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Abstract We consider real quadratic dynamics in the
context of competitive modes, which allows us to view
chaotic systems as ensembles of competing nonlin-
ear oscillators. We find that the standard competitive
mode conditions may in fact be interpreted and em-
ployed slightly more generally than has usually been
done in recent investigations, with negative values of
the squared mode frequencies in fact being admissi-
ble in chaotic regimes, provided that the competition
among them persists. This is somewhat reminiscent
of, but of course not directly correlated to, “stretching
(along unstable manifolds) and folding (due to local
volume dissipation)” on chaotic attractors. This new
feature allows for the system variables to grow expo-
nentially during time intervals when mode frequencies
are imaginary and comparable, while oscillating at in-
stants when the frequencies are real and locked in or
entrained. In addition to an application of the method
to chaotic attractors, we consider systems exhibiting
hyperchaos and conclude that the latter exhibit three
competitive modes rather than two for the former. Fi-
nally, in a novel twist, we reinterpret the components
of the Competitive Modes analysis as simple geomet-
ric criteria to map out the spatial location and extent,
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as well as the rough general shape, of the system at-
tractor for any parameter sets corresponding to chaos.
The accuracy of this mapping adds further evidence
to the growing body of recent work on the correctness
and usefulness of competitive modes. In fact, it may
be considered a strong “a posteriori” validation of the
Competitive Modes conjectures and analysis.
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Chaos diagnostics · Nonlinear oscillators

1 Introduction

Hyperchaotic systems, exhibiting more than one posi-
tive Lyapunov exponent, have been extensively stud-
ied in recent years in systems such as Chua’s cir-
cuit and the Rössler system. In [1], a variety of such
recent chaotic systems were studied, primarily using
Shilnikov’s theorems to establish horseshoe chaos, and
also employing numerical simulations. The general
quadratic system in [1] is given by

dx1

dt
= a1x1 + a2x2 + a3x3 + 2a23x2x3,

dx2

dt
= b + b1x1 + b2x2 + b3x3

+ 2b13x1x3 + 2b23x2x3,

dx3

dt
= c + c1x1 + c3x3 + 2c12x1x2 + 2c22(x2)

2

+ 2c23x2x3 + 2c13x1x3.

(1.1)
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Shilnikov’s theorems have also been applied to a mul-
titude of dynamical systems recently (see, for instance,
[2–19]). In this approach, one analytically constructs
the homoclinic or heteroclinic orbits present for pa-
rameter sets for which there is Smale horseshoe chaos
emergent in a dynamical system.

One objective in this paper is to examine the chaotic
regimes of (1.1) from a different point of view. To-
ward that end, we employ the technique of Compet-
itive Modes analysis (see [20–24]) to identify “pos-
sible chaotic regimes” for this large, multiparameter
system.

Many of the dynamical systems giving chaotic or
hyperchaotic behavior are expressed as quadratic dy-
namics on R

n. Hence, in Sect. 2, we outline the gen-
eral problem of quadratic dynamics on R

n. Then, in
Sect. 3, we discuss how one goes about obtaining the
mode frequencies for such systems, which involves re-
casting the dynamical system as a system of n second-
order equations, some of which take the form of os-
cillators. Regarding the use of competitive modes, it
is those equations which describe nonlinear oscillators
that will permit a competitive modes analysis. From
here, we then apply the method of competitive modes
to a general quadratic vector field on R

3, namely (1.1),
which has been shown to exhibit chaotic behavior.

We apply the theory of competitive modes as nec-
essary conditions, or predictors, to determine param-
eter regimes for which our multiparameter system
may exhibit chaotic behavior. Indeed, we find that if
two of the three frequency components of the modes
for (1.1) become competitive (or, nearly competitive),
then chaotic behavior is observed in the solutions. We
delineate parameter regimes for which the frequency
components are nearly competitive, thereby demon-
strating the utility of the method in determining pa-
rameter regimes resulting in random solution behav-
iors, and which would be extremely hard to pinpoint
otherwise in a system with so many parameters. In par-
ticular, the competitive modes conjecture is validated
for several chaotic parameter sets identified in [1] by
Shilnikov analysis and numerical simulations.

Later, in Sect. 4, we recast the Competitive Modes
analysis in a totally novel way as simple geometric
criteria to map out the location, spatial extent, and
approximate outline of the system attractor for any
parameter sets corresponding to chaos. The surpris-
ing accuracy of these mappings further strengthens
the growing body of evidence on the usefulness of

the Competitive Modes procedure, and in fact may be
taken as strong “a posteriori” evidence of the validity
of the conjectures on which it based.

In Sect. 5, we consider multiple well-known hy-
perchaotic systems of dimension 4, in an attempt to
discern between chaos and hyperchaos with a com-
petitive modes analysis. We find that in many of the
hyperchaotic modes, three mode frequencies become
competitive at a discrete collection of points in time,
as opposed to the standard competitive modes require-
ment of two mode frequencies being competitive in
order to have chaos.

In Sect. 6, we make some observations on the rela-
tion between competitiveness of modes and the actual
appearance of chaos in dynamical systems. Section 7
briefly reviews the results and discusses directions for
further research.

