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Abstract In this paper, an adaptive fuzzy sliding
mode control (AFSMC) for Micro-Electro-Mechanical
Systems (MEMS) triaxial gyroscope is proposed.
First, a novel adaptive identification approach with
sliding mode controller which can identify angular ve-
locity and other system parameters is developed. And
in order to reduce the chattering, an AFSMC is de-
signed to approximate the upper bound of the uncer-
tainties and external disturbances. Based on Lyapunov
methods, these adaptive laws can guarantee that the
system is asymptotically stable. Numerical simula-
tions are investigated to verify the effectiveness of the
proposed AFSMC scheme.

Keywords Adaptive fuzzy sliding mode control ·
MEMS Triaxial Gyroscope · Adaptive identification ·
Lyapunov methods

1 Introduction

The Micro-Electro-Mechanical Systems (MEMS) are
penetrating more and more into measurement and con-
trol problems because of their small size, low cost,
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and low power consumption. The vibrating gyroscope
is one of the MEMS devices that commonly used
for measuring angular velocity. MEMS gyroscopes
are widely applied in the area of aviation, navigation,
automotive, biomedicine, military affairs, and con-
sumer electronics. The performance of the MEMS gy-
roscopes is deteriorated by the effects of time varying
parameters, environment variations, quadrature errors,
and external disturbances. Therefore, advanced con-
trol such as adaptive control, sliding mode control, and
intelligent control are necessary to be used to control
the MEMS gyroscope and improve its performance
and stability.

In the last few years, some control approaches
have been proposed to control the MEMS gyroscope.
Increasing attention has been given to the adaptive
tracking control of MEMS gyroscope. Adaptive con-
trol is a technique of applying system identification
method to obtain a model of the process with its en-
vironment and using this model to design a real-time
controller. Therefore, adaptive control can effectively
solve the robustness problem in the presence of un-
known model parameters and external disturbances.
Park [1] and Leland [2] presented an adaptive con-
troller for a MEMS gyroscope, which drives both axes
of vibration and controls the entire operation of the gy-
roscope. John et al. [3] extends the park’s method [1]
and presents an adaptive controller for triaxial angular
sensors. Batur et al. [4] developed a sliding mode con-
trol for a MEMS gyroscope. Sung et al. [5] derived
a phase-domain design approach to study the mode-
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matched control of gyroscope. Park et al. [6] devel-
oped adaptive control and trajectory-switching algo-
rithm for a MEMS Gyroscope. Adaptive sliding mode
control has the advantages of combining the robust-
ness of variable structure methods with the tracking
capability of adaptive control strategies. An adaptive
sliding mode controller with upper bound estimation
has been developed to control the vibration of MEMS
gyroscope [7]. System nonlinearities are inevitable in
actual engineering and require the controller to be ei-
ther adaptive or robust to these model uncertainties.
Intelligent control approaches such as neural network
and fuzzy control do not require mathematical mod-
els and have ability to approximate nonlinear systems.
Neural network technologies have been applied into
the nonlinear control system [8–10]. Wang [11] pro-
posed universal approximation theorem and demon-
strated that the arbitrary function of a certain set of
functions can be approximated with arbitrary accuracy
using fuzzy system on a compact domain. Therefore,
fuzzy logic system which can approximate arbitrary
nonlinear functions makes it a useful tool for adaptive
application. Guo et al. [12] proposed adaptive fuzzy
sliding mode controller for robot manipulator. Yoo et
al. [13] developed adaptive controller for robot manip-
ulator using fuzzy compensator. Wai et al. [14, 15] pre-
sented adaptive fuzzy sliding-mode control with appli-
cation to electrical servo drive. Chen et al. [16] derived
adaptive fuzzy output tracking control of MIMO non-
linear uncertain systems. Ren et al. [17] investigated
a fuzzy adaptive high-gain-based observer backstep-
ping control for SISO nonlinear systems with dynam-
ical uncertainties. Cetin et al. [18] developed a new
semi-active nonlinear adaptive controller for structures
using MR damper. Li et al. [19] derived an adaptive
fuzzy controller for uncertain MIMO nonlinear sys-
tems in block-triangular forms. Wen et al. [20] de-
signed an adaptive fuzzy-neural tracking controller for
uncertain nonlinear discrete-time systems in the NAR-
MAX form.

