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Abstract A semi-numerical method is used in order
to locate the position and calculate the period of peri-
odic orbits in a 3D composite bisymmetrical potential,
in a number of resonant cases. The potential consists
of a 3D harmonic oscillator and a Plummer sphere.
The outcomes are compared with results found us-
ing the numerical integration of the equations of mo-
tion and the agreement is very good. This agreement
strongly suggests, that semi-numerical methods can be
used in order to obtain fast and reliable results regard-
ing the position and period of the periodic orbits in 3D
composite potentials with a harmonic oscillator part
and different kinds of perturbations. Comparison with
other methods of obtaining 3D periodic orbits is dis-
cussed.

Keywords Numerical methods · Harmonic
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1 Introduction

A large number of studies over the last five decades,
was devoted to locate the position of periodic orbits
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in a given dynamical system. The basic reason for do-
ing this is that near the stable periodic orbits there are
similar orbits. On the other hand, orbits starting near
the unstable periodic orbits can produce large chaotic
regions. On this basis, there is no doubt that periodic
orbits represent the backbone of the whole set of or-
bits and play an important role in understanding the
dynamical behavior of a given potential.

Of particular interest are systems made up of per-
turbed harmonic oscillators. Systems containing 2D
harmonic oscillators were studied by a large number
of investigators [1–7, 11, 18, 21, 23].

In a recent paper [8], we presented a semi-numerical
method, which was used in order to find the position
and the period of periodic orbits in the resonant cases
ω1 : ω2 = n : m, in the 2D potential

V (x, y) = 1

2

(
ω2

1x
2 +ω2

2y
2)− μ

(x2 + y2 + α2)1/2
. (1)

As the results of the above research were in good
agreement with the outcomes given by the numerical
integration, we decided to extend our semi-numerical
method to the 3D potential

V (x, y, z) = 1

2

(
ω2

1x
2 + ω2

2y
2 + ω2

3z
2)

− μ

(x2 + y2 + z2 + α2)1/2
, (2)

where in (2) ω1, ω2, and ω3 are the unperturbed fre-
quencies of the oscillations along the x, y, and z axis,
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respectively, while μ and α are parameters. This po-
tential can be considered to describe local motion in
the central parts of a galaxy.

The equations of motion for a test particle with a
unit mass are

ẍ = −
[
ω2

1 + μ

(x2 + y2 + z2 + α2)3/2

]
x = −w2

1x,

ÿ = −
[
ω2

2 + μ

(x2 + y2 + z2 + α2)3/2

]
y = −w2

2y,

z̈ = −
[
ω2

3 + μ

(x2 + y2 + z2 + α2)3/2

]
z = −w2

3z,

(3)

where the dot indicates derivative with respect to the
time.

The corresponding Hamiltonian is written

H = 1

2

(
p2

x + p2
y + p2

z + ω2
1x

2 + ω2
2y

2 + ω2
3z

2)

− μ

(x2 + y2 + z2 + α2)1/2
= h, (4)

where px , py , and pz are the momenta per unit mass
conjugate to x, y, and z, respectively, while h > 0 is
the numerical value of the Hamiltonian, which is con-
served. The aim of this work is to find the position of
the periodic orbits and the corresponding period in the
resonant cases ω1 : ω2 : ω3 = n : m : l, where n, m, and
l are positive integers, using a semi-numerical proce-
dure and to compare the results with the correspond-
ing outcomes given by the numerical integration of the
equations of motion. In our numerical calculations, we
shall use the values μ = 0.001 and α = 0.25, while the
value of the energy h will be treated as a parameter.
For the numerical integration of the equations of mo-
tion, a Bulirsch–Stöer method in double precision is
used. The accuracy of the calculations is checked by
the constancy of the energy integral (4), which is con-
served up to the fifteenth significant decimal figure.

