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Abstract Equations of motion for a special system
pertaining to the class of mixed nonholonomic me-
chanical systems are studied in the modern setting of
geometric mechanics. The presented attitude control
test bed is intended to provide an experimental facil-
ity that, in certain senses, emulates the dynamics of
on-orbit conditions in the laboratory site, allowing the
evaluation of path planning and feedback control al-
gorithms. This paper demonstrates the feasibility of
the approach and proposes a concurrent solution to the
attitude tracking control problem that, due to uncer-
tainties of the parameters, is likely to require effective
adaptive aptitudes. Moreover, the invariance with re-
spect to Lie group actions of governing dynamics and
measurable output readings has allowed the investiga-
tion of controllability and observability in an intrinsic
manner.
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1 Introduction

Rigid body motion is one of the oldest and still inter-
esting branches of classical mechanics. Subtle points
of dynamics and mathematical techniques originate
from the study of rigid bodies and serve nowadays
to explain many physical systems behaviour qualita-
tively. The low gravity and frictionless background of
space can serve as an ideal location to verify exper-
imentally the viability of theoretical statements and
principles without resorting to any further assump-
tions. In spatial robotic applications, those ideal con-
ditions permit one to plainly take advantage of conser-
vative laws naturally arising from existing symmetries
derivable from Noether’s theorem [1]. This fact, in
turn, leads to a reduced-order derivation of governing
equations or first integrals which facilitates the control
design and numerical integration tasks. Nonetheless
one has still to deal with some perturbations like the
slow varying inertia properties or high-frequency vi-
brations, respectively, caused by fuel consumption or
solar booms flexibility, hence deteriorating the ideal
conditions. Whenever excited by internal or external
sources, this latter source can induce large drifts in
the base body orientation over long duration periods.
Maintaining the system reliability against such distur-
bances to achieve precise pointing missions imposes
severe requirements on controllers whose effective-
ness has to be checked in a near-reality situation. One
practical solution for testing hardware and validat-
ing attitude controllers could reside on indoor exper-
iments but encounters fundamental difficulties as the
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conditions of on-orbit environments are nearly impos-
sible to fulfill. Consequently, spacecraft attitude con-
trol technology and development has relied instead on
extensive analysis and simulation of multi-body dy-
namics rather than performing experimental valida-
tion. In some restricted attempts, models proposed in
the literature are either mounted on spherical air bear-
ings [2–4] or molded as immersed encapsulated proto-
types [5] to provide unconstrained rotational motion
for ground-based researches in spacecraft dynamics
and control. Such appliances are all meant to offer
a nearly torque-free environment for the experiment
but inconveniences like drag resistance and angular re-
striction due to bearing limits affect the promptness
and range of accessible motions. Despite theoretical
advances on control methods to face disturbances of
different origins like internal friction or flexibility [6,
7], actual demonstration of hardware reliability and
algorithm performance in remote sites such as outer
space remains an issue.

Motivated by aforementioned issues and in order
to compensate for the omni-presence of gravity in
ground-sited laboratories, an attitude control test-bed,
shown in Fig. 1, has been developed to study concepts
related to satellite attitude dynamics and control. This
system is based upon an internally equipped spheri-
cal platform constrained to roll on flat surfaces which
allows manoeuvres involving continuous large range
rotational motions about any directions. The model
is simple but effective in demonstrating complex dy-
namics that may arise in orbit conditions. It can also
provide a framework for empirically studying stabil-
ity of relative equilibria. The idea of an encapsulated
system was also adopted in other parallel studies, no-
tably by the authors, for testing dynamically coupled
locomotion techniques where no direct contacts be-
tween the actuated elements and the environment take
place [8–10]. An analogy is established here for relat-
ing the orbital and ground-based prototypes. The cor-
respondence will permit to implement and verify con-
trol rules adapted for one system to the other.

The derivation approach discussed here is coordi-
nate-free, based on the use of geometric tools special-
ized to deal with nonholonomic systems [11]. This ap-
proach allows one to make full profit of the system
“symmetries” to reduce the order of equations and at
the same time maintaining physical insight into their
structure, without the notational overhead induced by
the choice of a specific set of generalized coordinates
[12–15].

