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Abstract In this paper, we investigate the impulsive
control and synchronization of a new unified hyper-
chaotic system. This new system unifies both the hy-
perchaotic Lorenz system and the hyperchaotic Chen
system. Some conditions are given to guarantee the
global asymptotic stability of the controlled and syn-
chronized system. The control gains and impulsive in-
tervals are both variable. Moreover, we estimate the
upper bound of impulsive interval for stable control
and synchronization. Simulations are included to show
the effectiveness of the theoretical results.

Keywords Impulsive control · Impulsive
synchronization · Unified hyperchaotic system

1 Introduction

Compared to most other methods of chaos control
and synchronization, the main advantages of impulsive
method are that [1–3]: (1) it allows the control and syn-
chronization of a chaotic system by using only small
control impulses at discrete instants; (2) it provides an
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efficient technology to deal with systems which can-
not endure continuous disturbance; (3) since only im-
pulses at discrete instants are needed, it is more ef-
ficient, secure, and thus useful in many applications,
especially for secure communication [4, 5]. In addi-
tion, there exist many examples of impulsive control
systems in practice, such as the population control sys-
tem of insects, some chemical reactors, financial sys-
tems [6], and neural networks [7].

Because of the above facts, many impulsive con-
trol and synchronization methods for a chaotic system
have been presented. In [8], robustness of the con-
tinuous differential system was used to explain the
mechanics of impulsive synchronization. Yang et al.
used the theory of comparison system and impulsive
differential equations to study the stabilization and
synchronization of Lorenz system in [9] and [10], re-
spectively. Sun et al. presented a new comparison the-
orem for asymptotic stability of impulsive differen-
tial system [11], which was used to study the syn-
chronization of Lorenz system [12] and the control
of chaotic Rössler system [13]. Some sufficient condi-
tions for asymptotic stability of impulsive system are
given in [14], and the results have been used to sta-
ble and synchronize Lorenz [15] and unified chaotic
system [16]. Based on linear matrix inequality, the im-
pulsive synchronization of chaotic system was investi-
gated in [17]. In [18], Iton et al. studied the impulsive
control for synchronization of some continuous sys-
tems under the assumption that the synchronization
errors are sufficiently small. Hu et al. researched the
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projective synchronization of Lorenz system via im-
pulsive control in [19]. Zhang et al. investigated the
problem of impulsive lag synchronization for a class of
nonlinear discrete chaotic systems [20]. The impulsive
synchronization with parametric mismatch was stud-
ied in [21, 22]. Itoh et al. presented some experimen-
tal results on impulsive synchronization of chaotic cir-
cuits in [23], which suggests that various applications
of impulsive control and synchronization of chaotic
system are feasible. Some other research results can
be found in [24–26]. However, few of the above men-
tioned methods consider the case where both control
gains and impulsive intervals are variable.

Hyperchaotic phenomenon has been observed and
analyzed in some models [27–30], and some synchro-
nization methods of the hyperchaotic system without
impulsive technology have been presented [31, 32].
Unified hyperchaotic system, which was presented by
the authors in a previous paper [33], contains the hy-
perchaotic Lorenz system and the hyperchaotic Chen
system as two dual systems at the two extremes of its
parameter spectrum. The system is hyperchaotic over
almost the whole parameter range, and can realize con-
tinued transition from the hyperchaotic Lorenz system
to the hyperchaotic Chen system. Its dynamic behavior
is more complex than other chaotic and hyperchaotic
systems. Therefore, in the field of secure communi-
cation, the control and synchronization of this system
probably has more significance than other chaotic (hy-
perchaotic) systems.

In this paper, based on the Lyapunov stability the-
ory and the comparison theorem, we propose an im-
pulsive law with variable control gains and impulsive
intervals to achieve the control and synchronization of
the unified hyperchaotic system. The rest of the paper
is organized as follows. We review some basic theory
in Sect. 2. The impulsive control and synchronization
theorems of the system are investigated in Sects. 3
and 4, respectively. Section 5 gives numerical simu-
lations. Conclusions and acknowledgements are given
in the final section.

2 Basic theory of impulsive differential equations

Let a general system be in the form of ẋ = f (t,x),
where f : R+ × Rn �→ Rn is continuous, x ∈ Rn is
the state variable. Discrete set {τi} of time instants sat-
isfies 0 < τ1 < τ2 < · · · < τi < τi+1 < · · · , τi → ∞ as
i → ∞.