In this paper, the study of AFSMC is extended from
two axial angular sensors to triaxial angular sensors.
The contribution of this paper is the integration of the
adaptive sliding mode control and the nonlinear ap-
proximation of AFSMC. Consider the MEMS triaxial
gyroscope with parameter uncertainties and external
disturbances, a novel adaptive identification approach
based on the sliding mode control that can identify an-
gular velocity and other system parameters is devel-
oped. As we know, the sliding mode control requires

the upper bound of uncertainties and disturbances to
specify the sliding mode gain to satisfy the require-
ment of stability and robustness. However, the bound
of the uncertainties is difficult to measure in advance
for practical applications and high sliding mode gain
will cause large chattering. Therefore, an AFSMC is
designed to approximate the upper bound of the uncer-
tainties and external disturbances. Thus, the chatter-
ing in control efforts is reduced greatly. The proposed
adaptive fuzzy sliding mode controller can guarantee
the stability of the closed loop system and improve the
robustness for external disturbances and model uncer-
tainties.

The main motivations in the paper are highlighted
as follows:

1. The adaptive fuzzy control method has been ex-
tended to the control of MEMS gyroscope in this
paper. An adaptive fuzzy sliding mode control is
adopted to approximate the unknown upper bound
of the uncertainties and external disturbances. The
advantage of using adaptive fuzzy sliding mode
control is that we need not know the upper bound of
uncertainties and disturbances in advance. It will be
convenient for us to control the MEMS gyroscope
since the upper bound of the uncertainties and ex-
ternal disturbances can be adaptively tuned. This is
the most important feature of the proposed control
as compared with the existing work.

2. An adaptive fuzzy control is incorporated into the
MEMS control system to strengthen the robustness
of the control system. An adaptive sliding mode
controller is derived to identify angular velocity
and other system parameters of MEMS triaxial
gyroscopes and an adaptive fuzzy control method
based on the sliding-mode control is developed to
estimate the optimal upper bound of uncertainties
and disturbance. This is the successfully applica-
tion example using fuzzy control with the MEMS
gyroscope. Both of these features are the innova-
tive developments of intelligent adaptive control
approach incorporated into conventional adaptive
control for the MEMS gyroscope.

The organization of this paper is as follows: In
Sect. 2, the dynamics of MEMS triaxial gyroscope is
described through nondimensional transformation. In
Sect. 3, an adaptive sliding mode control strategy is
derived to identify angular velocity and other system
parameters of MEMS triaxial gyroscopes. In Sect. 4,
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an adaptive fuzzy control method based on the sliding-
mode control is developed to estimate the optimal up-
per bound of uncertainties and disturbance. Simulation
results are presented in Sect. 5 to verify the effective-
ness of the proposed adaptive fuzzy sliding mode con-
trol. Finally, conclusions are given in Sect. 6.

2 Dynamics of MEMS triaxial gyroscope

This section describes the dynamics of MEMS triaxial
gyroscope. We assume that the gyroscope is moving
with a constant linear speed. The gyroscope is rotating
at a constant angular velocity. The centrifugal forces
are assumed negligible because of small displace-
ments. The gyroscope undergoes rotations along x, y,
and z axis.

