
Nonlinear Dyn (2012) 69:2277–2288
DOI 10.1007/s11071-012-0426-y

O R I G I NA L PA P E R

Synchronization between fractional-order
Ravinovich–Fabrikant and Lotka–Volterra systems

S.K. Agrawal · M. Srivastava · S. Das

Received: 1 February 2012 / Accepted: 9 April 2012 / Published online: 28 April 2012
© Springer Science+Business Media B.V. 2012

Abstract This article examines the synchronization
performance between two fractional-order systems,
viz., the Ravinovich–Fabrikant chaotic system as drive
system and the Lotka–Volterra system as response sys-
tem. The chaotic attractors of the systems are found for
fractional-order time derivatives described in Caputo
sense. Numerical simulation results which are carried
out using Adams–Boshforth–Moulton method show
that the method is reliable and effective for synchro-
nization of nonlinear dynamical evolutionary systems.
Effects on synchronization time due to the presence of
fractional-order derivative are the key features of the
present article.

Keywords Chaos · Synchronization · Fractional
derivative · Ravinovich–Fabrikant · Lotka–Volterra

1 Introduction

Mathematical models of dynamical systems describe
the evolution of systems in terms of equation of mo-
tion and initial values. Few examples of dynamical
systems are found in mechanics for physics, popu-
lation dynamics in biology, and chemical kinetics in
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chemistry. Thus theory also has an increasing num-
ber of applications in social sciences as in mathemati-
cal economy and finance. The concept of a dynamical
system has its origin in Newtonian mechanics. Like
the other natural sciences and engineering disciplines,
the mathematical model of a dynamical system is ex-
pressed either in the form of a differential equation
for continuous case or a difference equation for dis-
crete case, which form the mathematical model. The
differential equation or the difference equation math-
ematically expresses the present states of the system
in terms of the past ones for a constant set of inputs
and fixed parameters of the system. Once the system
is solved through successive integration or iteration,
given an initial point, it is possible to determine all its
future positions or states, a collection of points which
comprise a trajectory or orbit. Previously, modeling
was mainly restricted to linear systems for which an-
alytical treatment is tractable. Recently, due to the ad-
vent of powerful computers and with improved com-
putational techniques, it is now also possible to tackle,
to some extent, nonlinear systems. After all, nonlin-
earity is a phenomenon that is exhibited by most of the
systems in nature and has gained increasing popularity
during the last few decades.

Fractional calculus is a field of applied mathemat-
ics that deals with derivatives and integrals of arbitrary
orders and have applications in various fields of sci-
ence and engineering including fluid mechanics [1, 2],
viscoelasticity [3], material science [4], quantum me-
chanics [5], bioengineering [6], medicine [7], biolog-
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ical models [8, 9], cardiac tissues [10], etc. The at-
tribute of fractional-order systems for which they have
gained popularity in the investigation of dynamical
systems is that they allow a greater flexibility in the
model. An integer-order differential operator is a local
operator, whereas a fractional-order differential oper-
ator is nonlocal in the sense that it takes into account
the fact that the future state not only depends upon the
present state but also upon all the history of its pre-
vious states. For this realistic property, the fractional-
order systems are becoming popular. Thus fractional
calculus is considered as a superset of integer-order
calculus. Sabatier et al. [11] have stated that fractional
calculus has the potential to accomplish what integer-
order calculus cannot.

Chaotic systems are class of nonlinear determinis-
tic systems which have aperiodic long-term behavior,
which exhibits sensitive dependence on initial condi-
tions. Aperiodic long-term behavior means that there
are trajectories which do not settle down to fixed
points, periodic orbits, or quasi-periodic orbits as time
tends to infinity. Deterministic means that the system
has no random or noisy inputs or parameters. This ir-
regular behavior arises from the system’s nonlinear-
ity, rather than from noisy driving forces. Sensitivity
means that a small change in the initial state will lead
to progressively larger changes in later system states,
i.e., the concept of chaos has been used to explain how
systems subject to known laws of physics may be pre-
dictable in the short term but are apparently random
on a longer time scale.

