s, t) = Ro(s, t) · ak(s, t). The curvature
vector is obtained by differentiation of bo

k(s, t) with
respect to s as ∂sb

o
k(s, t) = μo(s, t) × bo

k(s, t). On the
other hand, the strains are obtained as the components
of the stretch vector:

νo(s, t) = ∂sr
o(s, t)

= ηo
1(s, t)b

o
1(s, t) + ηo

2(s, t)b
o
2(s, t)

+ νo(s, t)bo
3(s, t) (1)

where ηo
1, ηo

2 are the shear strains in the bo
1(s, t) and

bo
2(s, t) directions, respectively, and νo is the blade

stretch. The displacement from Bo to Bo can be intro-
duced according to ro(s, t) = ro(s, t) + uo(s, t) with
uo(s, t) = uo

1(s, t)e1 + uo
2(s, t)e2(t) + uo

3(s, t)e3(t).
Finally, the actual configuration is described by

B = {p̆(s, t) = rE
o (t) + r(s, t) + x̄(s, t), x̄(s, t) =

x1(s)b1(s, t) + x2(s)b2(s, t), s ∈ [s1, s2], t ∈ [0,∞)}
where r(s, t) is the actual position vector of the shear
center (see Fig. 3) with respect to the root cross
section, x̄(s, t) = x1b1(s, t) + x2b2(s, t) is the po-
sition of the material point with respect to CE in
the cross section at position s and time t . The unit
vectors {b1(s, t),b2(s, t),b3(s, t)}, with b3(s, t) =
b1(s, t) × b2(s, t), constitute the cross-section-fixed
reference frame introduced to describe the actual
orientation of the cross sections. The unit vectors
of the current configuration are expressed in terms
of the body-fixed unit vectors of the prestressed
configuration by means of the incremental orthog-
onal tensor R(s, t) according to which bk(s, t) =
R(s, t) · bo

k(s, t). Differentiating bk(s, t) with respect
to s yields the total curvature vector μ̆ according to
∂sbk(s, t) = μ̆(s, t) × bk(s, t). The total stretch vector
is obtained as ν̆(s, t) = ∂sr(s, t) = η̆1(s, t)b1(s, t) +
η̆2(s, t)b2(s, t) + ν̆(s, t)b3(s, t) where η̆1, η̆2 are the
total shear strains in the b1(s, t) and b2(s, t) direc-
tions, respectively, while ν̆ is the total stretch. If
u(s, t) = u1(s, t)e1 + u2(s, t)e2(t) + u3(s, t)e3(t) de-
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notes the incremental displacement vector from Bo to
B, then r(s, t) = ro(s, t) + u(s, t).

Time rates of change of linear and angular momen-
tum The statements of the balance of linear and an-
gular momentum require the calculation of the veloci-
ties which involves the calculation of the time rates of
change of the rotating unit vectors. Therefore, differ-
entiation of bo

k(s, t) and bk(s, t) with respect to time
yields ∂tb

o
k(s, t) = ωo(s, t) × bo

k(s, t) and ∂tbk(s, t) =
ω̆(s, t) × bk(s, t), respectively.

The velocity and acceleration of material points of
the cross section in the prestressed configuration can
be expressed as

∂t p̆
o(s, t)

= ∂tu
oL(s, t) + ω̆R(t) × r̆o(s, t) + ωo(s, t)

× xo(s, t),

∂tt p̆
o(s, t)

= ∂ttu
oL(s, t) + 2ω̆R(t) × ∂tu

oL(s, t) + ω̆R(t)

× (
ω̆R(t) × r̆o(s, t)

) + ∂t ω̆R(t)

× r̆o(s, t) + ∂tω
o(s, t)

× xo(s, t) + ωo(s, t) × (
ωo(s, t) × xo(s, t)

)

where r̆o(s, t) := rE
o (t) + ro(s, t) + uo(s, t) is the

position vector of the shear center of the cross sec-
tion at s with respect to the origin O in Bo; ω̆R(t)

is the angular velocity vector, and ∂tu
oL(s, t) :=∑3

k=1 ∂tu
o
k(s, t)ek(t) is the local velocity vector (i.e.,

velocity relative to the rotating frame).
The velocity and acceleration of the material points

of the current configuration can be expressed as

∂t p̆(s, t)

= ∂t ŭ
L(s, t) + ω̆R(t) × r̆(s, t) + ω̆(s, t) × x̄(s, t),

∂tt p̆(s, t)

= ∂tt ŭ
L(s, t) + 2ω̆R(t) × ∂t ŭ

L(s, t) + ω̆R(t)

× (
ω̆R(t) × r̆(s, t)

)

+ ∂t ω̆R(t) × r̆(s, t) + ∂t ω̆(s, t) × x̄(s, t)

+ ω̆(s, t) × (
ω̆(s, t) × x̄(s, t)

)

where r̆ = rE
o + ro + ŭ and ŭ = uo + u. The time rate

of change of linear and angular momentum in the pre-

stressed and actual configurations are, respectively, de-
fined as

∂t l̆
o :=

∫

S

∂tt p̆
o(s, t)ρ dA,

∂t h̆
o :=

∫

S

p̆o(s, t) × ∂tt p̆
o(s, t)ρ dA,

∂t l̆ :=
∫

S

∂tt p̆(s, t)ρ dA,

∂t h̆ :=
∫

S

p̆(s, t) × ∂tt p̆(s, t)ρ dA.