Referring to [6], the dynamics of triaxial gyroscope
becomes

mẍ + dxxẋ + dxyẏ + dxzż + kxxx + kxyy + kxzz

= ux + 2mΩzẏ − 2mΩyż

mÿ + dxyẋ + dyyẏ + dyzż + kxyx + kyyy + kyzz

= uy − 2mΩzẋ + 2mΩxż

mz̈ + dxzẋ + dyzẏ + dzzż + kxzx + kyzy + kzzz

= uz + 2mΩyẋ − 2mΩxẏ

(1)

where m is the mass of proof mass. Fabrication imper-
fections contribute mainly to the asymmetric spring
terms kxy , kxz, and kyz and asymmetric damping
terms dxy , dxz, and dyz. The spring terms in the x,
y and z direction are kxx , kyy , and kzz, respectively.
The damping terms in the x, y, and z direction are dxx ,
dyy , and dzz.

Ωx , Ωy , and Ωz are angular velocities in the x, y,
and z direction, respectively. ux , uy , and uz are the
control forces in the x, y, and z direction, respectively.

Dividing Eq. (1) by the reference mass and rewrit-
ing the dynamics in vector forms result in

q̈ + D

m
q̇ + Ka

m
q = u

m
− 2Ωq̇ (2)

where

q =
⎡
⎣

x

y

z

⎤
⎦ , u =

⎡
⎢⎣

ux

uy

uz

⎤
⎥⎦

D =
⎡
⎢⎣

dxx dxy dxz

dxy dyy dyz

dxz dyz dzz

⎤
⎥⎦

Ka =
⎡
⎢⎣

kxx kxy kxz

kxy kyy kyz

kxz kyz kzz

⎤
⎥⎦

Ω =
⎡
⎢⎣

0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

⎤
⎥⎦

Using nondimensional time t∗ = w0t , and dividing
both sides of equation by reference length w2

0 and the
reference length q0 give the final form of the nondi-
mensional equation of motion as

q̈

q0
+ D

mw0

q̇

q0
+ K

mw2
0

q

q0
= u

mw2
0q0

− 2
Ω

w0

q̇

q0
(3)

We define the new parameters as follows:

q∗ = q

q0
, D∗ = D

mw0
, Ω∗ = Ω

w0

u∗ = u

mw2
0q0

, wx =
√

kxx

mw2
0

, wy =
√

kyy

mw2
0

wz =
√

kzz

mw2
0

, wxy = kxy

mw2
0

, wyz = kyz

mw2
0

wxz = kxz

mw2
0

Ignoring the superscript (∗) for notational clarity, the
nondimensional representation of (1) and (2) is

q̈ + Dq̇ + Kbq = u − 2Ωq̇ (4)

where

Kb =
⎡
⎢⎣

w2
x wxy wxz

wxy w2
y wyz

wxz wyz w2
z

⎤
⎥⎦

3 Angular velocity estimation based on adaptive
sliding mode control

In this section, we consider the parameter uncertainties
and external disturbances, an adaptive sliding mode
control strategy is presented to identify angular veloc-
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ity and other system parameters of MEMS triaxial gy-
roscopes.

Rewriting the gyroscope model in state-space equa-
tion as

Ẋ = AX + Bu (5)

where

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ

y

ẏ

z

ż

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−ω2
x −dxx −ωxy −(dxy − 2Ωz) −ωxz −(dxz + 2Ωy)

0 0 0 1 0 0

−ωxy −(dxy + 2Ωz) −ω2
y −dyy −ωyz −(dyz − 2Ωx)

0 0 0 0 0 1

−ωxz −(dxz − 2Ωy) −ωyz −(dyz + 2Ωx) −ω2
z −dzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, u =
⎡
⎢⎣

ux

uy

uz

⎤
⎥⎦

The reference models are chosen at the given different
frequency and amplitude:

xm = A1 sin(ω1t), ym = A1 sin(ω1t)

zm = A3 sin(ω3t)

The state-space equation of reference model can be
rewritten as

Ẋm = AmXm (6)

where

Xm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xm

ẋm

ym

ẏm

zm

żm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Am =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−ω2

1 0 0 0 0 0
0 0 0 1 0 0
0 0 −ω2

2 0 0 0
0 0 0 0 0 1
0 0 0 0 −ω2

3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

ω1 �= ω2 �= ω3

Referring Eq. (5), we consider the system with param-
eter uncertainties and external disturbances as

Ẋ = (A + �A)X + Bu + f (t) (7)

where �A is the unknown parameter uncertainties of
the matrix A, f (t) is the external disturbances.