2 Quadratic dynamics on R
n

Many chaotic systems are modeled by quadratic dy-
namics. Indeed, quadratic terms are the simplest types
of nonlinearity present in dynamical systems. Here we
shall define some notation, which will be useful in the
following sections.

Let x ∈ C2(Rn), F ∈ C2(Rn), and consider the n-
dimensional dynamical system with general quadratic
dynamics

ẋk = Fk(x) =
n∑

i,j=1 and j≥i

α
[k]
i,j xixj +

n∑

i=1

β
[k]
i xi + γ [k],

where k = 1,2, . . . , n. (2.1)

Define the matrix A(k) = [α[k]
i,j ]j≥i + [α[k]

i,j ]†
j≥i +

diag(α
[k]
1,1, α

[k]
2,2, . . . , α

[k]
n,n), where † denotes transposi-

tion. We then see that

∂Fk

∂x�

=
n∑

i=1

α�,ixi + β
[k]
� . (2.2)

Then,

�V = ∂ẋi

∂xi

= ∇ · F =
n∑

i=1

νixi + ν0, (2.3)

where νi = ∑n
j=1 α

[j ]
j,i and ν0 = ∑n

i=1 β
[i]
i . Define ν =

(ν1, ν2, . . . , νn). Then, �V = ν · x + ν0. The hypersur-
face ν · x + ν0 = 0 partitions R

n. Now, if system (2.1)
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is strictly dissipative (�V < 0), the system falls on
the ν · x + ν0 < 0 partition of R

n. If system (2.1) is
weakly dissipative, then there exists ε > 0 such that
−ε < ν · x + ν0 < 0.

3 Classification of chaotic regimes by use of
competitive modes

In recent literature, the idea of analyzing chaotic be-
havior through the study of “competitive modes” has
begun to show promise in establishing parameter re-
gions for the onset of chaos. The notion of a “mode”
in mathematics and physics varies depending on the
field. The idea is to break the system under consider-
ation into “model” systems and consider the solution
of the model system as a “mode.” A particular sys-
tem may have several appropriate modes. Consider the
general nonlinear autonomous system given by

ẋi = fi(x1, x2, . . . , xn). (3.1)

Differentiation of (3.1) once gives

ẍi =
n∑

j=1

fj

∂fi

∂xj

= −xigi(x1, x1, . . . , xi, . . . , xn)

+ hi(x1, x2, . . . , xi−1, xi+1, . . . , xn). (3.2)

We will consider the competitive modes to be so-
lutions xi of the model system given by (3.1), and,
in analogy with systems of coupled parametric oscil-
lators, we shall term the gi in (3.2) as the squared
frequency corresponding to the oscillations of the
mode xi . Like these squared frequencies, the hi (the
forcing terms) can also depend on the other mode am-
plitudes (but not on the ith).

In order to apply the theory of competitive modes
to determine parameter regimes for which (1.1) may
exhibit chaotic behavior, recall that the following con-
jecture is posed in [20] (p. 95):

Conjecture 3.1 The conditions for dynamical systems
to be chaotic are given by:

(1) there exist at least two modes, labeled gi ’s in the
system;

(2) at least two g’s are competitive or nearly compet-
itive, that is, for some i and j, gi ≈ gj > 0 at some t ;

(3) at least one of the g’s is a function of evolution
variables such as t ; and

(4) at least on of the h’s is a function of system vari-
ables.

To obtain the mode frequencies for the general
quadratic vector field on R

n, we need to differentiate
the vector field F with respect to t . From the quadratic
form of system (2.1) we find that

ẍk = d

dt
Fk(x) = (∇Fk(x)

) · F(x) = −pk(x), (3.3)

where pk(x) is in general a degree 3 polynomial in
the xi ’s. We can always write pk(x) = gk(x)−hk(x̂k),
where x̂k = (x1, . . . , xk−1, xk+1, . . . , xn), deg(gk) ≤ 2
in xk , and deg(hk) = 0 in xk . Then, we obtain the sys-
tem

ẍk + gk(x)xk = hk(x̂k) for k = 1,2, . . . , n. (3.4)

If 1 ≤ κ ≤ n of the gk’s are positive over a subset
U ⊂ R

n, then we effectively have a system of κ non-
linear oscillators with frequencies given by the gk’s.
Suppose κ ≥ 2, and let i and j be two indices corre-
sponding to mode frequencies gi(x) and gj (x) which
are positive on U . Then, if on a subset U ′ ⊂ U it holds
gi(x) = gj (x), we say that the modes xi and xj are
competitive on U ′.

In the case of quadratic dynamics, the restriction
gi(x) = gj (x) defines a relation of degree less than or
equal to three in the xk’s. At the hypersurface corre-
sponding to gi(x) = gj (x), we obtain values of x for
which xi and xj are competitive.

4 Competitive modes for the 3D quadratic
system (1.1)

Here we consider the competitive modes analysis of
the 3D quadratic system (1.1).