(2)

The relevant expressions are given in Appendix A.

Equations of motion The local statement of the bal-
ance of linear and angular momentum in the pre-
stressed configuration yields the equations of motion
as

∂sn
o(s, t) + f o = ∂t l̆

o
, (3)

∂sm
o(s, t) + νo(s, t) × no(s, t) + co = ∂t h̆

o
(4)

where no and mo are the stress resultant and moment
resultant over the cross section known as contact force
and contact couple, respectively. They are defined as

no(s, t) :=
∫

So
to dA,

mo(s, t) :=
∫

So

(
xo(s, t) × to)dA

where to denotes the first Piola–Kirchhoff stress vec-
tor over the cross section normal to a3(t). Their com-
ponent representation is no = Qo

1b
o
1 + Qo

2b
o
2 + Nobo

3
and mo = Mo

1bo
1 + Mo

2bo
2 + T obo

3 where (Qo
1,Q

o
2) are

the shear forces, No is the tension, (Mo
1 ,Mo

2 ) are the
bending moments, and T o is the torque. The vectors
f o and co are the external force and couple resultants
per unit reference length acting in Bo.

On the other hand, the balance of linear and angular
momentum in the current configuration is stated as

∂s n̆(s, t) + f̆ = ∂t l̆, (5)

∂sm̆(s, t) + ν̆(s, t) × n̆(s, t) + c̆ = ∂t h̆ (6)

where n̆ = Q̆1b1 + Q̆2b2 + N̆b3 and m̆ = M̆1b1 +
M̆2b2 + T̆ b3 are the generalized stress and moment
resultants in the current configuration B while f̆ and
c̆ are the external force and couple resultants per
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unit reference length acting in B. By considering the
natural decompositions: n̆(s, t) = no(s, t) + n(s, t)

and m̆(s, t) = mo(s, t) + m(s, t), f̆ (s, t) = f o(s, t) +
f (s, t) and c̆(s, t) = co(s, t) + c(s, t), and incorporat-
ing equations of motion (3) and (4) holding in the pre-
stressed configuration Bo, Eqs. (5) and (6) give the in-
cremental form of the equations of motion

∂sn(s, t) + f = ∂t l̆ − ∂t l̆
o
, (7)

∂sm(s, t) + ν̆(s, t) × n(s, t) + ∂su(s, t) × no(s, t) + c

= ∂t h̆ − ∂t h̆
o
. (8)

The vectors n(s, t) and m(s, t) are the incremental
contact force and incremental contact couple, respec-
tively, while f (s, t) and c(s, t) are the incremental ex-
ternal force and couple per unit reference length.

3 The prestressed equilibrium and the linearized
equations of motion

The linearized form of the equations of motion is ob-
tained by straightforward linearization of the nonlin-
ear equations of motion about the prestressed equilib-
rium Bo. For symmetric blades, for which the mass
and shear centers coincide, the only strain induced by
the rotational motion about i1 in Bo is the generalized
stretch which, in linearized form, is νo = 1 + uo

3
′(s)

where the prime indicates differentiation with respect
to s. In the prestressed (tensile) equilibrium, the shear
forces vanish (i.e., Qo

1(s) = 0 = Qo
2(s)), the curvature

vector is zero (i.e., μo = o) and ωo
1 = ωR. The only

nontrivial equilibrium equation is

No′(s) = −ρAω2
R

[
d3 + s + uo

3(s)
]

(9)

where ρA is the mass per unit reference length. Equa-
tion (9) is formulated in terms of the longitudinal dis-
placement uo

3 only when the constitutive equation is

given as No(s) = N̂o(νo, s). Following [20], we adopt
a constitutive function for the equilibrium uniaxial
states of stress derived from a stored-energy function
proportional to V (νo) := (νo)a/a + (νo)−b/b where
a > 1 and b > 0 are constitutive constants. The ensu-
ing constitutive functions have the form

No(νo, s
) = EA(s)

a + b

[(
νo)a−1 − 1

(νo)b+1

]
(10)

where EA(s) is the axial stiffness of the blade.
The linearly elastic material, represented by the lin-
earized form of Eq. (10), is described by No(νo, s) =
EA(s)(νo − 1). For the computations, we assume a
softening (sublinear) material under tensile states of
stress with b = a − 1 and a = 5

2 .
The linearized version of the elastic equilibrium is

[
EAuo

3
′]′ + ρAω2

R

(
d3 + s + uo

3

) = 0 (11)

whose solution for No is

No(s) = EA

[
cos

(
ω̄a

R
s

L

)
sec ω̄a

R − 1

]

+ (
ρALd3ω̄

a
R

)
sin

[
ω̄a

R

(
1 − s

L

)]
sec ω̄a

R

(12)

where ω̄a
R := ωR/ωa with ωa := √

EA/(ρAL2).
Figure 4 shows the equilibrium stretch of the root

cross section vs. the angular speed for the linearly
elastic material and the softening material. Below ωR

equal to 5 · 103 rpm, the constitutive nonlinearity can-
not be appreciated while at higher speeds, some devi-
ations are manifested with consequences on the geo-
metric stiffness and the frequencies.