To ensure the achievement of the control objective,
we make the following assumptions.

Assumption 1 (Matching condition) There exists un-
known matrix functions of appropriate dimensions
D(t) and G(t) such that

�A(t) = BD(t), f (t) = BG(t) (8)

where BD(t) is the matched uncertainty and BG(t) is
the matched disturbance

Under the assumption of matching condition, (7)
can be rewritten as follows:

Ẋ = AX + Bu + �AX + f (t)

= AX + Bu + BDX + BG

= AX + Bu + Bfm (9)

where Bfm represents the lumped matched parame-
ter uncertainties and external disturbances, which is
given by

fm = DX + G (10)
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Assumption 2 (Matching condition) There exists a

constant matrix K∗ such that the following matching

condition A + BK∗T = Am can be always satisfied,
where

K∗T =
⎡
⎢⎣

ω2
x − ω2

1 dxx ωxy dxy − 2Ωz ωxz dxz + 2Ωy

ωxy dxy + 2Ωz ω2
y − ω2

2 dyy ωyz dyz − 2Ωx

ωxz dxz − 2Ωy ωyz (dyz + 2Ωx) ω2
z − ω2

3 dzz

⎤
⎥⎦ .

Assumption 3 (Bounded condition) There exists a
positive definite matrix f = diag[f1 f2 f3] such that
the bounded condition |fmi | < fi (i = 1,2,3) can al-
ways be satisfied.

Define the tracking error as follows:

e = X − Xm (11)

Then the derivative of tracking error is

ė = Ẋ − Ẋm

= AX + Bu + Bfm − AmXm

= Ame + (A − Am)X + Bu + Bfm (12)

Define the sliding surface as follows:

S = Ce (13)

where S = [s1 s2 s3]T, C is a constant matrix.
Then the derivative of sliding surface is

Ṡ = Cė = CAme + C(A − Am)X + CBu + CBfm

= CAme − CBK∗TX + CBu + CBfm (14)

Setting Ṡ = 0, we get the equivalent control ueq as

ueq = K∗TX − (CB)−1CAme − fm (15)

Consider the system parameters of A may be un-
known, namely K∗ is unknown, the control law
ueq cannot be implemented in practical applications.
Therefore, an adaptive version of control algorithm is
proposed as

u = ueq + un = KTX − (CB)−1CAme − f sgn(S)

(16)

where K is the estimate of K∗, the last component
un = −f sgn(S) is designed to compensate the uncer-
tainties and disturbances fm to guarantee that the slid-
ing mode reaching condition can be always satisfied.

Substituting (16) into (14), we get

Ṡ = Cė = CBK̃TX + CBfm − CBf sgn(S) (17)

where K̃ = K − K∗.
Define a Lyapunov function as

V1 = 1

2
STS + 1

2
tr
[
K̃M−1K̃T]

(18)

where M = MT > 0, M is a positive definite matrix,
tr[M] denoting the trace of M .

Differentiating V1 with respect to time yields

V̇1 = STṠ + tr
[
K̃M−1 ˙̃

KT]

= ST(
CBK̃TX + CBfm − CBf sgn(S)

)

+ tr
[
K̃M−1 ˙̃

K
T]

= STCBK̃TX + tr
[
K̃M−1 ˙̃

KT] + STCBfm

− STCBf sgn(S)

= tr
[
K̃BTCTSXT] + tr

[
K̃M−1 ˙̃

KT] + STCBfm

− STCBf sgn(S) (19)

To make V̇1 ≤ 0, we choose the adaptive laws as

˙̃
KT(t) = K̇T(t) = −MBTCTSXT (20)