The paper is organized as follows: In Sect. 2, we
use some theoretical arguments to find the position
and period of the 1:1:1 resonant periodic orbits. In
the same section, we present a table for the periods of
the straight-line periodic orbits. Moreover, we make a
comparison between the periods of the straight-line or-
bits derived using the semi-numerical method and the
corresponding periods obtained using the numerical
integration. In Sect. 3, we compare the semi-numerical
results with the outcomes given by the numerical inte-
gration for a number of resonant cases. Finally, a dis-

cussion and the conclusions of this work are presented
in Sect. 4.

2 The 1:1:1 resonance

In this section, we shall study the case when ω1 =
ω2 = ω3 = ω. In this case, the system has a spherical
symmetry and potential (2) takes the form

V (r) = 1

2
ω2r2 − μ

(r2 + α2)1/2
, (5)

where r2 = x2 +y2 +z2. All the three components Lx ,
Ly , and Lz of the test particle’s angular momentum
and the total angular momentum L2 = L2

x + L2
y + L2

z

are conserved. The system has a circular periodic or-
bit. Using elementary calculations, we find that the ra-
dius of this circular orbit rc and the test particle’s total
angular momentum Lc are connected through the fol-
lowing equation:

L2
c = r3

c

[
dV

dr

]

rc

, (6)

while the corresponding value of the energy is

hc = 1

2

L2
c

r2
c

+ V (rc). (7)

As all the three frequencies w1, w2, and w3 in (3)
are equal the period of the circular orbit is given by the
formula

Tc = 2π

[ω2 + μ

(r2
c +α2)3/2 ]1/2

. (8)

Apart from the circular exact periodic orbit the sys-
tem (5) has an additional type of exact periodic orbit.
These orbits are straight lines going through the origin.
We observe that for the motion along the lines

y = kx, z = λx, (9)

the equations of motion (3) become identical, while all
three frequencies of the oscillations are always equal.
Thus, the straight lines (9) are exact 1:1:1 periodic or-
bits going through the origin. Our numerical experi-
ments show that the period of the straight line periodic
orbits is given by

Ts = 2π

ws

, (10)
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Table 1 A comparison between the period Ts and the period Tn

found by the numerical integration of the equations of motion
for the 1:1:1 straight line periodic orbits when ω1 = ω2 = ω3 =
0.4

h Ts Tn

0.035 15.4503 15.4546

0.040 15.4857 15.4866

0.045 15.5138 15.5121

0.050 15.5365 15.5328

0.055 15.5551 15.5499

0.060 15.5706 15.5644

where the frequency ws is given by the formula

ws =
[
ω2 + 0.84μ

(r2
a + α2)3/2

]1/2

, (11)

where ra is the radius of the circle V (r) = h. Note that
all the iso-energetic orbits (9) have the same period.
A comparison between the period Ts and the period
Tn found by the numerical integration of the equations
of motion is made in Table 1. We see that the agree-
ment is very good. In order to quantify the agreement
between the results obtained from the semi-numerical
methods and those derived from the numerical inte-
gration, we calculate the error Terr = |(Tn − Ts)/Ts |.
For the results of the 1:1:1 resonant orbits, presented
in Table 1, we see that Terr ≤ 0.04 %.

The authors would like to clarify that since the na-
ture and also the shape of the circular and straight-line
periodic orbits is well known, it is therefore unneces-
sary to provide the corresponding Fig. 3D plots.

3 Comparing semi-numerical results to numerical
outcomes

In this section, we shall give semi-numerical formu-
las for the position and the period of the periodic or-
bits in a number of resonant cases. Furthermore, we
shall compare the results given by the semi-numerical
method with the outcomes derived from the numerical
integration of the equations of motion.

We shall start from the resonant case when ω1 : ω2 :
ω3 = 1:1:2. We look for periodic orbits intersecting
the z axis at z = z0, (x0 = y0 = pz0 = 0), with veloc-
ities px0 = py0. Our numerical calculations indicate

that the value of px0 is well approximated, if we set

p2
x0 = z2

0

2ω2
1

. (12)

Setting the above initial conditions in the harmonic
part of the Hamiltonian (4), that is when μ = 0, and
solving the resulting equation for z0, we find

z0 =
[

2hω2
1

1 + ω2
1ω

2
3

]1/2

. (13)

Note that (12) and (13) give a first approximation for
the starting point of the 1:1:2 periodic orbit.