U(i,x) = �x |t=τi
� x(τ+

i ) − x(τ−
i ) is the state

variable at instant τi , then an impulsive differential
system in which impulses occur at fixed times is de-
scribed by

ẋ = f (t,x), t �= τi,

�x = U(i,x), t = τi,

x
(
t+0

) = x(t0), t0 ≥ 0, i = 1,2, . . . .

(1)

Equation (1) is also called impulsive differential
equation. To make the paper self-contained, we recall
the following definitions and theorems [6].

Definition 1 Let V : R+ × Rn �→ R+, then V is said
to belong to class V0 if

1. V is continuous in (τi−1, τi] × Rn and for each
x ∈ Rn, i = 1,2, . . . , lim(t,y)→(τ+

i ,x) V (t,y) =
V (τ+

i ,x) exists;
2. V is locally Lipschitzian in x.

Definition 2 For (t,x) ∈ (τi−1, τi] × Rn, we define
D+V (t,x) � lim suph→0

1
h
[V (t + h,x + hf (t,x)) −

V (t,x)].

Definition 3 (Comparison system) Let V ∈ V0 and as-
sume that

D+V (t,x) ≤ g
(
t, V (t,x)

)
, t �= τi,

V
(
t,x + U(i,x)

) ≤ ψi

(
V (t,x)

)
, t = τi,

(2)

where g : R+ × R+ �→ R is continuous and ψi :
R+ �→ R+ is nondecreasing. Then the following sys-
tem

ω̇ = g(t,ω), t �= τi,

ω
(
τ+
i

) = ψi

(
ω(τi)

)
, ω

(
t+0

) = ω0 ≥ 0,
(3)

is the comparing system of Eq. (1).

Definition 4 A function α is said to belong to class
K if α ∈ C[R+,R+], α(0) = 0 and α(x) is strictly in-
creasing in x.

Let Sρ = {x ∈ Rn | ‖x‖ < ρ}, where ‖ · ‖ denotes
the Euclidean norm on Rn. Assume that f (t,0) = 0,
U(i,0) = 0 and g(t,0) = 0 for all i. Then the follow-
ing comparing theorems offer sufficient conditions for
stability criteria.
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Theorem 1 [6] Assume that the following three con-
ditions are satisfied,

1. V : R+ × Sρ �→ R+, ρ > 0, V ∈ V0, D+V (t,x) ≤
g(t,V (t,x)), t �= τi .

2. There exists a ρ0 > 0 such that x ∈ Sρ0 implies that
x +U(i,x) ∈ Sρ0 for all i, and V (t,x +U(i,x)) ≤
ψi(V (t,x)), t = τi , x ∈ Sρ0 .

3. β(‖x‖) ≤ V (t,x) ≤ α(‖x‖) on R+ × Sρ , where
α,β ∈ K.

Then the stability properties of the trivial solution
ω = 0 of Eq. (3) imply the corresponding stability
properties of the trivial solution x = 0 of Eq. (1).

Theorem 2 [6] Let g(t,ω) = ζ̇ (t)ω, ζ ∈ C 1[R+,R+],
ψi(ω) = diω, di ≥ 0 for all i, then the origin of system
(1) is asymptotically stable if conditions

ζ(τi+1) + ln(γ di) ≤ ζ(τi), for all i, where γ > 1,

(4)

and ζ̇ (t) ≥ 0 are satisfied.

3 Impulsive control of unified hyperchaotic system

The unified hyperchaotic system presented by au-
thors [33] recently is described by

ẋ = (26a + 10)(y − x),

ẏ = (28 − 44a)x − xz + (29a − 1)y − v,

ż = xy − (8 + a)z/3,

v̇ = 0.1(1 − a)yz + ax + r,

(5)

where a ∈ [0,1]. System (5) unified the hyperchaotic
Lorenz system (when a = 0) and the hyperchaotic
Chen system (when a = 1). Furthermore, when
−0.7 < r < 0.7, system (5) is hyperchaotic for almost
all parameter a in [0,1] and realizes the entire transi-
tion spectrum from one to the other.

Let x = (x, y, z, v)T . By decomposing the linear
and nonlinear parts, the unified system (5) can be
rewritten as

ẋ = Ax + φ(x), (6)

where

A =

⎛

⎜⎜
⎝

−(26a + 10) 26a + 10 0 0
28 − 44a 29a − 1 0 −1

0 0 −(8 + a)/3 0
a 0 0 0

⎞

⎟⎟
⎠ ,

φ(x) =

⎛

⎜⎜
⎝

0
−xz

xy

0.1(1 − a)yz

⎞

⎟⎟
⎠ .