The most important achievement in the research of
chaos is that chaotic systems can be made to synchro-
nize with each other. The word synchronization means
that the trajectories of two systems will converge
and they will remain in step with each other. Thus
it appears to be structurally stable. These ideas have
motivated the authors to construct a real mathemati-
cal model for synchronization of two fractional-order
chaotic systems, namely the Ravinovich–Fabrikant
and Lotka–Volterra systems. The pioneering work of
Pecore and Corrall [12] introduced a method about
synchronization between the drive (master) and re-
sponse (slave) systems of two identical or nonidentical
systems with different initial conditions, which has at-
tracted a great deal of interest in various fields due to
its important applications in ecological system [13],
physical system [14], chemical system [15], modeling
brain activity, system identification, pattern recogni-
tion phenomena, secure communications [16], etc.

In the recent years, various synchronization
schemes, such as linear and nonlinear feedback syn-
chronization [17], time delay feedback approach [18],
adaptive control [19], adaptive feedback control [20],
tracking control [21], active control [22], back-stepping
design method [23], sliding-mode control [24], and so
on, have been successfully applied to chaos synchro-
nization. The concept of synchronization has been ex-
tended to the scope such as chaos control and synchro-
nization [25, 26], generalized synchronization [27],
complete synchronization [28], lag synchronization
[29], adaptive synchronization [30], phase synchro-
nization [31, 32], anti-phase synchronization [31–34],
projective synchronization [35], etc.

The important feature of the study of synchroniza-
tion is that where the difference of states of chaotic
systems converge to zero for large time. Such a
phenomenon is known as complete synchronization.
Mathematically, the synchronization is achieved when
limt→∞ ‖x1(t) − x2(t)‖ = 0, where x1(t) and x2(t)

are the state vectors of the drive and response systems,
respectively.

The general Lotka–Volterra model is the starting
point of wide classes of models in ecology, biology,
economics, physics, and chemistry. Lotka [36] and
Volterra [37] have presented for the first time the dif-
ferential equations of predator–prey type. Since then
more complicated but realistic predator–prey systems
have been used by ecologists and mathematicians. In
1988, Samardzija and Greller [38] proposed a model
of two-predator one-prey generalization of the Lotka–
Volterra equations. The proposed three-dimensional
system exhibits chaotic behavior, takes an explosive
route to chaos, and in various regions of parameter
space evolves on a fractal torus. The Ravinovich–
Fabrikant system models the stochasticity arising from
the modulation instability in a nonequilibrium dissi-
pative medium. The Ravinovich–Fabrikant equations
are a set of three coupled ordinary differential equa-
tions exhibiting chaotic behavior for certain values of
the parameters. This system is described by Mikhail
Ravinovich and Anatoly Fabrikant in 1979. Danca
and Chen [39] noticed that the Ravinovich–Fabrikant
system is difficult to analyze due to the presence of
quadratic and cubic terms. In this system different at-
tractors can be obtained for the same parameters by
using different step sizes in the integration. The his-
torical importance of these two models and physi-
cal relevance of the study of synchronization between
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standard-order chaotic systems have motivated the au-
thors to construct a real mathematical model to inves-
tigate the time required for synchronization between
these two chaotic systems with fractional-order deriva-
tives.

In this article, the authors have used the active con-
trol method for synchronization between the general-
ized Lotka–Volterra model and Ravinovich–Fabrikant
model. Using Adams–Boshforth–Moulton method,
computer simulations are carried out for different or-
der fractional time derivatives and also for standard
one which are displayed graphically to demonstrate
the efficiency of the proposed approach.

2 Preliminaries definitions, theorem, and
numerical method

2.1 Fractional calculus

Fractional calculus is a generalization of integra-
tion and differentiation to a noninteger-order integro-
differential operator aD

q
t is defined by

aD
q
t =

⎧
⎪⎪⎨

⎪⎪⎩

dq

dtq
, R(q) > 0,

1, R(q) = 0,
∫ t

a
(dτ )−q R(q) < 0,

(1)

where q is the fractional order which may be a com-
plex number, R(q) denotes the real part of q, a is the
fixed lower terminal, and t is the moving upper termi-
nal (a < t).

There are some definitions for fractional derivative.
The commonly used is the Riemann–Liouville defini-
tion:

aD
q
t x(t) = dn

dtn
j

n−q
t x(t), q > 0, (2)

n = �q�, i.e., n is the first integer which is not less
than q, j r

t is the r th-order Riemann–Liouville integral
operator, which is described as follows:

j r
t ϕ(t) = 1

Γ (r)

∫ t

0
(t − τ)r−1ϕ(τ) dτ, (3)

where 0 < r ≤ 1, and Γ (.) represents the gamma func-
tion.