Fig. 1 A satellite and its analogue imbedded into a rolling
sphere, with flexible appendages replaced by oscillators

As a preliminary step, system’s accessibility and
controllability need to be investigated and further
checked in case of internal rotor failure as a probable
scenario. Tools from differential geometry will help
in this enquiry and also provide insights into gener-
ating feasible motions. Next phase consists of getting
involved into existing control challenges. As noticed,
although well-established principles govern the multi-
body space dynamics arena, complications may arise
from uncertain rigid body inertia which can change
due to fuel consumption, solar array deployment, etc.
Adaptive control algorithms may provide estimates of
the unknown parameters involved and thus present ex-
ceptional potentials in applications such as spatial mis-
sions where self-reliability is essential while direct ac-
cessibility over the system not feasible. The present re-
search focused on a Lyapunov-based adaptive attitude
control scheme to accommodate for inertia uncertainty
and is proven to validate on dual systems.

Practical control implementation will require flexi-
bility-induced issues such as attitude drift in the long
term to be explicitly addressed. Integrated rigid-elastic
control laws set for compensating modal interaction
are established on the base of accurate structural mod-
els. As mentioned, the main purpose of this research
focuses on providing a realistic platform respectful of
the actual system’s principal traits in order to verify
the controller performance. Despite confined available
room, dynamical counterparts to the long and slender
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flexible components may still be incorporated as some
first-mode truncated oscillators. These subsystems are
manageable without much encumbrance into the re-
stricted space of the rolling prototype. The compacted
system is expected to provide a technical foundation
for qualitatively exploring modal interactions and re-
lated effects on rotational stability in upcoming inves-
tigations.

Another concern subtly addressed here resides in
the correct evaluation of data required for feedback
in attitude control implementation. Angular velocity
components, directly measured via onboard rate gyro-
scopes, are often noise corrupted which leads to pro-
gressive degradation of integration results. To com-
pensate for this attitude drift, the gyros output and
other reference set of measured variables are merged
according to the motion equations, usually with an Ex-
tended Kalman Filter [16]. When the system has a rich
geometric structure, namely admits group symmetries,
inclusion of those typical observers breaks the whole
symmetry and thereafter the consistency of the equa-
tions. In reference [17], a constructive method is de-
veloped to build computational simpler nonlinear ob-
servers respectful of the system symmetries. The pro-
cess results in an autonomous error equation, uncon-
ditionally convergent with measurements in the body-
fixed frame. As explored here, this method is amenable
to our current situation which presents the necessary
symmetry conditions. It is again evocative of the im-
portance of maintaining system geometric structure
for investigating, in a general trend, topics such as
variables estimation or controllability analysis.

2 Apparatus description

The system consists of the following parts: a rigid
exoskeleton sphere in which the satellite prototype
is firmly held, various sensors, processors and also
imbedded actuators that are mounted on the struc-
ture. The model also allows incorporation of unactu-
ated auxiliary bodies that are constrained to move rel-
ative to the base body, mimicking the flexible compo-
nents. In comparison, most free-space simulation lab-
oratories have platforms that float on a thin film of
air supplied by means of a hose that passes through
the centre of their support base, trying to eliminate
any source of friction but which need many supple-
mentary devices [2–4]. As it concerns the present plat-
form, a completely opposite methodology is pursued

that in fact needs sufficient friction being ensured in
order that rolling without slipping occurs. Moreover,
contrary to most other systems, this device is not con-
stricted to planar motion and can perform full three-
dimensional maneuvers without range restriction.

2.1 Actuation method

Actuation mechanisms that may be incorporated into
this model include momentum wheels, as well as re-
action wheel actuators and jet thrusters, all connected
to the base body [8, 18]. Although attitude control
of a satellite can be achieved by carefully sequencing
the ignition of rocket thrusters, this method consumes
rocket fuel and so once the limited supply of fuel ex-
hausted, control is lost. A potential alternative would
be to use internally mounted inertia rotors with axes
not lying in a mutual plane [9, 10]. By regulating the
rotors relative rotation rates, the attitude of the craft
may be accurately controlled while minimizing energy
consumption.

2.2 Rigid body with oscillators

The union of the satellite prototype with the sphere
forms a unique rigid body that can translate and ro-
tate in R

2 × SO(3) and will, moreover, not be af-
fected by gravity if mounted cautiously without ec-
centricity. Flexible booms can be replaced by cross-
wise interior oscillators confined to move along guide
ways, perceived as one-mode truncations of the elasto-
mechanical system tuned at the appropriate first natu-
ral frequency of the original structure. The distributed
mass inertia effect of the panels has still to be ac-
counted for by encasing equivalent masses. The model
depicted here is strongly motivated by a troublesome
phenomenon of drift observed in satellites attitude due
to thermo-induced or dynamically driven vibrations of
the solar panels [19].