The impulsive control of the unified hyperchaotic
system is then given by

{
ẋ = Ax + φ(x), t �= τi,

�x = Bix, t = τi,
(7)

where τi, i = 1,2, . . . denotes the moment when im-
pulsive control occurs, Bi is the control gain matrix.
Chaotic (hyperchaotic) signals are bounded, so there
exists a positive number M such that |y| ≤ M for all t .
We use I to represent identity matrix. Then we have
the following stability theorem for the impulsive con-
trol system (7).

Theorem 3 Let di be the largest eigenvalue of (I +
BT

i )(I + Bi), Bi is Hermitian, the spectral radius of
I + Bi , ρ(I + Bi) ≤ 1, d = max{di}. And let λmax(a)

be the largest eigenvalue of 1
2 (A + AT ) in a ∈ [0,1].

If

(
2λmax(a) + 0.1(1 − a)M

) ≤ − 1

τi+1 − τi

ln(ξd),

ξ > 1, (8)

then the origin of the impulsive controlled unified hy-
perchaotic system (7) is asymptotically stable.

Proof Construct the Lyapunov function V (t,x) =
1
2xT x, for t �= τi . The time derivative of V (t,x) along
the solution of Eq. (7) is

D+V (t,x) = 1

2

(
Ax + φ(x)

)T
x + 1

2
xT

(
Ax + φ(x)

)

= 1

2
xT

(
A + AT

)
x + 0.1(1 − a)yzv

≤ λmax(a)xT x + 0.1(1 − a)Mzv

≤ λmax(a)xT x + 0.1(1 − a)M
1

2

(
z2 + v2)

≤ λmax(a)xT x + 0.05(1 − a)MxT x

= (
2λmax(a) + 0.1(1 − a)M

)
V (t,x). (9)
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Fig. 1 The value of λ(a)

So condition 1 of Theorem 1 is satisfied with
g(t,ω) = (2λmax(a) + 0.1(1 − a)M)ω.

Since I +Bi is symmetric, by employing Euclidean
norm, we have ρ(I + Bi) = ‖I + Bi‖. Then for any
ρ0 > 0 and x ∈ Sρ0 , we have ‖x + U(i,x)‖ = ‖x +
Bix‖ ≤ ‖I + Bi‖‖x‖ = ρ(I + Bi)‖x‖ ≤ ‖x‖. Conse-
quently, x + Bix ∈ Sρ0 . For t = τi , we have

V (τi,x + Bix) = (x + Bix)T (x + Bix)

= xT
(
I + BT

i

)
(I + Bi)x

≤ diV (τi,x) ≤ dV (τi,x). (10)

So condition 2 of Theorem 1 is satisfied with
ψi(ω) = dω. Obviously, condition 3 of Theorem 1 is
also satisfied. Hence, the asymptotic stability of the
system (7) is implied by that of the following compar-
ison system

ω̇ = (
2λmax(a) + 0.1M(1 − a)

)
ω, t �= τi,

ω
(
τ+
i

) = dω(τi), ω
(
t+0

) = ω0 ≥ 0.
(11)

From (8), we have
∫ τi+1
τi

(2λmax(a) + 0.1M(1 −
a)) dt + ln(ξd) ≤ 0, ξ > 1, for all i. It can be seen from
Fig. 1 that λ(a) > 0, where λ(a) is the largest eigen-
value of 1

2 (A+AT ) at a. So λmax(a) = max{λ(a)} > 0
and ζ̇ (t) = 2λmax(a) + 0.1(1 − a)M > 0. From Theo-
rem 2, we can know that the trivial solution of Eq. (7)
is asymptotically stable. �

Remark 1 {τi} is said to be equidistant if there exists
a constant δ > 0 such that τi+1 − τi = δ, i = 1,2, . . . .
Then (8) can be rewritten as

(
2λmax(a) + 0.1(1 − a)M

) ≤ −1

δ
ln(ξd), ξ > 1.

(12)

Furthermore, we can obtain an estimate of the upper
bound of δ, δmax = − ln(ξd)

2λmax(a)+0.1(1−a)M
. Here, di and

d should satisfy 0 < d,di < 1.