Substituting ˙̃
KT(t) into (19)

V̇1 = STCBfm − STCBf sgn(S)

=
3∑

i=1

(
λisifmi − λisifi sgn(si)

)

≤
3∑

i=1

(
λi |si ||fmi | − λi |si |fi

)

= −
3∑

i=1

λi |si |
(
fi − |fmi |

) ≤ 0 (21)

This implies that the trajectory reaches the sliding sur-
face in finite time and remains on the sliding sur-
face. Furthermore, it can be proved that the controller
parametersK will converge to their true values K∗ if
ω1 �= ω2 �= ω3, limt→∞ K̃ → 0. Then from Assump-
tion 3, we get
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K∗T =
⎡
⎢⎣

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

⎤
⎥⎦

=
⎡
⎢⎣

ω2
x − ω2

1 dxx ωxy dxy − 2Ωz ωxz dxz + 2Ωy

ωxy dxy + 2Ωz ω2
y − ω2

2 dyy ωyz dyz − 2Ωx

ωxz dxz − 2Ωy ωyz (dyz + 2Ωx) ω2
z − ω2

3 dzz

⎤
⎥⎦ (22)

The parameters of MEMS gyroscope can be ob-
tained as follows:

dxx = k12, dyy = k24, dzz = k36

ωxy = k13 = k21, ωyz = k25 = k33

ωxz = k15 = k31, ω2
x = ω2

1 + k11

ω2
y = ω2

2 + k23, ω2
z = ω2

3 + k35

dxy = 1

2
(k22 + k14), dyz = 1

2
(k34 + k26)

dxz = 1

2
(k16 + k32), Ωx = 1

4
(k34 − k26)

Ωy = 1

4
(k16 − k32), Ωz = 1

4
(k22 − k14)

4 Adaptive fuzzy sliding mode control design

In conventional sliding mode control, the upper bound
f of uncertainties, which includes parameter vari-
ations and external disturbances, must be available.
However, the bound of the uncertainties is difficult
to measure in advance for practical applications. If f

is chosen to be too small, it may not compensate the
uncertainties and disturbances fm to guarantee reach-
ing condition of sliding mode, so the control system
may be unstable. If f is chosen to be too large, the
control effort will have large chattering. Therefore, an
adaptive fuzzy control method based on the sliding-
mode control is proposed to estimate the optimal up-
per bound of fm in this section.

Replacing f by f̂ in (16), the new version of con-
trol algorithm can be obtained:

u = ueq + un = −(CB)−1CAme − KTX − f̂ sgn(S)

(23)

where f̂ is the estimate of f , f̂ = diag[f̂1 f̂2 f̂3].
The dynamics of sliding surface (17) can be rewrit-

ten as

Ṡ = Cė = CBK̃TX + CBfm − CBf̂ sgn(S) (24)

According to the universal approximation theorem,
there exists an optimal fuzzy control system f ∗ such
that

f ∗ = f + ε = α∗T
i ξ i (25)

where ε is the approximation error and satisfying
|ε| < E.

Employing an adaptive fuzzy control systemf̂ to
approximate f . By using the strategy of singleton
fuzzification, product inference and center-average de-
fuzzification, the output of adaptive fuzzy system is

f̂i =
∑m

j=1 αijμA(si)∑m
j=1 μA(si)

= α̂T
i ξ i (26)

where α̂i is the estimate of α∗
i , which is an ad-

justable parameter vector. α̂i = [α̂i1, α̂i2, . . . , α̂im]T,
ξ i = [ξi1, ξi2, . . . , ξim]T.