4.1 The squared mode frequencies

First, we compute the modes along the lines of [20].
In Sect. 4.2, we then consider conditions under which
modes become competitive in finite time, or as t → ∞
(on a chaotic attractor). We find that if two of the three
frequency components of the modes for (1.1) become
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competitive (or, nearly competitive), then chaotic be-
havior is observed in the solutions. We delineate pa-
rameter regimes for which the frequency components
are nearly competitive, thereby demonstrating the util-
ity of the method in determining parameter regimes
resulting in random solution behaviors, and which
would be extremely hard to pinpoint otherwise in a
system with so many parameters. The competitive
modes conjecture is validated for several chaotic pa-
rameter sets identified in [1] by Shilnikov analysis
and numerical simulations. In Sect. 4.3, we recast the
Competitive Modes analysis as simple geometric crite-
ria to map out the location, spatial extent, and approx-
imate outline of the system attractor for any parameter
sets corresponding to chaos.

Taking time derivatives of (1.1) and comparing
to (3.2), the squared frequencies for the modes x1, x2,
and x3 in are explicitly given by

g1 = (−a2
1 − a2b1 − 2a23c1x2 − 4a23c12x

2
2

− 2a23b1x3 − 2a2b13x3 − 4a23c13x2x3

− 4a23b13x
2
3

)
, (4.1)

g2 = −(
a2b1 + b2

2 + 2b23c + 2b23c1x1 + 2b3c12x1

+ 4b13c12x
2
1 + 2b3c22x2 + 4b23c12x1x2

+ 4b13c22x1x2 + 4b23c22x22 + 2a23b1x3

+ 2a2b13x3 + 4b2b23x3 + 2b3c23x3

+ 2b23c3x3 + 4b23c13x1x3 + 4b13c23x1x3

+ 4b23c23x2x3 + 4a23b13x
2
3 + 4b2

23x
2
3

)
, (4.2)

g3 = −(
2bc23 + c1c3 + c2

3 + 2b3c12x1 + 2a1c13x1

+ 2c1c13x1 + 2b1c23x1 + 4c13c3x1

+ 4b13c12x
2
1 + 4c2

13x
2
1 + 2a3c12x2 + 2a2c13x2

+ 4b3c22x2 + 2b2c23x2 + 2c1c23x2 + 4c23c3x2

+ 4b23c12x1x2 + 8b13c22x1x2 + 8c13c23x1x2

+ 4a23c12x
2
2 + 8b23c22x

2
2 + 4c2

23x
2
2

+ 2a3c13x3 + 2b3c23x3 + 4b13c23x1x3

+ 4a23c13x2x3 + 4b23c23x2x3
)
. (4.3)

4.2 Competitive g functions

Clearly, one may obtain three conditions for competi-
tive modes from enforcing the competitiveness condi-
tion gi ≈ gj , i, j = 1,2,3.

It is now straightforward to test these conditions
as good indicators or predictors for parameter sets
where one should encounter chaos, subject of course
to the squared mode frequencies remaining positive
and comparable as the system evolves in time on
the chaotic attractor. We first consider the parameter
set [1]

a1 = −1.221, a2 = 1.5, b1 = 0, b2 = 0,

b13 = 1/2, b23 = 0, c3 = 0, c12 = 0,

a23 = 0, a = 0, b = −1.3, c = 0,

c1 = −1.5, c23 = −1/2, a3 = 2, b3 = 0,

c22 = 0, c13 = 0.

(4.4)

For these parameters, choosing initial conditions for
(x1, x2, x3) which make the squared mode frequen-
cies all large positive, with two of them being initially
competitive, and integrating (1.1), we indeed observe
chaos. The resulting attractor is shown in Fig. 1, and
the squared mode frequency g1 as the orbits evolve on
it in time is shown in Fig. 2.

While we have clearly found a chaotic regime, there
is one feature that appears to contravene one of the
Competitive Modes conjectures. The squared mode
frequencies gi , i = 1,2,3, all oscillate around zero,
taking on both positive and negative values.

In fact, this feature is already present in earlier work
using Competitive Modes [20–24]. The mystery is re-
solved, and the Competitive Modes hypothesis sal-
vaged, when one plots the ratios of pairs of squared
mode frequencies. As seen in Fig. 3, the ratio g1/g2

locks to values of O(1), with very rare deviations to
larger values at isolated instants of time, apparently of
measure zero in the whole time interval. At these iso-
lated instants, the other two ratios of the squared mode
frequencies however have values of O(1), thus ensur-
ing competitivity of at least one pair of mode frequen-
cies at all times, as required by the conjecture [20]. We
have also examined the forcing terms (the hi ’s in (3.2))
graphically. There is no apparent correlation between
their signs and amplitudes and those of the gi ’s.

Hence, the Competitive Modes conjectures should
perhaps be weakened to allow the squared mode fre-
quencies to take on both positive and negative values
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Fig. 1 The wafer-thin attractor in (x1, x2, x3) phase (state)
space for the parameters (4.4)

in the chaotic regime, or on the attractor. This also
raises an interesting similarity to another ubiquitous
feature of chaotic attractors. This new feature allows
for the system variables to grow exponentially in time
intervals when the mode frequencies are imaginary
and comparable (gi ’s negative and competitive), while
oscillating at instants when the frequencies are real
and matched or locked in. This is reminiscent of, but of
course not directly correlated to, “stretching (along un-
stable manifolds) and folding (due to local volume dis-
sipation)” on chaotic attractors. The repeated stretch-
ing and folding is thought to lead to sensitivity to ini-
tial conditions, and the fractal structure, of chaotic at-
tractors. Different solution behaviors in time intervals
corresponding to opposite signs of the squared mode
frequencies would of course not correlate to either of
these features.