4 Impulsive synchronization of unified
hyperchaotic system

The impulsive synchronization of unified hyperchaotic
system will be studied in this section. In order to syn-
chronize system (6) (the driving system) via impulses,
we design the following response (or driven) system:

{ ˙̃x = Ax̃ + φ(x̃), t �= τi,

�x̃ = −Pie, t = τi,
(13)

where x̃ = (x̃, ỹ, z̃, ṽ)T is the state variables of the
response system, Pi is a 4 × 4 control gain matrix,
e = (e1, e2, e2)

T = (x − x̃, y − ỹ, z − z̃, v − ṽ)T is the
synchronization error.

Let ϕ(x, x̃) = φ(x) − φ(x̃) = (0,−xz + x̃z̃, xy −
x̃ỹ,0.1(1 − a)(yz − ỹz̃))T . Then the error system of
the impulsive synchronization is given by
{

ė = Ae + ϕ(x, x̃), t �= τi,

�e = Pie, t = τi .
(14)

For the stability of the origin of error system (14),
we have the following theorem.

Theorem 4 Let di be the largest eigenvalue of (I +
P T

i )(I + Pi), Pi is Hermitian, the spectral radius of
I + Pi , ρ(I + Pi) ≤ 1, d = max{di}. And let λmax(a)

be the largest eigenvalue of 1
2 (A + AT ) in a ∈ [0,1],

If

(
2λmax(a) + 2N + 0.3(1 − a)M

)

≤ − 1

τi+1 − τi

ln(ξd), ξ > 1. (15)

Then the origin of the error system (14) is asymptoti-
cally stable.

Proof It is easy to know that the state variables
of system (13) are bounded. We assume that N =
max{|y|, |z|, |z̃|, |ṽ|}. Let V (t, e) = 1

2eT e. The time
derivative of V (t, e) along the solution of Eq. (14) is

D+V (t, e) = 1

2

(
Ae + ϕ(x, x̃)

)T
e
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+ 1

2
eT

(
Ae + ϕ(x, x̃)

)

= 1

2
eT

(
A + AT

)
e + e2(−xz + x̃z̃)

+ e3(xy − x̃ỹ)

+ 0.1(1 − a)e4(yz − ỹz̃)

≤ λmax(a)eT e + x(e3y − e2z)

+ x̃(e2z̃ − e3ỹ) + 0.1(1 − a)

× (vyz − ṽyz − vỹz̃ + ṽỹz̃)

= λmax(a)eT e + xỹz − xyz̃ + x̃yz̃ − x̃ỹz

+ 0.1(1 − a)
[
(vyz − vỹz̃ − vyz̃ + vyz̃)

+ (−ṽyz + ṽỹz̃ + ṽỹz − ṽỹz)
]

= λmax(a)eT e + e1ỹz − e1yz̃

+ 0.1(1 − a)(vye3 + vz̃e2

− ṽze2 − ṽỹe3)

= λmax(a)eT e + e1(ỹz − yz̃ − yz + yz)

+ 0.1(1 − a)
[
e2(vz̃ − ṽz̃ + ṽz̃ − ṽz)

+ e3(vy − ṽy + ṽy − ṽỹ)
]

= λmax(a)eT e + e1e3y − e1e2z

+ 0.1(1 − a)(e2e4z̃ + e2e3ṽ

+ e3e4y + e2e3ṽ)

≤ λmax(a)eT e + N
(|e1||e3| + |e1||e2|

)

+ 0.1(1 − a)
(|e2||e4| + |e2||e3|

+ |e3||e4| + |e2||e3|
)

≤ λmax(a)eT e + 1

2
N

(
2e2

1 + e2
2 + e2

3

)

+ 1

2
0.1(1 − a)N

(
3e2

2 + 3e2
3 + 2e2

4

)

≤ λmax(a)eT e + NeT e + 0.15(1 − a)eT e

= (
2λmax(a) + 2N

+ 0.3(1 − a)N
)
V (t, e). (16)

Hence, condition 1 of the theorem is satisfied with
g(t,ω) = (2λmax(a) + 2N + 0.3(1 − a)N)ω. The re-
maining part of the proof is the same as the corre-
sponding proof of Theorem 3. �

Remark 2 If {τi} is equidistant, the estimate of the up-
per bound of impulsive interval is

δmax = − ln(ξd)

2λmax(a) + 2N + 0.3(1 − a)N
,

0 < d , di < 1.

5 Numerical simulations results

In order to show how the impulsive control and syn-
chronization method works, we present some simula-
tion results in this section. For simplicity, we assume
{τi} is equidistant, and τi+1 − τi = δ.