Define a Lyapunov function as

V = 1

2
STS + 1

2
tr
[
K̃M−1K̃T] + 1

2η

3∑
i=1

α̃T
i α̃i (27)

where M = MT > 0, M is a positive definite matrix,
tr[M] denoting the trace of M , η is a positive constant,
α̃i = α̂i − α∗

i .
Differentiating V with respect to time yields

V̇ = STṠ + tr
[
K̃M−1 ˙̃

KT] + 1

η

3∑
i=1

α̃T
i
˙̃αi

= ST(
CBK̃TX + CBfm − CBf̂ sgn(S)

)

+ tr
[
K̃M−1 ˙̃

KT] + 1

η

3∑
i=1

α̃T
i
˙̃αi

= tr
[
K̃BTCTSXT] + tr

[
K̃M−1 ˙̃

KT] + STCBfm

− STCBf̂ sgn(S) + 1

η

3∑
i=1

α̃T
i
˙̃αi

= STCBfm − STCBf̂ sgn(S) + 1

η

3∑
i=1

α̃T
i
˙̃αi
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=
3∑

i=1

(
λisifmi − λisi f̂i sgn(si)

) + 1

η

3∑
i=1

α̃T
i
˙̃αi

=
3∑

i=1

(
λisifmi − λisi f̂i sgn(si) + λisif

∗
i sgn(si)

− λisif
∗
i sgn(si)

) + 1

η

3∑
i=1

α̃T
i
˙̃αi

= −
3∑

i=1

(
λisif

∗
i sgn(si) − λisifmi

)

−
3∑

i=1

(
λisi f̂i sgn(si) − λisif

∗
i sgn(si)

)

+ 1

η

3∑
i=1

α̃T
i
˙̃αi

≤ −
3∑

i=1

λi |si |
(
fi + εi − |fmi |

) −
3∑

i=1

λi |si |α̃T
i ξ i

+ 1

η

3∑
i=1

α̃T
i
˙̃αi (28)

To make V̇ ≤ 0, the adaptive law is designed as

˙̃αi = ˙̂αi = ηλi |si |ξ i (29)

Then (28) becomes

V̇ ≤ −
3∑

i=1

λi |si |
(
fi + εi − |fmi |

) ≤ 0 (30)

This implies that V̇ is a negative semi-definite func-
tion. V̇ becomes negative semi-definite implying that
the trajectory reaches the sliding surface in finite time
and remains on the sliding surface and S, K̃, α̃i are all
bounded.

Furthermore, we have
∫ t

0 V̇ (τ ) dτ = V (t)−V (0) ≤
− ∫ t

0

∑3
i=1 λi |si |(fi + εi − |fmi |) dτ , that is V (t) +∫ t

0

∑3
i=1 λi |si |(fi +εi −|fmi |) dτ ≤ V (0). Since V (0)

is bounded and V (t) is nonincreasing bounded func-

tion, limt→∞
∫ t

0

∑3
i=1 λi |si |(fi + εi −|fmi |) dτ < ∞.

According to the Barbalat lemma, it can be concluded
that limt→∞

∑3
i=1 λi |si |(fi + εi − |fmi |) = 0, which

means limt→∞ si(t) = 0. Consequently, e(t) also con-
verges to zero asymptotically.

5 Simulation analysis

According to the proposed adaptive fuzzy sliding
mode control approach, the simulation is performed in
MATLAB/Simulink software. The control objective is
design an adaptive fuzzy sliding mode controller so
that the position q can track the reference model qm

and the unknown angular velocity can be estimated.
The parameters of the MEMS triaxial gyroscope are
as follows:

m = 0.57 × 10−8 kg, q0 = 1 μm

ω0 = 3 kHz, dxx = 0.429 × 10−6 N s/m

dyy = 0.687 × 10−6 N s/m,

dzz = 0.895 × 10−6 N s/m

dxy = 0.0429 × 10−6 N s/m

dxz = 0.0687 × 10−6 N s/m

dyz = 0.0895 × 10−6 N s/m, kxx = 80.98 N/m

kyy = 71.62 N/m, kzz = 60.97 N/m

kxy = 5 N/m, kxz = 6 N/m, kyz = 7 N/m

The unknown angular velocity is assumed Ωx =
3 rad/s, Ωy = 2 rad/s, Ωz = 5 rad/s. Through non-
dimensional transformation, angular velocity can be
obtained:

Ωx = 0.001, Ωy = 0.000667, Ωz = 0.00167

The reference inputs are xm = sin(6.71t), ym =
1.2 sin(5.11t), zm = 1.5 sin(4.17t).