The linearized equations of motion can be obtained
considering the components of the linearized angular
speed and curvature vectors (given in Appendix B)

Fig. 4 Variation of the equilibrium stretch νo at the root cross
section with the angular speed ωR. The equilibrium response
obtained for a linearly elastic material is contrasted with that
exhibited by a nonlinearly elastic (softening) material given by
Eq. (10) with b = a−1 and a = 5

2 . The dashed line indicates the
linearly elastic material while the solid line indicates the nonlin-
ear material
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which read

ω̆
(1)
1 = ∂t θ1 + ωR, ω̆

(1)
2 = ∂t θ2 − ωRθ3,

ω̆
(1)
3 = ∂t θ3 + ωRθ2,

(13)

μ̆
(1)
1 = ∂sθ1, μ̆

(1)
2 = ∂sθ2, μ̆

(1)
3 = ∂sθ3. (14)

Thus the linearized equations of motion reduce to

∂sQ1(s, t) = ρA∂ttu1(s, t), (15)

∂sQ2(s, t) = ρA∂ttu2(s, t) − 2ρAωR∂tu3(s, t)

− ρAu2(s, t)ω
2
R, (16)

∂sN(s, t) = ρA∂ttu3(s, t) + 2ρAωR∂tu2(s, t)

− ρAu3(s, t)ω
2
R, (17)

∂sM1(s, t) − νoQ2(s, t) + ∂su2(s, t)N
o(s)

= ρJ S
11∂tt θ1(s, t), (18)

∂sM2(s, t) + νoQ1(s, t) − ∂su1(s, t)N
o(s)

= ρJ S
22∂tt θ2(s, t) − 2ρJ S

22ωR∂t θ3(s, t)

− ρJ S
22ω

2
Rθ2(s, t), (19)

∂sT (s, t) = ρJ S
33∂tt θ3(s, t) + 2ρJ S

22ωR∂t θ2(s, t)

− (
ρJ S

22 − ρJ S
11

)
ω2

Rθ3(s, t) (20)

where (ρJ S
11, ρJ S

22, ρJ S
33) are the principal mass mo-

ments of inertia of the cross section with respect to
the principal inertia axes (b1,b2,b3) with origin in the
shear center.

Unshearable rotating blades The slenderness of typ-
ical blades in applications such as helicopter blades or
wind turbines allows to consider the blades as being
unshearable no matter what the loading conditions are.

This is obtained prescribing two internal kinematic
constraints, namely that the shear strains vanish, hence
ηo

1 = 0 = ηo
2. The linearized version of the material

constraints leads to the following expressions for the
rotations of the cross sections:

θ1 = −∂su2(s, t)/ν
o, θ2 = ∂su1(s, t)/ν

o. (21)

These rotations can be differentiated to yield the lin-
earized bending curvatures.

Solving Eqs. (18) and (19) for the shear forces Q1

and Q2 yields

Q1(s, t) = 1

νo

[
ρJ S

22∂tt θ2(s, t) − 2ρJ S
22ωR∂t θ3(s, t)

− ρJ S
22ω

2
Rθ2(s, t) − ∂sM2(s, t)

+ ∂su1(s, t)N
o(s)

]
, (22)

Q2(s, t) = 1

νo

[
∂sM1(s, t) + ∂su2(s, t)N

o(s)

− ρJ S
11∂tt θ1(s, t)

]
.

Substituting Eqs. (22) into Eqs. (15)–(17) and (20)
yields the four equations governing the axial, flapping,
lagging, and torsional motions

∂sN(s, t) = ρA∂ttu3(s, t) + 2ρAωR∂tu2(s, t)

− ρAu3(s, t)ω
2
R, (23)

∂s

[
1

νo

(
ρJ S

22∂tt θ2(s, t) − 2ρJ S
22ωR∂t θ3(s, t)

− ρJ S
22ω

2
Rθ2(s, t) − ∂sM2(s, t)

+ ∂su1(s, t)N
o(s)

)]

= ρA∂ttu1(s, t), (24)

∂s

[
1

νo

(
∂sM1(s, t) + ∂su2(s, t)N

o(s)

− ρJ S
11∂tt θ1(s, t)

)]

= ρA∂ttu2(s, t) − 2ρAωR∂tu3(s, t)

− ρAu2(s, t)ω
2
R, (25)

∂sT (s, t) = ρJ S
33∂tt θ3(s, t) + 2ρJ S

22ωR∂t θ2(s, t)

− (
ρJ S

22 − ρJ S
11

)
ω2

Rθ3(s, t). (26)

Linearly elastic isotropic constitutive laws are con-
sidered for the eigenvalue problem in the form

N̂ (1) = EA
(
ν(1) − 1

)
, M̂

(1)
1 = EJ S

11μ
(1)
1 ,

M̂
(1)
2 = EJ S

22μ
(1)
2 , T̂ (1) = GJ S

33μ
(1)
3

(27)

where G is the shear modulus.