In our work we use the following definition:

D
q
t x(t) = j

n−q
t x(n)(t), q > 0, (4)

where n = �q�, and the operator D
q
t is the Caputo dif-

ferential operator of order q .
The important reason of choosing Caputo deriva-

tives for solving initial-value fractional-order differ-
ential equations is that the Riemann–Liouville initial-
value problems require homogeneous initial condi-
tions, though the Caputo initial-value problem holds
for both homogeneous and non-homogeneous con-
ditions. Another important difference between the
Riemann–Liouville definition and Caputo definition
is that the Caputo derivative of a constant is zero,
whereas in the cases of a finite value of the lower ter-
minal at the Riemann–Liouville fractional derivative
of constant is not equal to zero: D

q
t C = C t−q

Γ (1+q)
. For

this reason, the Caputo derivative is better than the
Riemann–Liouville derivative.

2.2 Numerical approximation method

Numerical methods used for solving ODEs have to
be modified for solving fractional differential equa-
tions (FDEs). We only derive the predictor–corrector
scheme for drive–response systems. This scheme is
the generalization of Adams–Bashforth–Moulton one
[40, 41]. We interpret the approximate solution of non-
linear fractional-order differential equations by means
of this algorithm in the following way.

The considered differential equation,

D
q
t y(t) = f

(
t, y(t)

)
, 0 ≤ t ≤ T ,

y(k)(0) = y
(k)
0 , k = 0,1, . . . , [q],

(5)

is equivalent to the Volterra integral equation

y(t) =
[q]−1∑

k=0

y
(k)
0

tk

k! +
1

Γ (q)

∫ t

0
(t −s)q−1f

(
s, y(s)

)
ds.

(6)

Set h = T/N, tn = nh,n = 0,1, . . . ,N ∈ Z+.
Then (6) can be discredized as follows:

yh(tn+1) =
[q]−1∑

k=0

y
(k)
0

tkn+1

k!

+ hq

Γ (q + 2)
f

(
tn+1, y

p
h (tn+1)

)

+ hq

Γ (q + 2)

n∑

j=0

aj,n+1f
(
th, yh(tj )

)
, (7)
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Fig. 1 Phase portraits of the Ravinovich–Fabrikant system in x–y–z space and x–y, y–z, x–z planes

qj,n+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nq+1 − (n − q)(n + 1)q if j = 0,

(n − j + 2)q+1 + (n − j)q+1

− 2(n − j + 1)q+1 if 0 ≤ j ≤ n,

1 if j = n + 1,

(8)

where the predicted value yh(tn+1) is determined by

y
p
h (tn+1) =

[q]−1∑

k=0

y
(k)
0

tkn+1

k!

+ 1

Γ (q)

n∑

j=0

bj,n+1f
(
tj , yh(tj )

)
, (9)

bj,n+1 = hq

q

(
(n + 1 − j)q − (n − j)q

)
. (10)

The error estimate is

max
j=0,1,...,N

∣
∣y(tj ) − yh(tj )

∣
∣ = o

(
hp

)
where

p = min(2,1 + q). (11)

2.3 Synchronization between different
fractional-order chaotic systems

Let us consider the two different fractional-order
chaotic systems

dqx

dtq
= Ax + F(x), (12)
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Fig. 2 Phase portraits of the Ravinovich–Fabrikant system in x–y–z space and x–y, y–z, x–z planes

dqy

dtq
= By + G(y), (13)

where 0 < q ≤ 1 is the fractional-order time deriva-
tive, x, y ∈ Rn are the state vectors, F(x),G(y) ∈ Rn

are the nonlinear terms of systems (12) and (13) and
are smooth functions. A, B are constant matrices. For
synchronization of the above two different systems,
system (12) represents the master (drive) system, and
system (13) represents the slave (response) system.

Now introducing the active control parameter u ∈
Rn in system (13), we get

dqy

dtq
= By + G(y) + u. (14)

The purpose of chaos synchronization is how to design
the active controller u, which is able to synchronize

the states of both the master and the slave systems.
If we define the error vector as e = y − x, the error
dynamical system becomes

dqe

dtq
= Be + (B − A)x + G(y) − F(x) + u. (15)

2.4 Theorem

The following autonomous system (Matignon [42])

Dqx = Ax, x(0) = x0,

where 0 < q < 1, x ∈ Rn,A ∈ Rn×n, is asymptoti-
cally stable iff | arg(spec(A))| > qπ/2. In this case,
each component of the states decays toward 0 like t−q .
Also, this system is stable iff | arg(spec(A))| ≥ qπ/2,
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Fig. 3 Phase portraits of Lotka–Volterra system in x–y–z space and x–y, y–z, x–z planes

and those critical eigenvalues that satisfy
| arg(spec(A))| = qπ/2 have geometric multiplicity
one.