2.3 Rolling constraint

Many real-world mechanical systems have velocity-
dependent constraints in their dynamic models. For
example, one can cite mobile robots, autonomous
aerial and underwater vehicles and hopping robots,
etc. Assuming sufficient rigidity, the contact area of
the aforementioned sphere with the surface may be
considered as a point. In this case, the constraint of
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rolling without slipping implies that the velocity of
this contact point is zero. In contrast, if the shell is flex-
ible then a finite contact area will appear underneath,
vast enough to build up a sufficient friction twisting
moment and validating the no-twisting condition as a
supplementary constraint to the motion.

3 Nonholonomic constraints

When the generalized velocity of a mechanical system
satisfies an equation that cannot be written as an equiv-
alent condition on the generalized position, the system
is called a nonholonomic system. Nonholonomic con-
strained systems have to satisfy certain types of restric-
tion imposed by the environment or due to the nature
of the system’s inner structure, thus arising in one of
the following subdivisions:

• Kinematic constraints, when bodies of motion are
in rolling contact with each others,

• Dynamic constraints innate from conservation of
momentum principles that may occur, for instance,
in multi-body systems with under-actuated degrees
of freedom.

For illustration, the sphere that rolls without slip-
ping on a stationary or moving platform defines a non-
holonomic system on R

2 × SO(3) whose kinematic
properties can be effectively studied using the formal-
ism of Lie group and amply illustrates the nonholo-
nomic aspect of kinematic constraints. Each move-
ment of the sphere is described by the displacement of
its centre and the rotational motion of its frame, mon-
itored by the mean of a rotation matrix R. Because
R(t) is a curve in SO(3), dR/dt belongs to the tan-
gent space TRSO(3) at R(t). We shall regard the tan-
gent space at any point R of SO(3) as the set of right
or left-translations by R of either angular velocity ele-
ments ω,Ω ∈ so(3) ∼= TI SO(3) of its Lie algebra [8],
themselves adjoint by definition, i.e.,

dR/dt = ω∧R = RΩ∧ ⇒ Ω
�= AdRω. (1)

In representation terms, the lie algebra of SO(3) con-
sists of all 3 × 3 anti-symmetric matrices. The non-
integrable, no-slipping constraint permits complete re-
configuration achievable by rolling or spinning as only
mobility freedoms. Adding the constraint of no spin-
ning allows using the formalism of principal bundle
and principal connection A : T (R2 × SO(3)) → so(3)

to formulate the kinematics of the rolling ball. Both
constraints can be combined to result into the follow-
ing form of spatial angular velocity:

ω = e3 × ẋ, (2)

where (ẋ, Ṙ) ∈ T (R2 × SO(3)) and e3 is the unit ver-
tical vector. As a consequence, it emerges that by fol-
lowing a path x(t) to join two points on the floor, the
reorientation results exclusively by integrating along
x(t) (taking the horizontal lift of x(t)) and the atti-
tude deviation error due to pursuing a nearby path is
bounded by the area enclosed between them [20].

The second kind of constraints arises when the mo-
tion of a mechanical system exhibits certain symme-
try properties, a fact that entails the conservation of
corresponding momentum. If these conserved quanti-
ties are not integrable, then a class of nonholonomic
systems is thereby obtained. Nonholonomic control
systems can also arise as the result of the imposi-
tion of control design constraints; that is when cer-
tain motion constraints, non-integrable, are forced by
the controller. Such imposed constraints may appear
in kinematically redundant under-actuated robots [18].
Our particular prototype presents both aforementioned
types of nonholonomy. As shown next, the symme-
try conditions involved in both Lagrangian and con-
straints distribution of this system imply, by the non-
holonomic Noether theorem [1], that angular momen-
tum of the whole system about the contact point is
conserved. This fact together with the kinematic con-
straint of no slipping, impose non-integrable restric-
tions on motion.

4 Symmetry and reduction

Specializing systems to the broad class of “mechan-
ical control systems” is one way to restrict the class
of nonlinear control systems considered. Many con-
trol methodologies do not take advantage of the rich
structure of these systems. The mechanical systems’
framework, principally due to their trivial fibre bun-
dle geometric structure, provides a natural setting for
the introduction of symmetry and reduction that helps
enormously with the analysis [12].