4 Galerkin discretization

The linearized equations of motion can thus be cast in
the form

I · ü + H · u̇ + L · u = o (28)
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where the active displacement components and tor-
sional rotations of the unshearable blade are collected
in the generalized displacement vector

u = [u1, u2, u3, θ3]ᵀ. (29)

I and L are, respectively, the linear, positive-definite,
self-adjoint inertia and stiffness operators, while H is
the gyroscopic operator.

In the spirit of the method of weighted residuals,
the displacements u1, u2, u3 and θ3 are expressed
as linear combination of suitable trial functions, here
taken as the eigenfunctions of the free vibration prob-
lem of the non-rotating beam having the same bound-
ary conditions; that is,

u1(s, t) =
n

(1)
u∑

j=1

ψ
u(1)
j (s)q

u(1)
j (t),

u2(s, t) =
n

(2)
u∑

j=1

ψ
u(2)
j (s)q

u(2)
j (t),

u3(s, t) =
n

(3)
u∑

j=1

ψ
u(3)
j (s)q

u(3)
j (t) and

θ3(s, t) =
n

(3)
θ∑

j=1

ψ
θ(3)
j (s)q

θ(3)
j (t)

(30)

where qu(1)(t), qu(2)(t), qu(3)(t) and qθ(3)(t) are, re-
spectively, the flapping, lagging, axial and torsional
generalized coordinates, ψ

u(1)
j (s), ψ

u(2)
j (s), ψ

u(3)
j (s)

and ψ
θ(3)
j (s) are, respectively, the flapping, lagging,

axial and torsional linear normal modes of the non-
rotating blade. The substitution of Eq. (30) into the
equations of motion and the minimization of the
weighted residuals according to the Galerkin proce-
dure yields the discretized equations of motion as

M · q̈ + G · q̇ + K · q = o (31)

where q = [qu(1),qu(2),qu(3),qθ(3)]ᵀ. The matrices
M and K are, respectively, the positive-definite sym-
metric inertia and stiffness matrices while G is the

skew-symmetric gyroscopic matrix (given in Ap-
pendix C). The eigenvalue problem is obtained sub-
stituting q(t) = eiωtx (i is the imaginary unit) into
Eq. (31) to obtain
[−ω2M + iωG + K

] · x = o. (32)

It is known (see, e.g., [22]) that the eigenvalues ω

of the gyroscopic system (31) (i.e., the solutions of
det[−ω2M + iωG + K] = 0) are real and positive,
thus the blade exhibits the full spectrum of real fre-
quencies.

5 Results and discussion

In this section, the linear modal properties of isotropic
rotating unshearable blades are investigated. The at-
tention is first directed toward the validation of the
adopted discretization scheme. Subsequently, varia-
tions of the natural frequencies with the angular speed
are studied to highlight scenarios of integer ratios be-
tween the frequencies which may give rise to modal
interactions resulting into complex three-dimensional
motions.

As a first illustrative example, the same geometric
and material properties of the rotating beam in [18] are
adopted. The properties are summarized in Table 1.
The comparisons between the linear natural frequen-
cies calculated by the current approach and those pre-
sented in [18] are shown in Table 2, where subscript
f and a indicate the flapping and axial modes, respec-
tively. The frequencies of the flapping modes are very
close but slightly lower than those found in [18] due
to the higher accuracy inherent in the present formula-
tion. On the other hand, the axial natural frequencies
are exactly the same as those in [18].

After a preliminary validation of the results, an alu-
minum blade is chosen with the following properties:
Young’s modulus is 70 GPa, the shear modulus is
26 GPa, the mass density is 2700 kg/m3, the span is
2 m and the cross section is rectangular with the base
b = 0.005 m, the height h = 0.05 m, and the radius of
the rotor equal to 0.2 m.

Table 1 Geometric and
material properties from
Ref. [18]

m

(kg/m)
Axial stiffness
(N)

Flexural stiffness
(N m2)

Length
(m)

Rotor radius
(m)

Rotating speed
(rad/s)

10 2.23 × 108 3.99 × 105 9 0.5 30
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Table 2 The circular
frequencies (rad/s) of the
flapping and axial modes
compared to those of
Ref. [18]

Linear flapping and axial natural frequencies ωf 1 ωf 2 ωf 3 ωf 4 ωa1 ωa1

Current 34.00 95.75 200.19 350.72 823.65 2472.40

From Ref. [18] 35.06 96.04 201.23 352.08 823.65 2472.40

Table 3 Convergence of
the lowest three flapping
frequencies calculated by
the Galerkin discretization
(rad/s)

N 1 2 4 8 16

ωR FE GK % GK % GK % GK % GK %

103 ωf 1 114.10 121.86 6.8 117.96 3.4 115.52 1.2 114.46 0.3 114.22 0.1

ωf 2 279.54 – – 288.27 3.1 282.34 1.0 280.34 0.3 279.44 0.0

ωf 3 460.10 – – – – 479.19 4.2 461.93 0.4 460.08 0.0

Table 4 Convergence of
the lowest three lagging
frequencies calculated by
the Galerkin discretization
(rad/s)