We test the above by next considering the squared
mode frequencies for another parameter set corre-

Fig. 2 Squared mode frequency g1 for the parameters (4.4)

Fig. 3 Ratio g1/g2 of squared mode frequencies for the param-
eters (4.4). Note that the modes stay strongly competitive at all
times, except at isolated instants where the other frequency ra-
tios are of O(1)

sponding to the famous Lorenz butterfly attractor

a1 = −10, a2 = 10, b1 = 28, b2 = −1,

b13 = −1/2, b23 = 0, c3 = −8/3,

c12 = 1/2, a23 = 0, a = 0, b = 0, (4.5)

c = 0, c1 = 0, c23 = 0, a3 = 0, b3 = 0,

c22 = 0, c13 = 0.

For this case, g1 = 1, g2 < 0, g3 > 0 for all times.
The ratios g3/g1 and g2/g3 corresponding to (4.5) are
shown in Figs. 4 and 5, respectively. As noted for our
first parameter set (4.4), both ratios lock into values
whose magnitudes remain bounded by values of order
one, except for excursions to large values at isolated
time instants. Once again, in agreement with our ear-
lier observations, the ratio of the squares of one of the
pairs of mode frequencies remains of O(1) at each in-
stant of time.
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Fig. 4 Ratio g3/g1 of squared mode frequencies for the param-
eters (4.5). Note that, as before, the squared mode frequencies
stay strongly competitive at all times, except at isolated instants
where the other frequency ratios are of O(1)

Fig. 5 Ratio g2/g3 of squared mode frequencies for the param-
eters (4.5). As in Fig. 3, the modes stay strongly competitive at
all times, except at isolated instants where the other frequency
ratios are of O(1)

4.3 Geometrically mapping the attractor

Next we shall consider the components of the Com-
petitive Modes conjecture from a completely different
point of view. In particular, we shall employ a geomet-
ric, rather than an algebraic, standpoint.

Having reviewed the basic features of the squared
mode frequencies, we note that, both in the Competi-
tive Modes conjecture, as well as in the plots in Figs. 2
to 4, the squared frequencies or the gi ’s have the fol-
lowing features:

a. they take on both signs, but oscillate around zero,
and

b. a pair remains competitive with gi ≈ gj at each in-
stant of time in the chaotic regime.

Now, after the system orbits settle to the chaotic
regime after a possible initial transient, they are ON

Fig. 6 Region of (x1, x2, x3) phase (state) space mapped out
by the geometric conditions (4.6) for the parameters (4.5). Note
how tightly the location, extent and rough outline of the actual
wafer-thin chaotic attractor (shown in Fig. 1) for these parame-
ters is delineated by (4.6)

the attractor. Since the attractor is an invariant set, this
also implies that the trajectories remain there forever
after. Hence, the two above-mentioned features of the
squared mode frequencies or gi ’s in the chaotic regime
may be taken as characteristics of the strange attractor
of the chaotic system. We rewrite them in mathemati-
cal terms as

gi > 0, OR gi < 0, AND gi ≈ gj ,

i, j = 1,2,3. (4.6)

We will consider these conditions, essentially part
of the Competitive Modes conjecture, not as algebraic
conditions, which is the way they have previously been
used [20–24]. Instead, for any given set of parameters
where there are chaotic solutions, we shall turn them
around and interpret them as geometric conditions to
map out the location, extent, and rough outlines of the
attractor.

For our system (1.1), with parameters (4.4), the re-
gion of (x1, x2, x3) space mapped out by the geomet-
ric conditions (4.6) is shown in Fig. 6. Clearly, both
the location and spatial extent of the attractor plotted
in Fig. 1 for the same parameters are well delineated
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Fig. 7 The famous Lorenz attractor in (x1, x2, x3) phase (state)
space for the parameters (4.5)

using these geometric conditions. Although a bit hard
to see visually, superposing Figs. 1 and 6 reveals how
tightly the location, extent and rough outline of the ac-
tual wafer-thin chaotic attractor (shown in Fig. 11) for
these parameters is delineated by (4.6). The actual at-
tractor surface, usually of very irregular shape and out-
line, can of course only be roughly approximated here
by the conditions gi ≈ gj , i, j = 1,2,3.

To further strengthen the case for the usefulness of
inequalities (4.6) in delimiting chaotic attractors, we
also consider this geometric mapping for our other pa-
rameter set (4.5) corresponding to the Lorenz equa-
tions. The pair of Figs. 7 and 8 juxtaposes the actual
attractor with the region mapped out by the geomet-
ric conditions (4.6) for the parameter set (4.5). Note
that the geometric conditions (4.6) delimit the attrac-
tor location and spatial extent in this example accu-
rately too, while delineating its rough general outline
or surface far worse than Fig. 6 did for the attractor
in Fig. 1. However, having said that, we should add
a caveat. Although hard to see visually, parts of the
attractor in Fig. 7 do still directly lie on the outer sur-
faces in Fig. 8, with the remainder of the attractor be-
ing located in between the other surfaces shown in that
figure.