For a better approximation, we proceed as follows:
Using numerical experiments, we find that a good ap-
proximation for the frequency w3s of the 1:1:2 peri-
odic orbits is given by the formula

w3s =
[
ω2

3 + 0.48μ

(z2
s + α2)3/2

]1/2

. (14)

Inserting the above value of the frequency w3s in (12),
we find

p2
xs = z2

s

2w2
1s

, (15)

where now zs is the new value of the starting point
of the 1:1:2 periodic orbit. Inserting the values of zs ,
pxs = pys , x = y = pz = 0, and w1s = w3s/2 in the
Hamiltonian (4) we find the following equation:

1

2

(
w2

1s + 1

w2
3s

)
z2
s − μ

(z2
s + α2)1/2

= h. (16)

Solving (16), we obtain the value of zs . Remember,
that the value of pxs is given by (15), while the value
of pys can be found from the energy integral. The pe-
riod of the 1:1:2 periodic orbits is given by

Ts = 4π

w3s

. (17)

Table 2 gives the starting positions and periods of
the 1:1:2 periodic orbits for several values of the en-
ergy h. Subscript n indicate values found by the nu-
merical integration, while subscript s indicate values
found using (15), (16), and (17). The values of the pa-
rameters are: ω1 = ω2 = 0.4 and ω3 = 0.8. One can
see that the agreement is very good. We calculate the
errors zerr = |(zn − zs)/zs |, pxerr = |(pxn − pxs)/pxs |
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Table 2 Starting positions and periods for the 1:1:2 periodic
orbits. Subscript n indicates values found by the numerical inte-
gration, while subscript s indicates values found using the semi-
numerical method. The values of the parameters are: ω1 = ω2 =
0.4 and ω3 = 0.8

h zs zn pxs pxn Ts Tn

0.030 0.1005 0.1002 0.1742 0.1739 15.4153 15.4151

0.032 0.1034 0.1031 0.1792 0.1789 15.4187 15.4183

0.034 0.1062 0.1059 0.1842 0.1840 15.4221 15.4218

0.036 0.1090 0.1088 0.1890 0.1888 15.4286 15.4283

0.038 0.1113 0.1115 0.1936 0.1934 15.4286 15.4283

0.040 0.1142 0.1141 0.1982 0.1981 15.4318 15.4317

and Terr = |(Tn − Ts)/Ts |. For the results of the 1:1:2
resonant orbits, presented in Table 2, we find that
zerr ≤ 0.30 %, pxerr ≤ 0.18 %, while Terr ≤ 0.03 %.
Figure 1 shows the 1:1:2 periodic orbit, for the above
values of the parameters when h = 0.034. The initial
conditions are: z0 = zn = 0.1059, x0 = y0 = pz0 = 0,
px0 = pxn = 0.1840, while the value of py0 is found
from the energy integral in all cases. The integration
time for the 1:1:2 periodic orbit shown in Fig. 1 is
t = Tn = 15.4218.

Now we proceed to study the resonant case when
ω1 : ω2 : ω3 = 2:3:3. We shall study periodic orbits in-
tersecting the x axis at a point xs , (ys = zs = pxs = 0)

with velocities pzs = pys . In this case, the numerical
calculations suggest that a very good approximation
for the xs is given by the formula

xs = 1

ω1

√
ω2

ω1
(h + 0.01μ). (18)

If we insert the above value of xs with ys = zs = pxs =
0 and pzs = pys in the Hamiltonian (4) we find

pzs = √
h − Vs, (19)

where

Vs = 1

2
ω2

1x
2
s − μ

(x2
s + α2)1/2

. (20)

The value of the corresponding period is given by

Ts = 4π

w1s

, (21)

where

w1s =
[
ω2

1 + 1.5μ

(x2
s + α2)3/2

]1/2

. (22)