N 1 2 4 8 16

ωR FE GK % GK % GK % GK % GK %

103 ωL1 87.25 89.38 2.4 87.78 0.6 87.37 0.1 87.35 0.1 87.32 0.1

ωL2 481.39 – – 482.95 0.3 482.68 0.3 482.61 0.2 482.54 0.2

ωL3 1213.14 – – – – 1221.17 0.7 1220.94 0.6 1220.92 0.6

Table 5 Convergence of
the lowest three torsional
frequencies calculated by
the Galerkin discretization
(rad/s)

N 1 2 4 8 16

ωR FE GK % GK % GK % GK % GK %

103 ωT 1 2439.42 2439.42 0.0 2439.42 0.0 2439.42 0.0 2439.42 0.0 2439.42 0.0

ωT 2 7312.39 – – 7312.39 0.0 7312.39 0.0 7312.39 0.0 7312.39 0.0

ωT 3 12186.54 – – – – 12186.54 0.0 12186.54 0.0 12186.54 0.0

Table 6 Convergence of
the lowest three axial
frequencies calculated by
the Galerkin discretization
(rad/s)

N 1 2 4 8 16

ωR FE GK % GK % GK % GK % GK %

103 ωa1 4003.18 4003.20 0.0 4003.19 0.0 4003.19 0.0 4003.17 0.0 4002.72 0.0

ωa2 11998.51 – – 11998.21 0.0 11998.51 0.0 11998.53 0.0 11998.53 0.0

ωa3 19996.08 – – – – 19996.06 0.0 19996.08 0.0 19996.09 0.0

The convergence study of the Galerkin discretiza-
tion approach at different angular speeds is presented
in Tables 3, 4, 5, 6. To evaluate the error by which the
frequencies are calculated via the Galerkin discretiza-
tion, finite element computations are carried out us-
ing a finite element general-purpose platform called
COMSOL Multiphysics which allows to treat directly
the partial-differential equations of motion (strong
form) by linearizing them about the prestressed equi-
librium. The code discretizes our equations of motion
using Lagrangian polynomials.

In the following tables, the percent error is obtained
as 100(ωFE − ωGK)/ωFE for ωR = 103 rpm where ωFE

is the frequency calculated by COMSOL and ωGK de-
notes the frequency calculated by the Galerkin proce-
dure. The finite element scheme is based on 100 finite
elements with 4th-order Lagrangian interpolant func-
tions. Moreover, N is the number of flapping, lag-
ging, torsional and axial linear normal modes used
in the Galerkin discretization approach. In all tables,
FE indicates the results obtained via finite elements
in COMSOL and GK indicates the results obtained
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Fig. 5 The (a) first, (b) second, and (c) third flapping natural
frequency vs. the angular speed ωR. The solid line and unfilled
(filled) circles denote the results obtained by the finite element

discretization and those obtained by the Galerkin approach with
(without) the effects of the Coriolis forces, respectively

by the Galerkin procedure. A good convergence is
attained for all modes for N = 8 whereby the error
is less than 1 %. However, to achieve a good ac-
curacy in the natural frequencies of rotating blades
at high speeds, it is expected that the number N of
trial functions (here, the linear normal modes of the
non-rotating blade) employed in the discretization in-
creases with the angular speed.

To investigate the dependence of the frequencies
of the various modes on the angular speed, variations
of the nondimensional natural frequencies of the low-
est three flapping, lagging, torsional, and axial modes
with the angular speed are shown in Figs. 5, 6, 7, and 8,
respectively. Here and henceforth, the dimensional fre-
quencies are rendered nondimensional by scaling them
by ωf which is the first flapping natural frequency of
the corresponding non-rotating beam. A wide range of
angular speeds, namely [0,5 ·103] rpms, is considered
so as to span most of the technical operating regimes
for rotating beam-like structures.

Moreover, to investigate the relative contribution
of the Coriolis forces to the frequencies, the lat-
ter are calculated also neglecting the Coriolis forces
in the equations of motion. The frequencies of the
lowest three flapping modes shown in Fig. 5 do
not depend on the Coriolis forces as expected since
these forces are orthogonal to the direction of mo-
tion. As known, the tension induced by the centrifu-
gal forces has a geometric-type stiffening effect on
the flapping modes, thus their frequencies increase
with the angular speed. An excellent agreement is
found between the results obtained by the Galerkin
approach and those obtained by finite elements within
COMSOL.

Figure 6 shows variation of the natural frequencies
of the lowest three lagging modes in the full range of
angular speeds. The Coriolis forces associated with the
lagging modes act in the longitudinal direction caus-
ing loss of tension which softens the response. This
effect is significantly more pronounced in the low-
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Fig. 6 The (a) first, (b) second, and (c) third lagging natural
frequency vs. the angular speed ωR. The solid line and unfilled
(filled) circles denote the results obtained by the finite element

discretization and those obtained by the Galerkin approach with
(without) the effects of the Coriolis forces, respectively

est lagging mode. Of course, by neglecting the Cori-

olis forces, this effect is lost and the frequencies are

off from the actual values exhibiting a discrepancy

which grows with the magnitude of the angular speed.