Fig. 8 Region of (x1, x2, x3) phase (state) space mapped out
by the geometric conditions (4.6) for the parameters (4.5). Note
that the geometric conditions (4.6) delimit the attractor location
and spatial extent in this example accurately, while delineating
its rough general outline or surface far worse than Fig. 6 did for
the attractor in Fig. 1. However, although hard to see visually,
superposing Figs. 7 and 8 reveals that parts of the attractor in
Fig. 7 directly lie on the outer surfaces shown in Fig. 8, with the
remainder being located in between the other surfaces shown
here

To test the usefulness of inequalities (4.6) in delim-
iting chaotic attractors, let us treat a third parameter
set [1]

a1 = 0, a2 = 1, b1 = −1, b2 = 0,

b13 = 0, b23 = 1/2, c3 = 0, c12 = 0,

a23 = 0, a = 0, b = 0, c = 1, c1 = 0,

c23 = 0, a3 = 0, b3 = 0, c22 = −1/2,

c13 = 0.

(4.7)

The pair of Figs. 9 and 10 juxtaposes the actual
attractor with the region mapped out by the geomet-
ric conditions (4.6) for this parameter set (4.7). Note
that the geometric conditions (4.6) accurately delimit
the location and spatial extent of the tendrils of the
ribbon-like attractor in this example far better than for
the Lorenz system discussed above, while also delin-
eating its rough general outline or surface.
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Fig. 9 The attractor in (x1, x2, x3) phase (state) space for the
parameters (4.7)

Of particular interest in Fig. 10 is the close overlap
in location, extent, and general shape with the actual
chaotic attractor (shown in Fig. 9) for these parame-
ters. In fact, although hard to see visually, superpos-
ing the figures reveals that the outermost tendrils of
the attractor in Fig. 9 lie directly in the outer surfaces
of Fig. 10, with the remainder of the attractor tendrils
being located in between the other surfaces shown in
Fig. 10.

As noted before, the actual attractor surface can
only be roughly approximated in these figures by
the mode competitiveness conditions gi ≈ gj , i, j =
1,2,3, in (4.6).

5 Competitive modes for hyperchaotic systems

In the present section, we shall extend our competitive
modes analysis for four-dimensional quadratic vector
fields which give hyperchaos. We only briefly high-
light aspects for each system and use this later in order
to draw some conclusions about the behavior of the
mode frequencies in hyperchaotic regimes.

Fig. 10 Region of (x1, x2, x3) phase (state) space mapped out
by the geometric conditions (4.6) for the parameters (4.7). Note
the close overlap in location, extent, and general shape with the
actual chaotic attractor for these parameters shown in Fig. 9.
In fact, although hard to see visually, superposing the figures
reveals that the outermost tendrils of the attractor in Fig. 9 lie
directly in the outer surfaces of Fig. 10, with the remainder of
the attractor tendrils being located in between the other surfaces
shown here

5.1 4D Rössler flow

The first known hyperchaotic system was found in
1979. The 4D Rössler flow [25] reads

ẋ1 = −x2 − x3,

ẋ2 = x1 + 0.25x2 + x4,

ẋ3 = 3 + x1x3,

ẋ4 = −0.5x3 + 0.05x4.

(5.1)

For the chosen parameter values, this system exhibits
hyperchaos. In Fig. 11, we take x1(0) = −10, x2(0) =
−6, x3(0) = 0, x4(0) = 10 and plot the mode frequen-
cies

g1 = 1 + x3,

g2 = 0.9375,

g3 = x2 + x3 − x2
1 ,

g4 = 0.0025,

(5.2)
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Fig. 11 Plots of the nontrivial mode frequencies for the 4D
Rossler system (5.1)

for the 4D Rössler flow (5.1). We see that two mode
frequencies are equal at many points in the time do-
main. However, the constant mode frequency g2 is
nearly equal to the mode frequencies g1 and g3 when
g1 = g3, so three modes are “nearly” competitive for
the 4D Rössler model. Note that the 4D Rössler sys-
tem is one of the simpler continuous-time models giv-
ing hyperchaos; for more complicated models, there
might be three or more modes which are exactly com-
petitive throughout a subset of the time domain. We
shall see this in the following examples.

5.2 Hyperchaotic Chen system

The hyperchaotic Chen system [26, 27] reads

ẋ1 = a(x2 − x1),

ẋ2 = −dx1 − x1x3 + cx2 − x4,

ẋ3 = x1x2 − bx3,

ẋ4 = x1 + k.

(5.3)

Taking k = 0, [27] found the following parameter sets
which give hyperchaos:

a = 36, b = 3, c = 26, d = 16; (5.4)

a = 36, b = 2, c = 28, d = 16; (5.5)

a = 36, b = 3, c = 28, d = 18. (5.6)

Fig. 12 Plots of the nontrivial mode frequencies for the hyper-
chaotic Chen system (5.3), given parameter values (5.4)

The mode frequencies for the hyperchaotic Chen sys-
tem (5.3) read

g1 = a(x3 + a − d),

g2 = a(d + x3) + x2
1 − c2,

g3 = x2
1 − b2,

g4 = 0.

(5.7)

In Figs. 12, 13, 14, we plot the mode frequencies for
each of the parameter sets (5.4)–(5.6). We see that, al-
though all three parameter sets give hyperchaos, the
structure of the mode frequencies differs for each. For
the first parameter set, two mode frequencies are often
competitive (with a third being “nearly competitive”),
whereas for the latter two parameter sets, three modes
are often competitive (with the third mode frequency
now being equal to the other two mode frequencies).