Fig. 1 A 1:1:2 resonant periodic orbit starting from the z

axis. The values of parameters are: ω1 = ω2 = 0.4, ω3 = 0.8,
and h = 0.034. The initial conditions are: z0 = zn = 0.1059,
x0 = y0 = pz0 = 0, px0 = pxn = 0.1840, while the value of py0
is always found from the energy integral. The integration time
for this orbits is t = Tn = 15.4218

Table 3 Similar to Table 2 but for the 2:3:3 resonant periodic
orbits. The values of the parameters are: ω1 = ω2 = 0.4 and
ω3 = 0.6

h xs xn pzs pzn Ts Tn

0.055 0.7182 0.7181 0.1227 0.1226 31.0863 31.0725

0.060 0.7501 0.7500 0.1275 0.1274 31.1221 31.0970

0.065 0.7807 0.7806 0.1321 0.1322 31.1519 31.1185

0.070 0.8101 0.8100 0.1366 0.1365 31.1771 31.1376

0.075 0.8386 0.8385 0.1410 0.1411 31.1984 31.1546

0.080 0.8661 0.8659 0.1452 0.1453 31.2168 31.1698

Table 3 is similar to Table 2 but for the 2:3:3 peri-
odic orbits when ω1 = 0.4 and ω2 = ω3 = 0.6. As one
can see, the agreement between the results given by
the numerical integration and the outcomes from the
semi-numerical formulas (18), (19), and (17) is very
good. For the results of the 2:3:3 resonant orbits, given
in Table 3, we find that xerr ≤ 0.02 %, pzerr ≤ 0.07 %,
while Terr ≤ 0.15 %. Figure 2 shows the 2:3:3 peri-
odic orbit for the above values of parameters when
h = 0.07. The initial conditions are: x0 = xn = 0.8100
with y0 = z0 = px0 = 0 and pz0 = pzn = 0.1365. The



Are semi-numerical methods an effective tool for locating periodic orbits in 3D potentials?

Fig. 2 A 2:3:3 resonant periodic orbit, starting from the x

axis when ω1 = 0.4, ω2 = ω3 = 0.6, and h = 0.07. The ini-
tial conditions are: x0 = xn = 0.8100 with y0 = z0 = px0 = 0
and pz0 = pzn = 0.1365, while the integration time is
t = Tn = 31.1376

integration time for the 2:3:3 periodic orbit shown in
Fig. 2 is t = Tn = 31.1376. Here, we must emphasize
that formulae (18), (19), and (20) give very good re-
sults also for the resonant cases ω1 : ω2 : ω3 = 3:2:2
and ω1 : ω2 : ω3 = 4:3:3. The value of the correspond-
ing period Ts for the resonant case 3:2:2 is given by
the relation

Ts = 6π

w1s

, (23)

where

w1s =
[
ω2

1 + 0.52μ

(x2
s + α2)3/2

]1/2

. (24)

In the resonant case 4:3:3, the period is given by
equation

Ts = 8π

w1s

, (25)

where

w1s =
[
ω2

1 + 0.63μ

(x2
s + α2)3/2

]1/2

. (26)

A comparison between the semi-numerical results
and results found by the numerical integration is given

Table 4 Similar to Table 2 but for the 3:2:2 resonant periodic
orbits. The values of the parameters are: ω1 = 0.3 and ω2 =
ω3 = 0.2

h xs xn pzs pzn Ts Tn

0.15 1.0541 1.0544 0.3177 0.3176 62.6896 62.6952

0.20 1.2172 1.2174 0.3662 0.3661 62.7375 62.7401

0.25 1.3608 1.3610 0.4091 0.4092 62.7634 62.7647

0.30 1.4907 1.4908 0.4479 0.4478 62.7794 62.7798

0.35 1.6101 1.6102 0.4837 0.4836 62.7899 62.7898

0.40 1.7213 1.7214 0.5169 0.5168 62.7974 62.7973

Table 5 Similar to Table 2 but for the 4:3:3 resonant periodic
orbits. The values of the parameters are: ω1 = 0.8 and ω2 =
ω3 = 0.6