4.1 Conservation and symmetry

A kinematic model has first-order differential equa-
tions and planning is much simpler. Apart from inte-
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grating the dynamic equations of motion which is usu-
ally a tough process, there exists no systematic proce-
dure for finding a kinematic representation for a dy-
namic system. One way of finding kinematic reduc-
tions is to look for system invariances or symmetries;
this can be deduced by noticing that the system’s La-
grangian is invariant to translations and rotations on
the configuration space, that is, the Lagrangian does
not vary with respect to certain changes in the system
configuration variables. By Noether’s theorem, such
symmetry means that there is a conserved momen-
tum map which, in turn, yields a first-order differen-
tial equation relating velocities and configurations. In
the present system, the rolling constraints and the La-
grangian are invariant under the action of SE(2). This
corresponds to the freedom that we have to select the
origin and the orientation of the coordinate axes on
the plane where the rolling motion takes place. As a
consequence, the system configuration can be reduced
to a quotient space. The family of systems reducible
can even be broadened for systems whose symmetry
is “broken” by an advected vector; e.g., one can no-
tice that the dynamics of a rotating top is not SO(3)-
invariant because the gravitational force breaks the full
rotational symmetry, and thus the usual reduction of
the system by the SO(3) group which is appropriate for
the free rigid body can no more be performed. How-
ever by considering the system as one depending on
the “direction of gravity” as a dynamic parameter in
R

3, a mathematical recovering of complete rotational
symmetry can be exploited for the purpose of reduc-
tion [13].

4.2 Euler–Poincaré reduction equations

When a mechanical system admits a symmetry group,
it may generally be reduced, allowing one to study the
dynamics on a smaller space. When the configuration
space itself is a Lie group, this often leads to Euler–
Poincaré equations on the reduced space. Simplifying
the formalism of Euler–Lagrange derived on the tan-
gent bundle of a Lie group G is based on factoring out
the group dependence in the G-invariant Lagrangian
by using group symmetry. This results in studying a
variational problem on g = T G/G rather than on the
whole T G and instead of Euler–Lagrange equations
on T G, one obtains the Euler–Poincaré equations on
G × g [14]. Nonholonomic constraints can also be in-
ducted into the reduction process, thereby generaliz-
ing the method [11, 15]. The most basic case, known

as the pure Euler–Poincaré equation [14], results from
the reduction of the Hamiltonian principle applied on
a complete G-symmetric unconstrained system to ob-
tain a restrained variational problem on g:{

L : T G → R

δ
∫

L(g(t), ġ(t)) dt = 0

⇒
⎧⎨
⎩

� : g → R

δ
∫

�(ξ(t)) dt = 0
δξ = η̇ ± [ξ, η].

(3a)

Because of its special structure, variation of ξ ∈ g

emerges dependent as above to an arbitrary function
η. Through applying the variational process, the van-
ishing integrand comes out as

d

dt

∂�

∂ξ
− ad∗

ξ

∂�

∂ξ
= 0, (3b)

where � = L(e,g−1ġ) is the reduced Lagrangian ob-
tained by translating the Lagrangian L(g, ġ) to the ori-
gin e of the Lie group G and ξ = g−1ġ is the member
of Lie algebra g corresponding to the Lie group mo-
tion with the Lie brackets [·, ·] as binary operation.
ad∗

ξ : g∗ → g∗ denotes the dual to the adjoint action
adξ (η) = [ξ, η] on g.

A similar trend for reducing the Lagrange–
D’Alembert principle can be applied to nonholonomic
systems with advected parameter [11]. The construc-
tion of the reduced system starts with the system con-
figuration space defined on the semi-direct product
S ≈ G s©V of a Lie group G by a vector space V and
the presence of a fixed vector a0 in V . Topologically,
S is G × V and the group action on S is

(g1, y1)(g2, y2) = (g1g2, g1y2 + y1). (4)

Denoting the vector space s = g×V as the Lie algebra
of S with associated Lie bracket expressed as[
(ξ1, Y1), (ξ2, Y2)

] = ([ξ1, ξ2], ξ1Y2 − ξ2Y1
)
, (5)

where for ξ ∈ g and Y ∈ V , the induced action of g on
V is denoted as ξY .