2.5 The Ravinovich–Fabrikant chaotic system

The Ravinovich–Fabrikant chaotic system [43] is
given by

dx

dt
= y

(
z − 1 + x2) + γ x,

dy

dt
= x

(
3z + 1 − x2) + γy, (16)

dz

dt
= −2z(α + xy).

The Ravinovich–Fabrikant time fractional-order
chaotic system is given by

dq1x

dtq1
= y

(
z − 1 + x2) + γ x,

dq2y

dtq2
= x

(
3z + 1 − x2) + γy, (17)

dq3z

dtq3
= −2z(α + xy), 0 < qi < 1, i = 1,2,3.

For the parameters α = 1.1, γ = 0.87, both sys-
tems (16) and (17) remain chaotic. During synchro-
nization, the initial condition is taken as [−1,0,0.5].
The chaotic attractors of system (16) are described in
Fig. 1. The phase portraits in x–y–z space and x–y,
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Fig. 4 Phase portraits of Lotka–Volterra system in x–y–z space and x–y, y–z, x–z planes

y–z, z–x planes are shown in Figs. 1(a)–(d), respec-
tively. At qi = 0.99 (i = 1,2,3), the chaotic attractors
of system (17) are described in Fig. 2, where phase
portraits in x–y–z space and x–y, y–z, z–x planes are
shown in Figs. 2(a)–(d), respectively.

2.6 The Lotka–Volterra chaotic system

The Lotka–Volterra chaotic system [37, 44] is given
by

dx

dt
= ax − bxy + ex2 − szx2,

dy

dt
= −cy + dxy, (18)

dz

dt
= −pz + szx2.

The fractional-order Lotka–Volterra chaotic system
is given by

dq1x

dtq1
= ax − bxy + ex2 − szx2,

dq2y

dtq2
= −cy + dxy, (19)

dq3z

dtq3
= −pz + szx2, 0 < qi < 1, i = 1,2,3,

where parameters a, b, c, d > 0, a represents the nat-
ural growth rate of the prey in the absence of preda-
tors, b represents the effect of predation on the prey, c

represents the natural death rate of the predator in the
absence of prey, d represents the efficiency and propa-
gation rate of the predator in the presence of prey, and
e,p, s are positive constants.
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Fig. 5 State trajectories of drive system (20) and response sys-
tem (21) for the integer order of derivative qi = 1 (i = 1,2,3):
(a) between x1 and x2, (b) between y1 and y2, (c) between z1

and z2, (d) the evolution of the error functions e1(t), e2(t), and
e3(t), (e) phase space representation of the synchronization of
the master–slave chaotic systems at standard-order derivative

During synchronization the parameters are taken as
a = 1, b = 1, c = 1, d = 1, e = 2, s = 2.7, p = 3,
and the initial condition is taken as [1, 1.4, 1]. The
chaotic attractors of system (18) with phase portraits
are described in Fig. 3. At qi = 0.99 (i = 1,2,3), the
chaotic attractors of system (19) with different phase
portraits are described in Fig. 4.

2.7 Synchronization between Ravinovich–Fabrikant
chaotic system and Lotka–Volterra chaotic
system via active control method

In this section the synchronization behavior between
two different fractional-order and standard-order Ravi-

novich–Fabrikant and Lotka–Volterra is made. We

consider that the Ravinovich–Fabrikant system drives

the Lotka–Volterra system. Therefore, we define the

Ravinovich–Fabrikant as a master system and Lotka–

Volterra as a slave system as follows.

The master system described through Eq. (17) is

⎧
⎪⎪⎨

⎪⎪⎩

dq1 x1
dtq1 = y1(z1 − 1 + x2

1) + γ x1,

dq2 y1
dtq2 = x1(3z1 + 1 − x2

1) + γy1,

dq3 z1
dtq3 = −2z1(α + x1y1).