5.3 Hyperchaotic Lü system

The hyperchaotic Lü system reads

ẋ1 = a(x2 − x1) + x4,

ẋ2 = −x1x3 + cx2,

ẋ3 = x1x2 − bx3,

ẋ4 = x1x3 + dx4.

(5.8)
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Fig. 13 Plots of the nontrivial mode frequencies for the hyper-
chaotic Chen system (5.3), given parameter values (5.5)

Fig. 14 Plots of the nontrivial mode frequencies for the hyper-
chaotic Chen system (5.3), given parameter values (5.6)

[28] found the following parameter set which gives hy-
perchaos:

a = 36, b = 3, c = 20, d = 1.3. (5.9)

Fig. 15 Plots of the nontrivial mode frequencies for the hyper-
chaotic Lü system (5.8)

The mode frequencies for the hyperchaotic Lü sys-
tem (5.8) read

g1 = (a − 1)x3 − a2,

g2 = x2
1 − c2 + ax3,

g3 = x2
1 − b2,

g4 = −(
x2

3 + d2).

(5.10)

In Fig. 15, we plot the mode frequencies for the hy-
perchaotic Lü system. Over a discrete subset of the
time domain, three mode frequencies are equal, and,
hence, three modes are competitive. Hence, not only
are the conditions for the Lü system to have competi-
tive modes satisfied, but we have one extra mode com-
petitive with the two others simultaneously.

5.4 Modified hyperchaotic Lü system

The modified hyperchaotic Lü system reads

ẋ1 = a(x2 − x1 + x2x3),

ẋ2 = −x1x3 + bx2 + x4,

ẋ3 = x1x2 − cx3,

ẋ4 = −dx1.

(5.11)
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Fig. 16 Plots of the nontrivial mode frequencies for the modi-
fied hyperchaotic Lü system (5.11)

[29] found the following parameter sets which give hy-
perchaos:

a = 35, b = 14, c = 3, d = 5. (5.12)

The mode frequencies for the modified hyperchaotic
Lü system (5.11) read

g1 = ax3 + ax2
3 − ax2

2 − a2,

g2 = ax3 + ax2
3 + x2

1 − b2,

g3 = x2
1 − ax2

2 − c2,

g4 = 0.

(5.13)

In Fig. 16, we plot the mode frequencies for the modi-
fied hyperchaotic Lü system. As we have seen in other
cases listed above, three of the modes are competitive.

5.5 Comparisons among the hyperchaotic systems

We now compare what we see in the plots of the
squared mode frequencies for each of the hyperchaotic
systems mentioned here. For the 4D Rössler model,
two of the four modes are constant. The two noncon-
stant modes, g1 and g3, become competitive for a dis-
crete collection of points. A similar situation is seen in
Fig. 12 for parameter values (5.4) for the hyperchaotic

Chen system, where only two positive mode frequen-
cies are competitive. Such parameter values corre-
spond to a hyperchaotic regime between two regimes
for which periodic solutions exist [27].

Meanwhile, for parameter sets (5.5) and (5.6) for
the hyperchaotic Chen system, there exist a discrete
collection of points at which three modes are com-
petitive and the mode frequencies are positive. These
parameter values correspond to parameter regimes
giving hyperchaos which are adjacent to parameter
regimes leading to chaotic attractors [27]. Similar
comments hold for the hyperchaotic Lü and modified
Lü systems; for these systems, two modes are fre-
quently competitive, and, less frequently, three modes
become competitive. Hence, it seems that for hyper-
chaotic regimes adjoining chaotic regimes, one can ex-
pect to find three or more modes which are competi-
tive over some countably infinite subset of the time
domain. By contrast, for chaotic regimes, or hyper-
chaotic regimes located between regimes giving more
stable dynamics, we might expect two modes to be
competitive on such an infinite yet countable subset
of the time domain.

6 Intermittence of mode competitiveness

In all of the plots of the mode frequencies which cor-
respond to chaotic or even hyperchaotic behaviors, we
find that two or more modes become competitive at a
discrete collection of points in the time domain. While
we have only numerical evidence for finite values of
time, it seems reasonable to expect such patterns to
continue as t → +∞ (otherwise, from what we have
seen here, if the modes all became noncompetitive,
then the chaotic attractor would dissipate).

However, as has been demonstrated in other cases,
competitive modes are not sufficient for chaos, as a
number of cases have been demonstrated where com-
petitive modes occur for nonchaotic dynamics. Mean-
while, if the modes are either always competitive
(see [24] for competitive modes “at equilibrium”) or
never competitive, we do not detect chaos. Hence, we
can view the competitive modes as a sort of “necessary
condition” for chaos, when we observe modes which
are competitive for intermittent values of time.

As shown by Van Gorder [30] in the case of the
generalized Lorenz model, of which many three-
dimensional quadratic dynamics are a special case,
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competitiveness of modes at a discrete set of points
(which do not appear to occur with any regular or peri-
odic behavior) can indicate the presence of chaotic be-
havior. Thus, it seems as though the existence of two
competitive modes may be necessary for chaos. Be-
yond this, the greatest utility of a competitive modes
analysis lies in any relations we can draw to the behav-
ior of the modes and the intermittent manner in which
they are competitive.