h xs xn pzs pzn Ts Tn

0.35 0.6404 0.6405 0.4692 0.4693 31.3685 31.3685

0.40 0.6847 0.6848 0.5014 0.5013 31.3761 31.3762

0.45 0.7262 0.7263 0.5315 0.5316 31.3819 31.3820

0.50 0.7655 0.7654 0.5601 0.5600 31.3864 31.3865

0.55 0.8028 0.8027 0.5873 0.5874 31.3900 31.3901

0.60 0.8385 0.8386 0.6133 0.6132 31.3929 31.3930

in Table 4 for the resonance case 3:2:2 and in Table 5
for the resonance case 4:3:3. The values of the param-
eters are: ω1 = 0.3, ω2 = ω3 = 0.2 for the Table 4 and
ω1 = 0.8, ω2 = ω3 = 0.6 in Table 5. In both cases, the
agreement is very good. For the results of the 3:2:2
resonant orbits given in Table 4, we find that xerr ≤
0.03 %, pzerr ≤ 0.02 %, while Terr ≤ 0.01 %, while
for the results of the 4:3:3 resonant orbits, presented
in Table 5, we see that xerr ≤ 0.01 %, pzerr ≤ 0.02 %,
while Terr ≤ 0.003 %. Figure 3 shows the 3:2:2 pe-
riodic orbit for the above values of parameters when
h = 0.30. The initial conditions are: x0 = xn = 1.4908
with y0 = z0 = px0 = 0 and pz0 = pzn = 0.4478.
The integration time for the orbit shown in Fig. 3 is
t = Tn = 62.7798. The 4:3:3 periodic orbit is given in
Fig. 4. The values of parameters are as in Table 5 and
the value of the energy is h = 0.50. The initial condi-
tions are: x0 = xn = 0.7654 with y0 = z0 = px0 = 0
and pz0 = pzn = 0.5600, while the integration time is
t = Tn = 31.3865.

Finally, we shall consider three additional resonant
cases, the cases when ω1 : ω2 : ω3 = 5:2:2, ω1 : ω2 :
ω3 = 5:3:3 and ω1 : ω2 : ω3 = 5:4:4. We consider
periodic orbits intersecting the x axis at a point xs ,
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Fig. 3 A 3:2:2 resonant periodic orbit, when ω1 = 0.3, ω2 =
ω3 = 0.2, and h = 0.30. The initial conditions are: x0 = xn =
1.4908 with y0 = z0 = px0 = 0 and pz0 = pzn = 0.4478, while
the integration time is t = Tn = 62.7798

Fig. 4 A 4:3:3 resonant periodic orbit, starting from the x

axis, when ω1 = 0.8, ω2 = ω3 = 0.6, and h = 0.50. The ini-
tial conditions are: x0 = xn = 0.7654 with y0 = z0 = px0 = 0
and pz0 = pzn = 0.5600, while the integration time is
t = Tn = 31.3865

(ys = zs = pxs = 0) with velocities pzs = pys . In all
the above three cases, the numerical calculations sug-
gest that a very good approximation for xs is given by
the relation

xs = 1

ω1

√
ω2

ω1
h. (27)

Using the above value of xs with ys = zs = pxs = 0,
pzs = pys in the Hamiltonian (4), we find

pzs = √
h − Vs, (28)

with

Vs = 1

2
ω2

1x
2
s − μ

(x2
s + α2)1/2

. (29)

The value of the corresponding period is given by

Ts = 10π

w1s

, (30)

where

w1s =
[
ω2

1 + 0.18μ

(x2
s + α2)3/2

]1/2

, (31)

for the 5:2:2 resonance, while

w1s =
[
ω2

1 + 0.40μ

(x2
s + α2)3/2

]1/2

, (32)

for the 5:3:3 resonance. In the case of the 5:4:4 reso-
nance, the value of the frequency w1s is given by the
formula

w1s =
[
ω2

1 + 0.70μ

(x2
s + α2)3/2

]1/2

, (33)

Tables 6, 7, and 8 are similar to Table 5 but for
the resonant cases 5:2:2, 5:3:3, and 5:4:4, respectively.
The values of the parameters are: ω1 = 0.5, ω2 = ω3 =
0.2 for Table 6, ω1 = 0.5, ω2 = ω3 = 0.3 for Table 7
and ω1 = 0.5, ω2 = ω3 = 0.4 for Table 8. We see that
in all cases, the agreement is very good.