Assuming L̄ : T S × V → R is a function on the
semi-direct product group (g, y) ∈ S with an advected
parameter, namely a ∈ V . Furthermore, let’s consider
that this function is invariant with respect to the group
action

(h, x).(g, ġ, y, ẏ, a) = (hg,hġ, hy + x,hẏ, ha) (6)

as follows:

L̄(hg,hġ, hy + x,hẏ, ha) = L̄(g, ġ, y, ẏ, a). (7)
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As the right-hand side becomes independent of x, so
the third argument dependency of L̄ shall be omitted.
Actually such invariant functions turn out to be gen-
erated, as explained before, from an “almost symmet-
ric” mechanical system with Lagrangian L, supposing
that the advected parameter enrolled in its structure is
a constant vector like a0, treated here as a variable vec-
tor a ∈ V :

L = L̄(g, ġ, ẏ, a)|a=a0 . (8)

Ultimately this invariant expression can be contracted
to the reduced form �, namely the reduced Lagrangian,
which represents a translation of the function to the
group origin, e:

� : s → R,

�
�= �(ξ,Y,Γ ) = L̄

(
e, g−1ġ, g−1y,g−1a

)
(9)

with those terms defined as ξ
�= g−1ġ, Y

�= g−1ẏ, Γ
�=

g−1a. Intuitively speaking, the reduced Lagrangian is
found by transforming variables from spatial to body
frame expression in the Lagrangian L̄.

Let the distribution describing the rolling con-
straints and including the advected parameter be rep-
resented with sufficient generality as

D(g,y) = {
(ġ, ẏ) ∈ T S : ẏ = ω̂gζ

(
g−1a

)}
(10)

which is easily verified to be also invariant under the
group action of (6) and where ζ is an arbitrary function
defined by the constraint structure and ω̂ = ġg−1 is
the right pull-back of tangent vector (g, ġ) ∈ TgG to
g. These invariant properties of L̄ and D will permit
the reduction procedure.

Now let’s invoke the Lagrange–D’Alembert princi-
ple, applying it to the aforementioned nonholonomic
system with Lagrangian L = L̄|a=a0 and constraint
distribution D = D|a=a0 to obtain explicitly:

δ

∫
L(g(t), ġ(t), ẏ(t), a0) dt +

∫
f δs dt = 0,

ṡ = (ġ, ẏ) ∈ D(g(t),y(t)),

δy = (δgg−1)gζ(g−1a0),

(11)

where f is the external force and the variations have to
satisfy the constraints, namely (δg, δy) ∈ D. Apply-
ing the variational process to the reduced Lagrangian
scalar � instead of L according to (9), taking account
that the variation of Lie algebra elements takes special
forms as explained in (3a) and performing integration
by parts, the following nonholonomic Euler-Poincaré
equation results [21]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

dt

∂�c

∂ξ
− ad∗

ξ

∂�c

∂ξ

= ρ∗
d
dt

ζ

∂�

∂Y
− ρ∗

Γ

∂�

∂Γ
+ ρ∗

ζ(Γ )F + T

Y = ξζ(Γ ), Γ̇ = −ξΓ,

(12)

where the linear map ρa : g → V is defined by
ρa(ξ) = ξa as the induced action of g on V and its
dual map is denoted as ρ∗

a : V ∗ → g∗. The constrained
reduced Lagrangian �c = �|Y=ξς(Γ ) consists of evalu-
ating the reduced Lagrangian � on the constraint dis-
tribution. F and T are the external generalized force
and torque, Y = ξζ(Γ ) is the reduced form of the con-
straints and Γ is the image of the advected vector in
body frame. Next let’s illustrate the reduction process
within our prototype’s framework.

Table 1 Definition of
parameters ω,Ω Space/body angular velocity

vector
ri ith oscillator position w.r.t.

contact point

A Rotation matrix of body to
reference frame

ki Stiffness of ith oscillator

Jlock Inertia matrix of the locked
system

Γ Vertical direction in body
coordinates

Jrot Diagonal matrix of rotors axial
inertia

e3 Vertical direction in space
coordinates

mi Mass of ith oscillator r, e Sphere radius and eccentricity

υi Absolute velocity vector of ith
oscillator

χ Unit-vector pointing toward the
mass centre

ρi Relative position of ith oscillator
in its slot

ẋ Mass centre absolute velocity
vector

ϕ̇ Spinning rate of rotors array a0 Advected vector, here endorsed
by e3
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5 Equations of motion

As mentioned, the equations of motion for the present
nonholonomic system whose configuration space is
defined on SE(3) ≈ SO(3) s©R

3, can be derived in the
reduced-order Euler-Poincaré formalism by applying
the reduction process to D’Alembert’s principle or di-
rectly by making use of (12). In order to enhance clar-
ity, let’s employ the nomenclature in Table 1.