While many hyperchaotic systems exhibit more
than two competitive modes at a discrete collection of
points in the time domain, sometimes only two of the
modes are competitive. As we removed hyperchaotic
behavior (take a parameter set that gives chaos but not
hyperchaos) from the 4D models discussed here, we
observed that two of the three modes remained com-
petitive, while the mode frequency for the third mode
either become constant (and out of competition with
one of the two aforementioned modes) or gradually
become negative. Hence, there appears to be a strong
correlation between the behavior of this third mode
and the onset of hyperchaos.

7 Conclusions

In this paper we have considered the chaotic regimes
of a variety of recently discovered hyperchaotic sys-
tems [1] from an alternative perspective. Toward
that end, we employed the technique of Competitive
Modes analysis to identify “all possible chaotic pa-
rameter regimes” for a multiparameter system as per
the Competitive Modes conjecture. We find that the
competitive modes conjectures [20] may in fact be in-
terpreted and employed slightly more generally than
has usually been done in recent investigations, with
negative values of the squared mode frequencies in
fact being admissible in chaotic regimes, provided that
the competition among them persists. This is some-
what reminiscent of, but of course not directly cor-
related to, “stretching (along unstable manifolds) and
folding (due to local volume dissipation)” on chaotic
attractors. This new feature allows for the system
variables to grow exponentially during time intervals
when mode frequencies are imaginary and compara-
ble, while oscillating at instants when the frequencies
are real and matched.

Also, in a novel twist, we reinterpreted the com-
petitive modes analysis as simple geometric criteria

to map out the spatial location and extent, as well as
the rough general shape, of the system attractor for
any parameter sets corresponding to chaos. The gen-
eral accuracy of this mapping for the various examples
adds further evidence to the growing body of recent
work on the correctness and usefulness of the Com-
petitive Modes conjectures. In fact, it provides strong
“a posteriori” validation of them and the entire proce-
dure based on them.

In the case of hyperchaotic systems, we find that
very often three modes are competitive or nearly com-
petitive. It appears as if understanding the transition
from two mode frequencies being equal to three mode
frequencies being equal can shed some light on the
onset of hyperchaos, at least in models with polyno-
mial vector fields, such as the general quadratic vec-
tor fields considered here. We should also remark that,
for any polynomial nonlinearities in the vector field,
like the ones we considered here, competitive modes
can be calculated (in the sense that gk’s can be explic-
itly found). However, for more complicated systems
involving different types of nonlinearities, the compet-
itive modes cannot be easily applied. For such cases,
perhaps approximate competitive modes can be devel-
oped in order to approximate the original system in
terms of coupled oscillators. This would be one area
of future interest.

Finally, we reiterate the point that competitive
modes appear to be a necessary condition for chaos
(or, hyperchaos, as the case may be). As there are
cases where two mode frequencies agree over a time
domain, yet nonchaotic dynamics are observed, it sees
reasonable to restrict the requirement that two modes
be competitive to a requirement that “two modes must
be intermittently competitive on some discrete sub-
set of the time domain.” The intuition here is that the
oscillators representing each mode compete for dom-
inance at every such discrete point. If the two oscil-
lators lock (i.e., the modes remain competitive), only
restrictive dynamics might be expected. However, if
the two oscillators have approximately the same fre-
quency at a discrete set of points, only to have one os-
cillator “win” and direct the system until the next time
when the two frequencies are approximately equal,
then complicated dynamics (such as chaos) could re-
sult.

There is no general way to measure the strength
or weakness of any chaotic or hyperchaotic behavior
via competitive modes. The reason for this is because
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competitive modes are used primarily for diagnostic
purposes. However, it appears that the most chaotic
and hyperchaotic systems exhibit strong intermittent
behaviors, as we have seen in Sect. 5 and discussed
in Sect. 6. The degree to which a system exhibits in-
termittent behavior described in Sect. 6 seems to be
linked to the frequency at which the modes become
competitive.

References

1. Zhou, T., Chen, G.: Classification of chaos in 3-D au-
tonomous quadratic systems I. Basic framework and meth-
ods. Int. J. Bifurc. Chaos 16, 2459–2479 (2006)

2. Van Gorder, R.A., Choudhury, S.R.: Shil’nikov analysis of
homoclinic and heteroclinic orbits of the T system. J. Com-
put. Nonlinear Dyn. 6, 021013 (2011)

3. Zhou, T.S., Chen, G., Celikovsky, S.: Si’lnikov chaos in
the generalized Lorenz canonical form of dynamics system.
Nonlinear Dyn. 39, 319–334 (2005)

4. Sun, F.-Y.: Shil’nikov heteroclinic orbits in a chaotic sys-
tem. Int. J. Mod. Phys. B 21, 4429–4436 (2007)

5. Wang, J., Zhao, M., Zhang, Y., Xiong, X.: Si’lnikov-type
orbits of Lorenz-family systems. Physica A 375, 438–446
(2007)

6. Wilczak, D.: The existence of Shilnikov homoclinic orbits
in the Michelson system: a computer assisted proof. Found.
Comput. Math. 6, 495–535 (2006)