For the results of the resonant orbits, given in Ta-
bles 6, 7, and 8, we find that in all cases xerr ≤ 0.01 %,
pzerr ≤ 0.02 %, while Terr ≤ 0.001 %. Figure 5 shows
the 5:2:2 periodic orbit, for the above values of the pa-
rameters, when h = 0.40. The initial conditions are:
x0 = xn = 0.8001 with y0 = z0 = px0 = 0 and pz0 =
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Table 6 Similar to Table 2 but for the 5:2:2 resonant periodic
orbits. The values of the parameters are: ω1 = 0.5 and ω2 =
ω3 = 0.2

h xs xn pzs pzn Ts Tn

0.35 0.7483 0.7484 0.5303 0.5304 62.7858 62.7867

0.40 0.8000 0.8001 0.5667 0.5668 62.7935 62.7944

0.45 0.8485 0.8486 0.6009 0.6010 62.7992 62.8001

0.50 0.8944 0.8945 0.6333 0.6334 62.8036 62.8045

0.55 0.9381 0.9382 0.6641 0.6640 62.8071 62.8097

0.60 0.9798 0.9797 0.6935 0.6934 62.8100 62.8107

Table 7 Similar to Table 2 but for the 5:3:3 resonant periodic
orbits. The values of the parameters are: ω1 = 0.5 and ω2 =
ω3 = 0.3

h xs xn pzs pzn Ts Tn

0.35 0.9165 0.9166 0.4960 0.4961 62.7733 62.7736

0.40 0.9798 0.9799 0.5301 0.5300 62.7833 62.7837

0.45 1.0392 1.0393 0.5621 0.5622 62.7907 62.7912

0.50 1.0954 1.0955 0.5923 0.5924 62.7964 62.7969

0.55 1.1489 1.1488 0.6212 0.6211 62.8010 62.8014

0.60 1.2000 1.2001 0.6487 0.6488 62.8046 62.8050

Table 8 Similar to Table 2 but for the 5:4:4 resonant periodic
orbits. The values of the parameters are: ω1 = 0.5 and ω2 =
ω3 = 0.4

h xs xn pzs pzn Ts Tn

0.35 1.0583 1.0582 0.4592 0.4593 62.7636 62.7633

0.40 1.1314 1.1313 0.4908 0.4907 62.7754 62.7750

0.45 1.2000 1.2001 0.5204 0.5203 62.7841 62.7837

0.50 1.2649 1.2650 0.5484 0.5485 62.7909 62.7903

0.55 1.3266 1.3267 0.5751 0.5750 62.7961 62.7956

0.60 1.3856 1.3857 0.6005 0.6006 62.8004 62.7998

pzn = 0.5668. The integration time for the 5:2:2 peri-
odic orbit shown in Fig. 5 is t = Tn = 62.7944. Fig-
ure 6 shows the 5:3:3 periodic orbit when h = 0.40,
while the values of the parameters are as in Table 7.
The initial conditions are: x0 = xn = 0.9799 with y0 =
z0 = px0 = 0 and pz0 = pzn = 0.5300, while the inte-
gration time is t = Tn = 62.7837. Finally, a 5:4:4 peri-
odic orbit is shown in Fig. 7. The values of the param-
eters are as in Table 8, while the value of the energy is
h = 0.40. The initial conditions are: x0 = xn = 1.1313
with y0 = z0 = px0 = 0 and pz0 = pzn = 0.4907. The

Fig. 5 A 5:2:2 resonant periodic orbit, starting from the x

axis, when ω1 = 0.5, ω2 = ω3 = 0.2 and h = 0.40. The ini-
tial conditions are: x0 = xn = 0.8001 with y0 = z0 = px0 = 0
and pz0 = pzn = 0.5668, while the integration time is
t = Tn = 62.7944