This figure shows a good agreement between the re-

sults obtained via the Galerkin discretization and those

obtained by finite elements for the first mode while

for the second and third modes, the Galerkin results

are in full agreement with the COMSOL-based re-

sults.

Figures 7 and 8 show variations of the frequen-

cies of the lowest torsional and axial modes, respec-

tively. There is a full agreement between the Galerkin-

based results and those obtained by finite elements

for the first torsional and axial natural frequencies.

While the Coriolis forces have no influence on the tor-

sional frequency, they do exert an important effect on

the frequency of the lowest axial mode. If the Corio-

Fig. 7 The lowest torsional natural frequency vs. the angular
speed ωR. The solid line and unfilled (filled) circles denote the
results obtained by the finite element discretization and those
obtained by the Galerkin approach with (without) the effects of
the Coriolis forces, respectively

lis forces are neglected, the frequency decreases with
the angular speed contrary to the actual increasing
trend.
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6 Scenarios of internal resonances

A rotating beam-like structure is a powerful example
of a nonlinear system which can exhibit a variety of
internal resonances [23, 24] depending on a natural
tuning parameter, here the angular speed. The internal
resonances that may be potentially activated in rotat-
ing blades can be predicted by determining the angu-
lar speeds at which the frequencies of various modes
are in integer ratios. The variety of these possible in-
ternal resonances can be appreciated in Fig. 9 which
shows variation of the frequencies with the angular
speed. In the same plot, twice and three times the nat-

Fig. 8 The lowest axial natural frequency vs. the angular speed
ωR. The solid line and unfilled (filled) circles denote the results
obtained by the finite element discretization and those obtained
by the Galerkin approach with (without) the effects of the Cori-
olis forces, respectively

ural frequencies of the considered modes are shown so
as to locate the speeds at which 1:1, 2:1, and 3:1 ratios
arise. All the detected potential internal resonances are
listed in Table 7, where subscript “L” and “T ” indicate
the lagging and torsional modes, respectively, and sub-
script “f ” and “a” denote flapping and axial modes, as
before.

7 Concluding remarks

The geometrically exact equations of motion of elas-
tic isotropic arbitrary pre-twisted blades shown in this
work are devoid of restrictions on the geometry of de-
formation besides the local rigidity of the cross sec-
tions. The goal of this work is to study nonlinear vi-
brations of rotating blades away and near internal res-
onances by employing a perturbation approach. This
justifies the need of the Updated Lagrangian formu-
lation for the geometrically exact equations of mo-
tion whose perturbations can be derived consistently
and systematically. In particular, in this paper, the lin-
earized form of the equations is obtained for sym-
metric blades for which the prestressed equilibrium
is characterized by a uniaxial tensile state of stress
caused by the centrifugal forces. The equations of mo-
tion are further simplified by static condensation of
the shear forces to reflect the fact that the blades are
taken to be unshearable by imposition of two inter-
nal kinematic constraints. These material constraints

Fig. 9 The frequencies of
elastic isotropic rotating
blades vs. the angular speed
ωR. The filled circles
represent twice the
computed frequencies while
the unfilled circles denote
three times the frequency
values. The intersections of
the curves with the filled
(unfilled) circles with the
actual frequency loci denote
the angular speeds ωR
where 2:1 (3:1) ratios occur
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Table 7 Possible internal resonances

1:1 2:1 3:1 3:2 ωR (rpm)

3ωf 2 = 2ωL1 11

ωf 3 = 2ωL1 49

ωL2 = 3ωf 3 63

ωf 2 = ωL1 107

ωL1 = 3ωf 1 151

ωf 3 = 2ωf 2 261

3ωL1 = 2ωf 2 269

ωf 3 = 3ωL1 273

ωL1 = 2ωf 1 274

ωL2 = 2ωf 3 277

ωf 2 = 3ωf 1 286

3ωf 1 = 2ωL1 411

ωL2 = 3ωf 2 448

ωf 2 = 2ωL1 459

ωT 1 = 2ωL3 484

3ωf 3 = 2ωL2 526

ωf 1 = ωL1 743

ωL3 = 3ωf 3 796

ωL2 = 2ωf 2 865

ωf 2 = 3ωL1 953

ωa1 = 3ωL3 1129

ωf 3 = ωL2 1165

3ωf 2 = 2ωL2 1402

3ωL1 = 2ωf 1 1457

ωL3 = 2ωf 3 1502

ωL3 = 3ωf 2 1703

ωT 1 = 3ωf 3 1791

ωL2 = 3ωf 1 2027

3ωf 3 = 2ωL3 2364

ωT 1 = 3ωL2 2711

ωf 1 = 2ωL1 2763

ωT 1 = 2ωf 3 2801

ωT 1 = 3ωf 2 2980

ωa1 = 3ωf 3 3077

ωL3 = 2ωL2 3078

3ωL2 = 2ωf 3 3159

ωL3 = 2ωf 2 3645

ωa1 = 2ωL3 3721

ωf 2 = ωL2 4380

ωT 1 = 2ωf 2 4517

ωT 1 = 2ωL2 4544

ωa1 = 2ωf 3 4693

ωa1 = 3ωf 2 4975

reflect the fact that the blades typically utilized in en-
gineering applications are sufficiently slender and thus
they are not prone to shear deformations.