(20)
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Fig. 5 (Continued)

The slave system described through Eq. (19) is

⎧
⎪⎪⎨

⎪⎪⎩

dq1 x2
dtq1 = ax2 − bx2y2 + ex2

2 − sz2x
2
2 + u1(t),

dq2 y2
dtq2 = −cy2 + dx2y2 + u2(t),

dq3 z2
dtq3 = −pz2 + sz2x

2
2 + u3(t),

(21)

where three active control functions u1(t), u2(t), and

u3(t) are introduced in Eq. (21). Our goal is to inves-

tigate the synchronization of systems (20) and (21).

We define the error states e1 = x2 − x1, e2 = y2 − y1,

e3 = z2 − z1. The corresponding error dynamics can

be obtained by subtraction of Eq. (20) from (21) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq1 e1
dtq1 = ae1 − (a + γ )x1 − by2x2

+ (e − sz2)x
2
2

− (z1 − 1 + x2
1)y1 + u1(t),

dq2 e2
dtq2 = −ce2 − (c + γ )y1 + dx2y2

− (3z1 + 1)x1 + x3
1 + u2(t),

dq3 e3
dtq3 = −pe3 + (2α − p)z1 + sz2x

2
2

+ 2x1y1z1 + u3(t).

(22)

Then we define the active control inputs u1(t), u2(t),

and u3(t) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = v1(t) + (a + γ )x1 + by2x2

− (e − sz2)x
2
2 + (z1 − 1 + x2

1)y1,

u2(t) = v2(t) + (c + γ )y1 − dx2y2

+ (3z1 + 1)x1 − x3
1 ,

u3(t) = v3(t) − (2α − p)z1 − sz2x
2
2

− 2x1y1z1,

(23)

which leads to
⎧
⎪⎪⎨

⎪⎪⎩

dq1 e1
dtq1 = ae1 + v1(t),

dq2 e2
dtq2 = ce2 + v2(t),

dq3 e3
dtq3 = −pe3 + v3(t).

(24)

The synchronization error system (24) is a linear sys-
tem with active control inputs v1(t), v2(t), and v3(t).
Next, design an appropriate feedback control which
stabilizes the system so that e1, e2, e3 converge to
zero as time t tends to infinity, which implies that
Ravinovich–Fabrikant and Lotka–Volterra systems are
synchronized with feedback control. There are many
possible choices for the control inputs v1(t), v2(t), and
v3(t). We choose

⎡

⎣
v1(t)

v2(t)

v3(t)

⎤

⎦ = C

⎡

⎣
e1

e2

e3

⎤

⎦ , (25)

where C is a 3×3 constant matrix. In order to make
the closed-loop system stable, the matrix C should be
selected in such a way that the feedback system has
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Fig. 6 State trajectories of drive system (20) and response
system (21) for the fractional order qi = 0.99 (i = 1,2,3):
(a) between x1 and x2, (b) between y1 and y2, (c) between z1
and z2, (d) the evolution of the error functions e1(t), e2(t), and

e3(t), (e) phase space representation of the synchronization of
the master–slave chaotic system at fractional-order derivatives
qi = 0.99 (i = 1,2,3)

eigenvalues λi of C satisfying the control | arg(λi)| >

0.5πq, i = 1,2,3. There is no a unique choice for
such a matrix C. A good choice can be as follows:

C =
⎛

⎝
−a − 1 0 0

0 c − 1 0
0 0 p − 1

⎞

⎠ . (26)

Finally, the error system is changed to
⎧
⎪⎪⎨

⎪⎪⎩

dq1 e1
dtq1 = −e1,

dq2 e2
dtq2 = −e2,

dq3 e3
dtq3 = −e3.

(27)

All the three eigenvalues of the system are −1; hence
the condition that all qi ≤ 1 is satisfied, and we finally
obtain the required synchronization.

2.8 Simulation and results

In numerical simulations, the parameters of the Ravi-
novich–Fabrikant system are taken as α = 1.1, γ =
0.87. Parameters of the Lotka–Volterra system are
taken as a1 = 1, b1 = 1, c1 = 1, d1 = 1, e = 2, p = 3,
s = 2.9851. Time step size is 0.005. The initial values
of the master system and the slave system are taken
[−1,0,0.5] and [1,1.4,1], respectively. Thus, the ini-
tial errors are [2,1.4,0.5].



Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems 2287

Fig. 6 (Continued)

Figures 5 and 6 demonstrate that the systems are
synchronized after small duration of time for both
the integer-order time derivative qi = 1 (i = 1,2,3)

and fractional-order time derivatives qi = 0.99 (i =
1,2,3). It is seen from the figure that the time of syn-
chronization is less for integer order.