Fig. 6 Similar to Fig. 5 but for the 5:3:3 resonant case. The
values of the parameters are: ω1 = 0.5, ω2 = ω3 = 0.3, and
h = 0.40. The initial conditions are: x0 = xn = 0.9799 with
y0 = z0 = px0 = 0 and pz0 = pzn = 0.5300, while the integra-
tion time is t = Tn = 62.7837
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Fig. 7 Similar to Fig. 5 but for the 5:4:4 resonant case. The
values of the parameters are: ω1 = 0.5, ω2 = ω3 = 0.4, and
h = 0.40. The initial conditions are: x0 = xn = 1.1313 with
y0 = z0 = px0 = 0 and pz0 = pzn = 0.4907, while the integra-
tion time is t = Tn = 62.7750

integration time for the 5:4:4 periodic orbit shown in
Fig. 7 is t = Tn = 62.7750.

4 Discussion and conclusions

As it was mentioned in Sect. 1, the periodic orbits
play an important role in the dynamical behavior of a
Hamiltonian system. In order to locate periodic orbits
in 2D and 3D potentials, researchers have used a num-
ber of numerical or analytical methods [9, 10, 12–17,
20, 22].

In addition to the above methods, there are the
semi-numerical methods. We have presented semi-
numerical results in a number of previous papers [2–
5] for polynomial potentials. Semi-numerical meth-
ods were also successfully used in celestial mechanics
[19]. All the above strongly suggest that these methods
are a very useful tool for the study of the dynamical
systems.

In this paper, we have studied the periodic motion
in a dynamical system composed of a 3D harmonic
oscillator and a Plummer potential in several reso-
nant cases n : m : l, where n ≤ 5, m ≤ 4 and l ≤ 4.

We made this choice for two basic reasons: First, be-
cause it is not possible to study all resonant cases in
a given potential and second, because the important
resonances are those with values of n, m, and l. We
considered resonant cases n : m : l in which the peri-
odic orbits are in fact two-dimensional, lying on a par-
ticular sub-plane of the three-dimensional space. This
issue is very important and essential for our investiga-
tion, since it makes easier the construction of the semi-
numerical relations regarding the position and the pe-
riod of the periodic orbit. However, it is in our future
plans, to study and provide results about real three-
dimensional periodic orbits. Here we must note that
potential (2) was also used by the first author to study
local motion in the central region of a galaxy [24, 25].

The agreement between the results obtained from
the semi-numerical methods and those derived from
the numerical integration of the equations of motion
depends on the value of the energy h. Our numerical
experiments indicate that there is a wide range for the
value of the energy in every resonant case, in which
the agreement is sufficient enough. However, in ev-
ery resonant case we studied in the previous sections,
we chose six representative values of the energy inside
this range, in order to present tables with our data. At
this point, it would be useful to refer to how the numer-
ical results indicate or suggest the formulas giving the
position and the period of the periodic orbits; in other
words, to explain how the formulas are obtained. This
was done on a complete empirical basis, using our pre-
vious experience, simple expressions, which of course,
contain the main parameters entering the Hamiltonian
(4) and give outcomes that are close to those given by
the numerical integration. If the agreement is not sat-
isfactory, we look for a new formula and so on, until
we have achieved a good result.

In particular, the aim of this work was to locate the
position and find the period of the periodic orbits in
the Hamiltonian (4) in the above mentioned resonant
cases using a semi-numerical procedure and compare
the results with the outcomes derived from numeri-
cal integration. We believe that using semi-numerical
methods for finding periodic orbits is very important
in 3D Hamiltonian systems, because in these systems
it is not easy to find integrals of motion, or to apply an-
alytical methods. The difficulty increases in the cases
when we have non polynomial perturbing terms. Fur-
thermore, the comparison of the results given by the
semi-numerical method with the results given by nu-
merical integration shows that our method is fast and
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reliable. On this basis, our semi-numerical method can
be considered as an effective and sharp tool in order to
find the position and the period of periodic orbits in 3D
systems. It is in our plans to try to find more compli-
cated periodic orbits in 3D dynamical systems in the
near future.
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