The Galerkin discretization approach was em-
ployed to obtain the natural frequencies of the rotating
blades as a superposition of the linear mode shapes
of the non-rotating blades. In particular, the investi-
gation has addressed the lowest three flapping, lag-
ging, axial, and torsional modes. Besides a validation
of the obtained results in comparison with those ob-
tained by finite elements, the results highlight the fact
that, as expected, the Coriolis forces have no effects
on the flapping and torsional natural frequencies while
they play a significant role on the lagging modes, es-
pecially the first mode, and on the axial frequencies.
The magnitude of the influence of the Coriolis forces
increases with the angular speed as shown in Figs. 6
and 8. The rich variety of potential one-to-one, two-to-
one and three-to-one internal resonances between flap-
ping, lagging, axial and torsional modes is discussed.
The angular speeds at which these resonances may
arise are determined numerically. In the companion
manuscript (part 2), free nonlinear vibrations of the
blades away from internal resonances are studied by
the method of multiples scales. The individual nonlin-
ear normal modes are constructed and the backbones
of the modes are discussed together with the role of
the angular speed on the nonlinearity.
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Appendix A: Time rates of change of linear and
angular momentum

The time rates of change of linear and angular momen-
tum in the prestressed configuration are given by

∂t l̆
o =

∫

S

∂tt p̆
o(s, t)ρ dA

= ρA(s)∂ttu
oL(s, t) + 2ρA(s)ω̆R(t)

× ∂tu
oL(s, t) + ρA(s)ω̆R(t)

× (
ω̆R(t) × r̆o(s, t)

)
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+ ρA(s)∂t ω̆R(t) × r̆o(s, t) + ∂tω
o(s, t)

× ρiS
o(s) + ωo(s, t) × (

ωo(s, t) × ρiS
o(s)

)
,

(33)

∂t h̆
o =

∫

S

p̆o(s, t) × ∂tt p̆
o(s, t)ρ dA

= r̆o(s, t) × ∂t l̆
o + ρiS

o(s) × ∂ttu
oL(s, t)

+ 2ρiS
o(s) × (

ω̆R(t) × ∂tu
oL(s, t)

)

+ ρiS
o(s) × (

ω̆R(t) × (
ω̆R(t) × r̆o(s, t)

))

+ ρiS
o(s) × (

∂t ω̆R(t) × r̆o(s, t)
)

+ ρJ S
o · ∂tω

o(s, t) + ωo(s, t)

× (
ρJ S

o · ωo(s, t)
)

(34)

where J S
o = J S

ijb
o
i b

o
j is the tensor of the area mo-

ments of inertia of the cross section with respect to
{CE,bo

1(s, t),b
o
2(s, t)} and

iS
o(s) =

∫

S

xo(s, t) dA

=
∫

S

(
xo

1bo
1(s, t) + xo

2bo
2(s, t)

)
dA

= IS
2 bo

1(s, t) + IS
1 bo

2(s, t) (35)

where iS
o(s) = IS

2 bo
1(s, t) + IS

1 bo
2(s, t) is the vector of

the area static moments of inertia of the cross section
with respect to {CE,bo

1(s, t),b
o
2(s, t)}.

The time rates of change of linear and angular mo-
mentum in the actual configuration are given by

∂t l̆ =
∫

S

∂tt p̆(s, t)ρ dA

= ρA(s)∂tt ŭ
L(s, t) + 2ρA(s)ω̆R(t) × ∂t ŭ

L(s, t)

+ ρA(s)ω̆R(t) × (
ω̆R(t) × r̆(s, t)

)

+ ρA(s)∂t ω̆R(t) × r̆(s, t) + ∂t ω̆(s, t) × ρiS(s)

+ ω̆(s, t) × (
ω̆(s, t) × ρiS(s)

)
, (36)

∂t h̆ =
∫

S

p̆(s, t) × ∂tt p̆(s, t)ρ dA

= r̆(s, t) × ∂t l̆ + ρiS(s) × ∂tt ŭ
L(s, t) + 2ρiS(s)

× (
ω̆R(t) × ∂t ŭ

L(s, t)
)

+ ρiS(s) × (
ω̆R(t) × (

ω̆R(t) × r̆(s, t)
))

+ ρiS(s) × (
∂t ω̆R(t) × r̆(s, t)

)

+ ρJ S · ∂t ω̆(s, t) + ω̆(s, t) × (
ρJ S · ω̆(s, t)

)
.

(37)

where J S = J S
ijbibj is the tensor of the area mo-

ments of inertia of the cross section with respect
to {CE,b1(s, t),b2(s, t)} and iS(s) = IS

2 b1(s, t) +
IS

1 b2(s, t) is the vector of the area static moments of
inertia of the cross section with respect to {CE,b1(s, t),

b2(s, t)}.