3 Conclusion

The present article deals with the synchronization be-
tween two different chaotic systems with standard-
and fractional-order derivatives using active con-
trol method based on the stability analysis. The au-
thors have presented a nonlinear control technique to
achieve perfect control of two chaotic systems along
a desired trajectory. The most important part of this
analysis is the proper design of the control function so
that the error states decay to zero for large time which
helps one to find the required time for synchroniza-
tion. This clearly shows the reliability and potential
of the method for synchronization of a pair of chaotic
systems for standard- and fractional-order derivatives.

References

1. Kulish, V.V., Lage, J.L.: Application of fractional calculus
to fluid mechanics. J. Fluids Eng. 124, 803–806 (2002)

2. Das, S., Tripathi, D., Pandey, S.K.: Peristaltic flow of vis-
coelastic fluid with fractional maxwell model through a
channel. Appl. Math. Comput. 215, 3645–3654 (2010)

3. Soczkiewicz, E.: Application of fractional calculus in the
theory of viscoelasticity. Mol. Quantum Acoustics 23, 397–
404 (2002)

4. Carpinteri, A., Cornetti, P., Kolwankar, K.M.: Calculation
of the tensile and flexural strength of disordered materials
using fractional calculus. Chaos Solitons Fractals 21, 623–
632 (2004)

5. Yildirim, A.: An algorithm for solving the fractional non-
linear Schrödinger equation by means of the homotopy per-
turbation method. Int. J. Nonlinear Sci. Numer. Simul. 10,
445–451 (2011)

6. Magin, R.L.: Fractional calculus in bioengineering. Part 3.
Crit. Rev. Biomed. Eng. 32, 195–377 (2004)

7. Glockle, W.G., Mattfeld, T., Nonnenmacher, T.F., Weibel,
E.R.: Fractals in Biology and Medicine, vol. 2. Birkhauser,
Basel (1998)

8. Magin, R.L.: Fractional calculus models of complex dy-
namics in biological tissues. Comput. Math. Appl. 59,
1585–1593 (2010)

9. Gökdogan, A., Merdan, M., Yildirim, A.: A multistage dif-
ferential transformation method for approximate solution
of Hantavirus infection model. Commun. Nonlinear Sci.
Numer. Simul. 17, 1–8 (2012)

10. Magin, R.L.: Modeling the cardiac tissue electrode inter-
face using fractional calculus. J. Vib. Control 14, 1431–
1442 (2008)

11. Sabatier, J., Agrawal, Om.P., Machado, J.A.T.: Advance in
Fractional Calculus. Theoretical Developments and Appli-
cations. Springer, Berlin (2007)

12. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic sys-
tems. Phys. Rev. Lett. 64, 821–824 (1990)

13. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and
phase synchronization in spatially extended ecological sys-
tem. Nature 399, 354–359 (1999)

14. Murali, M.K.: Chaos in Nonlinear Oscillators: Controlling
and Synchronization. World Scientific, Singapore (1996)

15. Han, S.K., Kerrer, C., Kuramoto, Y.: D-phasing and burst-
ing in coupled neural oscillators. Phys. Rev. Lett. 75, 3190–
3193 (1995)



2288 S.K. Agrawal et al.

16. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation
of synchronized chaos with application to communication.
Phys. Rev. Lett. 71, 65–68 (1993)

17. Huang, L., Feng, R., Wang, M.: Synchronization of chaotic
systems via nonlinear control. Phys. Lett. A 320, 271–275
(2004)

18. Park, J.H., Kwon, O.M.: A novel criterion for delayed feed-
back control of time-delay chaotic systems. Chaos Solitons
Fractals 23, 495–501 (2005)

19. Chen, S.H., Lu, J.: Synchronization of an uncertain unified
chaotic system via adaptive control. Chaos Solitons Frac-
tals 14, 643–647 (2002)

20. Odibat, Z.M.: Adaptive feedback control and synchroniza-
tion of non-identical chaotic fractional order systems. Non-
linear Dyn. 60, 479–487 (2010)

21. Njah, A.N.: Tracking control and synchronization of the
new hyperchaotic Liu system via backstepping techniques.
Nonlinear Dyn. 61, 1–9 (2010)

22. Yassen, M.T.: Chaos synchronization between two different
chaotic systems using active control. Chaos Solitons Frac-
tals 23, 131–140 (2005)