The initial state condition are x0 = [0 0 0 0 0 0], the
initial value of K is K(0) = 0.95K∗, the true value of
K are

K∗T =
⎡
⎣

1533.5 0.0251 97.4659 −0.00083 116.9591 0.0054
97.4659 0.0059 1370 0.0402 136.4522 0.0032

116.9591 0.0027 136.4522 0.0072 1171.1 0.0523

⎤
⎦ ,
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Fig. 1 Position tracking
of X, Y , Z axis

Fig. 2 Tracking errors
of X, Y , Z axis

the external disturbance is fm(t) = [10 sin(6t)

10 cos(5t) 10 cos(4t)]T. The upper bound of gain is

f = diag[100 100 100].
In (20) and (29), the parameters are chosen as

C =
⎡
⎣

5 1 0 0 0 0
0 0 5 1 0 0
0 0 0 0 5 1

⎤
⎦

M = diag
[
40 40 40

]
, η = 5
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Fig. 3 Convergence of the
sliding surface s

The membership functions for sliding surface s are
chosen as

μNM(s) = 1/
(
1 + exp

(
5(s + 3)

))
,

μZO(s) = 1/
(
1 + exp

(−s2)),
μPM(s) = 1/

(
1 + exp

(
5(s − 3)

))

Figures 1 and 2 show the position tracking and track-
ing error of X, Y , and Z axis of the AFSMC system,
respectively. It can be found that the position of X, Y ,
and Z axis can effectively track the desired trajectory
in the presence of the external disturbances and the
tracking error can converge to zero in very short time.
It can be concluded from Fig. 1 and Fig. 2 that the
MEMS triaxial gyroscope can maintain the proof mass
to oscillate in the X, Y , and Z direction at given fre-
quency and amplitude. Figure 3 depicts that the slid-
ing surface converge to zero asymptotically in a short
time, demonstrating the control system will get into
sliding surface and remain along with it. Figure 5 plots
the adaptation of the controller parameters K . It can be
shown that the estimation of controller parameters K

converge to their true values with persistent excitation
signals.

Figure 4 draws the adaptation of angular velocity.
It can be observed that the angular velocity Ωx , Ωy ,
Ωz converge to their true values after computation of
dimensionless. Figure 6 shows the adaptation of α̂i .

Fig. 4 Adaptation of angular velocity Ωx , Ωy , Ωz

It can be found that the adjustable parameter α̂i con-
verge to constant values. Figure 7 and Fig. 8 compare
the control efforts between AFSMC system with adap-
tive sliding gain using adaptive fuzzy approach and
the conventional adaptive sliding control system with
fixed sliding gain. It is obvious that the control input
in Fig. 7 is better than that of Fig. 8 and the chattering
is reduced greatly when using AFSMC to estimate the
upper bound of system disturbances.
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Fig. 5 Adaptation of the
controller parameters K
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Fig. 6 Adaptation of α̂i
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Fig. 7 Control efforts with
AFSMC

Fig. 8 Control efforts with
fixed gain

6 Conclusion

This paper investigates an adaptive algorithm based
the sliding mode control to identify the unknown an-
gular velocity and an AFSMC strategy to estimate the
upper bound of the uncertainties and external distur-

bances. The stability of the closed-loop system can be
guaranteed with the proposed AFSMC strategy. The
simulation results demonstrate the proposed AFSMC
method has better robustness and favorable tracking
performance. At the same time, the unknown angular
velocity can be estimated correctly when the persis-
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tent excitation condition is satisfied and the chattering
is reduced greatly with the upper bound estimation of
the model uncertainties and external disturbances.
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