Appendix B: The angular velocity and curvature
vectors

ω̆1 = sin
(
θ3(s, t)

)
∂t θ2(s, t)

+ cos
(
θ3(s, t)

)
cos

(
θ2(s, t)

)
∂t θ1(s, t)

+ ωR cos
(
θ3(s, t)

)
cos

(
θ2(s, t)

)
,

ω̆2 = cos
(
θ3(s, t)

)
∂t θ2(s, t)

− sin
(
θ3(s, t)

)
cos

(
θ2(s, t)

)
∂t θ1(s, t)

− ωR sin
(
θ3(s, t)

)
cos

(
θ2(s, t)

)
,

ω̆3 = ∂t θ3(s, t) + ∂t θ1(s, t) sin
(
θ2(s, t)

)

+ ωR sin
(
θ2(s, t)

)
,

(38)

μ̆1 = sin
(
θ3(s, t)

)
∂sθ2(s, t)

+ cos
(
θ3(s, t)

)
cos

(
θ2(s, t)

)
∂sθ1(s, t),

μ̆2 = cos
(
θ3(s, t)

)
∂sθ2(s, t) (39)

− sin
(
θ3(s, t)

)
cos

(
θ2(s, t)

)
∂sθ1(s, t),

μ̆3 = ∂sθ3(s, t) + ∂sθ1(s, t) sin
(
θ2(s, t)

)
.

Appendix C: The coefficients of the mass,
gyroscopic, and stiffness matrices

Mu(1)(k, j) =
∫ L

o

(
ψ

u(1)
k

(
ρAψ

u(1)
j

− ∂s

[
1

νo ρJ S
22

∂sψ
u(1)
j (s)

νo

]))
ds,

j = 1, . . . , n(1)
u ,

Gu(1)
(
k, j + n(1)

u + n(2)
u + n(3)

u

)

=
∫ L

o

(
ψ

u(1)
k

(
∂s

[
1

νo

(
2ρJ S

22ωRψ
θ(3)
j

)]))
ds,

j = 1, . . . , n
(3)
θ ,
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Ku(1)(k, j) =
∫ L

o

(
ψ

u(1)
k

(
∂s

[
1

νo

(
ρJ S

22ω
2
R

∂sψ
u(1)
j (s)

νo

+ ∂sM
j

2 (s, t) − ∂sψ
u(1)
j No(s)

)]))
ds,

j = 1, . . . , n(1)
u , k = 1, . . . , n(1)

u ,

(40)

Mu(2)
(
k, j + n

(1)
u

) =
∫ L

o

(
ψ

u(2)
k

(
ρAψ

u(2)
j

− ∂s

[
1

νo ρJ S
11

∂sψ
u(2)
j (s)

νo

]))
ds,

j = 1, . . . , n
(2)
u ,

Gu(2)
(
k, j + n

(1)
u + n

(2)
u

)

=
∫ L

o

(
ψ

u(2)
k

(−2ρAωRψ
u(3)
j

))
ds,

j = 1, . . . , n
(3)
u ,

Ku(2)
(
k, j + n

(1)
u

)

=
∫ L

o

(
ψ

u(2)
k

(
−∂s

[
1

νo

(
∂sM

j

1 (s, t)

+ ∂sψ
u(2)
j No(s)

)
]

− ρAψ
u(2)
j ω2

R

))
ds,

j = 1, . . . , n
(2)
u , k = n

(1)
u + 1, . . . , n

(1)
u + n

(2)
u ,

(41)

Mu(3)
(
k, j + n(1)

u + n(2)
u

) =
∫ L

o

(
ψ

u(3)
k

(
ρAψ

u(3)
j

))
ds,

j = 1, . . . , n(3)
u ,

Gu(3)
(
k, j + n(1)

u

) =
∫ L

o

(
ψ

u(3)
k

(
2ρAωRψ

u(2)
j

))
ds,

j = 1, . . . , n(2)
u , (42)

Ku(3)
(
k, j + n(1)

u + n(2)
u

) =
∫ L

o

(
ψ

u(3)
k

(−∂sN
j (s, t)

− ρAψ
u(3)
j ω2

R

))
ds,

j = 1, . . . , n(3)
u ,

k = n(1)
u + n(2)

u + 1, . . . , n(1)
u + n(2)

u + n(3)
u ,

Mθ(3)
(
k, j + n

(1)
u + n

(2)
u + n

(3)
u

)

=
∫ L

o

(
ψ

θ(3)
k

(
ρJ S

33ψ
θ(3)
j

))
ds,

j = 1, . . . , n
(3)
θ ,

Gθ(3)(k, j) =
∫ L

o

(
ψ

θ(3)
k

(
2ρJ S

22ωR
∂sψ

u(1)
j (s)

νo

))
ds,

j = 1, . . . , n
(1)
u ,

Kθ(3)
(
k, j + n

(1)
u + n

(2)
u + n

(3)
u

)

=
∫ L

o

(
ψ

θ(3)
k

(−∂sT
j (s, t)22

− (
ρJ S − ρJ S

11

)
ω2

Rψ
θ(3)
j

))
ds,

j = 1, . . . , n
(3)
θ ,

k = n
(1)
u + n

(2)
u + n

(3)
u + 1, . . . , n̆,

(43)

and n̆ = n
(1)
u + n

(2)
u + n

(3)
u + n

(3)
θ .
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