5.1 Impulsive control

In this simulation, we take the control gain matrix
Bi = B , and B = diag(k,−0.8,−0.8,−0.8) (diag
stands for the diagonal matrix with the column vector
on its diagonal). So B is Hermitian. From Theorem 3,
we can obtain that −2 ≤ k ≤ 0. Then we have

d =
{

(k + 1)2, (k + 1)2 ≥ 0.04,

0.04, otherwise,

and the estimates of bounds of stable regions are given
by

0 ≤ δ ≤
⎧
⎨

⎩

− ln(ξ)+ln(k+1)2

2λmax(a)+0.1(1−a)M
, (k + 1)2 ≥ 0.04,

− ln(ξ)+ln(0.04)
2λmax(a)+0.1(1−a)M

, otherwise,

where M = 28.9255. By computing, we obtain
λmax(a) = 29.5263.

When r = 0.2, Fig. 2(a) shows the stable region for
different ξ s versus a ∈ [0,1] and k ∈ [−2,0]. To ver-
ify the performance of the impulsive control method,
we choose a = 0.84 and r = 0.2, the stable region is
shown in Fig. 2(b). In Figs. 2(a) and (b), the region un-
der the curved surface(curve) of ξ is the stable region.

Figure 2(c) shows the stable results within the sta-
ble region with k = −1.6, δ = 0.015, and ξ = 1. It can
be seen from Fig. 2(c) that the system asymptotically
approaches the origin. Figure 2(d) shows the unstable
results with k = −1.6, δ = 0.15, and ξ = 1. The 4 lines
in Fig. 2(c) and (d) show the evolution of x, y, z, and v,
respectively.
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Fig. 2 The impulsive control of unified hyperchaotic system: (a) stable region for ξ = 1,2,10 (from the top down) versus a and k;
(b) stable region when a = 0.84; (c) stable results; (d) unstable results (Color figure online)

Fig. 3 The impulsive synchronization of unified hyperchaotic
system: (a) stable region for ξ = 1,2,6 (from the top down)
versus a and k; (b) stable region when a = 0.84; (c) stable syn-

chronization results; (d) when δ is too large, synchronization
cannot be achieved (Color figure online)

Remark 3 In simulation, we find that some δ above
the curved surface (curve) also make the system stable.
There are two reasons for this. First, the upper bound
given in theorem is sufficient but not necessary. Sec-
ond, we enlarged the denominator of the upper bound
in the proof process of Theorem 3. However, the stable
region under the curved surface (curve) need less time
to achieve control than that above the curved surface
(curve), which may have some practical significance.

5.2 Impulsive synchronization

Here, we take the control gain matrix Pi = P , and
P = diag(k,−0.8,−0.8,−0.8), −2 ≤ k ≤ 0. So P is
Hermitian. Then we have

d =
{

(k + 1)2, (k + 1)2 ≥ 0.04,

0.04, otherwise,

and the estimates of bounds of stable regions are given
by

0 ≤ δ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ln(ξ)+ln(k+1)2

2λmax(a)+2N+0.3(1−a)N
,

(k + 1)2 ≥ 0.04,

− ln(ξ)+ln(0.04)
2λmax(a)+2N+0.3(1−a)N

, otherwise,

where N = 50.0015. By computing, we obtain
λmax(a) = 29.5263.

The initial conditions are given by (x(0), y(0),

z(0), v(0)) = (5,2,7,5) and (x̃(0), ỹ(0), z̃(0), ṽ(0)) =
(2,4,6,8). We take r = 0.2. Figure 3(a) shows the sta-
ble region for different ξ s in a ∈ [0,1] and k ∈ [−2,0].
To verify the performance of the impulsive control
method, we choose a = 0.84 and r = 0.2, the stable
region is shown in Fig. 3(b).

Figure 3(c) shows the synchronization results for
k = −0.6, δ = 0.01, and ξ = 1. it can be seen from
Fig. 3(c) that the synchronization is achieved rapidly.
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Figure 3(d) shows that the impulsive synchronization
is unstable when k = −1.2, δ = 0.1, and ξ = 1. The
4 lines in Figs. 3(c) and (d) show the evolution of
e1, e2, e3, and e4, respectively.

6 Conclusions

In this paper, we studied the control and synchroniza-
tion of a new unified hyperchaotic system. The con-
trol gains and impulsive intervals are both variable.
The conditions for global asymptotic stability were
derived, and the upper bound of impulsive interval is
given. The results presented in this paper may be use-
ful for designing a communication system with a high
security level.
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