23. Wu, X., Lü, J.: Parameter identification and backstepping
control of uncertain Lü system. Chaos Solitons Fractals 18,
721–729 (2003)

24. Yau, H.T.: Design of adaptive sliding mode controller for
chaos synchronization with uncertainties. Chaos Solitons
Fractals 22, 341–347 (2004)

25. Li, R., Wei, H., Li, S.: Chaos control and synchronization
of the ∅6-Van der Pol system driven by external and para-
metric excitations. Nonlinear Dyn. 53, 261–271 (2008)

26. Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mah-
moud, E.E.: Chaos synchronization of two different chaotic
complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53
(2009)

27. Yang, S.S., Juan, C.K.: Generalized synchronization in
chaotic systems. Chaos Solitons Fractals 9, 1703–1707
(1998)

28. Yu, H.J., Liu, Y.Z.: Chaotic synchronization based on sta-
bility criterion of linear systems. Phys. Lett. A 314, 292–
298 (2003)

29. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase
to lag synchronization in coupled chaotic oscillators. Phys.
Rev. Lett. 78, 4193–4196 (1997)

30. Zhu, Q., Cao, J.: Adaptive synchronization of chaotic
Cohen–Crossberg neural networks with mixed time delays.
Nonlinear Dyn. 61, 517–534 (2010)

31. Erjaee, G.H., Taghvafard, H.: Phase and anti-phase syn-
chronization of fractional order chaotic systems via active
control. Commun. Nonlinear Sci. Numer. Simul. 16, 4079–
4088 (2011)

32. Mahmoud, G.M., Mahmoud, E.E.: Phase and antiphase
synchronization of two identical hyperchaotic complex
nonlinear systems. Nonlinear Dyn. 61, 141–152 (2010)

33. Liu, W.Q.: Anti-phase synchronization in coupled chaotic
oscillators. Phys. Rev. E 73, 57203 (2006)

34. Liu, J.B., Ye, C.F., Zhang, S.J., Song, W.T.: Anti-phase syn-
chronization in coupled map lattices. Phys. Lett. A 274, 27–
29 (2000)

35. Ghosh, D., Bhattacharya, S.: Projective synchronization of
new hyperchaotic system with fully unknown parameters.
Nonlinear Dyn. 61, 11–21 (2010)

36. Lotka, A.: Elements of Physical Biology. Williams and
Wilkins, Baltimore (1925)

37. Volterra, V.: Variazioni e fluttuazioni del numero di indi-
vidui in specie animali conviventi. Mem. Accd. Lincei 2,
31–113 (1926)

38. Nikola, S., Larry, D.G.: Explosive route to chaos through
a fractal torus in a generalized Lotka–Volterra model. Bull.
Math. Biol. 50, 465–491 (1988)

39. Danca, M.F., Chen, G.: Bifurcation and chaos in a com-
plex model of dissipative medium. Int. J. Bifurc. Chaos 14,
3409–3447 (2004)

40. Diethelm, K., Ford, J., Freed, A.: Detailed error analysis for
a fractional Adams method. Numer. Algorithms 36, 31–52
(2004)

41. Diethelm, K., Ford, J.: Multi-order fractional differential
equations and their numerical solution. Appl. Math. Com-
put. 154, 621–640 (2004)

42. Matignon, D.: Stability results for fractional differen-
tial equations with applications to control processing. In:
Computational Engineering in Systems and Application
Multi Conference, IMACS, IEEE-SMC Proceedings, Lille,
France, vol. 2, pp. 963–968 (1996)

43. Sprott, J.C.: Chaos and Time-Series Analysis, pp. 230–440.
Oxford University Press, Oxford (2003)

44. Costello, J.S.: Synchronization of chaos in a generalized
Lotka–Volterra attractor. Nonlinear J. 1, 11–17 (1999)


	Synchronization between fractional-order Ravinovich-Fabrikant and Lotka-Volterra systems
	Abstract
	Introduction
	Preliminaries definitions, theorem, and numerical method
	Fractional calculus
	Numerical approximation method
	Synchronization between different fractional-order chaotic systems
	Theorem
	The Ravinovich-Fabrikant chaotic system
	The Lotka-Volterra chaotic system
	Synchronization between Ravinovich-Fabrikant chaotic system and Lotka-Volterra chaotic system via active control method
	Simulation and results

	Conclusion
	References