7. Lamb, J.S.W., Teixeira, M.-A., Webster, K.N.: Heteroclinic
bifurcations near Hopf-zero bifurcation in reversible vector
fields in R

3. J. Differ. Equ. 219, 78–115 (2005)
8. Corbera, M., Llibre, J., Teixeira, M.-A.: Symmetric peri-

odic orbits near a heteroclinic loop in R
3 formed by two

singular points, a semistable periodic orbit and their invari-
ant manifolds. Physica D 238, 699–705 (2009)

9. Krauskopf, B., Rieß, T.: A Lin’s method approach to find-
ing and continuing heteroclinic connections involving peri-
odic orbits. Nonlinearity 21, 1655–1690 (2008)

10. Wagenknecht, T.: Two-heteroclinic orbits emerging in the
reversible homoclinic pitchfork bifurcation. Nonlinearity
18, 527–542 (2005)

11. Jiang, Y., Sun, J.: Sil’nikov homoclinic orbits in a new
chaotic system. Chaos Solitons Fractals 32, 150–159
(2007)

12. Wang, X.: Sil’nikov chaos and Hopf bifurcation analysis of
Rucklidge system. Chaos Solitons Fractals 42, 2208–2217
(2009)

13. Wang, J., Zhao, M., Zhang, Y., Xiong, X.: Sil’nikov-type
orbits of Lorenz-family systems. Physica A 375, 438–446
(2007)

14. Zhou, L., Chen, Y., Chen, F.: Stability and chaos of a
damped satellite partially filled with liquid. Acta Astronaut.
65, 1628–1638 (2009)

15. Zhou, T., Chen, G., Celikovsky, S.: Silnikov chaos in the
generalized Lorenz canonical form of dynamical systems.
Nonlinear Dyn. 39, 319–334 (2005)

16. Wang, J., Chen, Z., Yuan, Z.: Existence of a new three-
dimensional chaotic attractor. Chaos Solitons Fractals 42,
3053–3057 (2009)

17. Watada, K., Tetsuro, E., Seishi, H.: Shilnikov orbits in an
autonomous third-order chaotic phase-locked loop. IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl. 45, 979–983
(1998)

18. Zhou, T., Tang, Y., Chen, G.: Chen’s attractor exists. Int. J.
Bifurc. Chaos 9, 3167–3177 (2004)

19. Chen, Z., Yang, Y., Yuan, Z.: A single three-wing or four-
wing chaotic attractor generated from a three-dimensional
smooth quadratic autonomous system. Chaos Solitons
Fractals 38, 1187–1196 (2008)

20. Yu, P.: Bifurcation, limit cycles and chaos of nonlinear dy-
namical systems. In: Sun, J.-Q., Luo, A.C.J. (eds.) Bifurca-
tion and Chaos in Complex Systems, Chap. 1, pp. 92–120.
Elsevier Science, Amsterdam (2006)

21. Yu, W., Yu, P., Essex, C.: Estimation of chaotic parameter
regimes via generalized competitive mode approach. Com-
mun. Nonlinear Sci. Numer. Simul. 7, 197–205 (2002)

22. Yu, P., Yao, W., Chen, G.: Analysis on topological proper-
ties of the Lorenz and the chen attractors using GCM. Int.
J. Bifurc. Chaos 17, 2791–2796 (2007)

23. Chen, Z., Wu, Z.Q., Yu, P.: The critical phenomena in a
hysteretic model due to the interaction between hysteretic
damping and external force. J. Sound Vib. 284, 783–803
(2005)

24. Van Gorder, R.A., Choudhury, S.R.: Classification of
chaotic regimes in the T system by use of competitive
modes. Int. J. Bifurc. Chaos 20, 3785–3793 (2010)

25. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A
71, 155–157 (1979)

26. Gao, T.G., Chen, Z.Q., Chen, G.: A hyper-chaos gener-
ated from Chen’s system. Int. J. Mod. Phys. C 17, 471–478
(2006)

27. Gao, T.G., Chen, Z., Chen, Z.Q.: Analysis of the hyper-
chaos generated from Chen’s system. Chaos Solitons Frac-
tals 39, 1849–1855 (2009)

28. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü
attractor via state feedback control. Physica A 364, 103–
110 (2006)

29. Wang, G., Zhang, X., Zheng, Y., Li, Y.: A new modified
hyperchaotic Lü system. Physica A 371, 260–272 (2006)

30. Van Gorder, R.A.: Emergence of chaotic regimes in the
generalized Lorenz canonical form: a competitive modes
analysis. Nonlinear Dyn. 66, 153–160 (2011)


	Competitive modes as reliable predictors of chaos versus hyperchaos and as geometric mappings accurately delimiting attractors
	Abstract
	Introduction
	Quadratic dynamics on Rn
	Classification of chaotic regimes by use of competitive modes
	Competitive modes for the 3D quadratic system (1.1)
	The squared mode frequencies
	Competitive g functions
	Geometrically mapping the attractor

	Competitive modes for hyperchaotic systems
	4D Rössler flow
	Hyperchaotic Chen system
	Hyperchaotic Lü system
	Modified hyperchaotic Lü system
	Comparisons among the hyperchaotic systems

	Intermittence of mode competitiveness
	Conclusions
	References