The Lagrangian term is straightforwardly obtained
as

L = L(A,ρ, Ȧ, ρ̇, ẋ, ϕ̇)

= 1

2

{〈
Ω,(Jlock − Jrot)Ω

〉 + 〈
Ω + ϕ̇, Jrot(Ω + ϕ̇)

〉

+ m〈ẋ, ẋ〉} + 1

2

∑
mi〈υi, υi〉

− mge〈Γ,χ〉 −
∑

mig〈Γ, ri〉

− 1

2

∑
kiρ

2
i (13)

with υi = R−1ẋ + Ω × ri + ρ̇iE2 and ri = biE1 +
ρi(t)E2 − eχ , where E1 and E2 are the body unit vec-
tors in the directions perpendicular and parallel to the
oscillators slots, respectively. The Lie algebra element
is defined as

ξ = A−1Ȧ
�= Ω̂ ∈ so(3). (14)

The no-slipping constraint is amenable to the standard
form:

ẋ = ω × A
(
rA−1e3 + eχ

) ≡ ω̂g−1ζ
(
g−1a0

)
, (15)

ζ(u)
�= ru + eχ. (16)

The symmetry group action applying here consists of
a matrix rotation B and a vector translation y of the
system body frame followed by axial rotations β’s of
the rotors:

(B,β, y).(Ω, ϕ̇, ρ̇, ẋ,A,ϕ,ρ, x, e3)

= (Ω, ϕ̇, ρ̇,Bẋ,BA,ϕ + β,ρ,Bx + y,Be3). (17)

It is easily verified that this action renders the La-
grangian and the distribution of the system invariant.
The reduced and constrained reduced Lagrangians be-
come

� = �(ρ, ρ̇,Ω, ϕ̇)

= 1

2

{〈
Ω,(Jlock − Jrot)Ω

〉 + 〈
Ω + ϕ̇, Jrot(Ω + ϕ̇)

〉

+ m‖Y‖2} + 1

2

∑
mi〈υi, υi〉 (18)

−mge〈Γ,χ〉 −
∑

mig〈Γ, ri〉 − 1

2

∑
kiρ

2
i ,

�c : g × S
2 → R : �c

�= �|Y=Ω×(aΓ +eχ) (19)

with υi = Y +Ω ×ri + ρ̇iE2. The reduced constrained
equation turns out to be:

Y = Ω × (rΓ + eχ), with g−1ẋ
�= Y. (20)

The other terms needed for the complete derivation
can be obtained, technically speaking, as
{ 〈ρυ(ξ),w〉 = 〈ξ, ρ∗

υ(w)〉,
ρυ(ξ) = ξ × υ

⇒ ρ∗
υ(w) = −w × υ,(21)

adξ γ = [ξ, γ ] ⇒ ad∗
ξ η = −[ξ, η] = −ξ × η, (22)

where [ , ] denotes the Lie bracket defined on the Lie
algebra so(3), corresponding to the cross product. Ul-
timately, the nonholonomic Euler–Poincaré equations
simplify to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∂�c

∂Ω
+ Ω × ∂�c

∂Ω

= dζ

dt
× ∂�

∂Y
+ ∂�

∂Γ
× Γ + ζ(Γ ) × F + T ,

d

dt

∂�c

∂ϕ̇
− ∂�c

∂ϕ
= τ,

d

dt

∂�c

∂ρ̇
− ∂�c

∂ρ
= 0,

Γ̇ + Ω × Γ = 0.

(23)

In case no external torques T or forces F but only in-
ternal actuation τ is applied, after performing substitu-
tions and dealing with the operations, following results
arise:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

(
∂�c

∂Ω

)
+ Ω × ∂�c

∂Ω

= Γ ×
(

mgeχ +
2∑

i=1

migri

)
− (rΩ × Γ )

×
(

mΩ × ζ(Γ ) +
2∑

i=1

miυi

)
,

d

dt
Jrot(Ω + ϕ̇) = τ,〈

E2,mi

dυi

dt

〉
= −kiρi, i = 1..2,

dΓ

dt
+ Ω × Γ = 0.

(24)

The partial derivative ∂�c/∂Ω is evaluated as follows:
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∂�c

∂Ω
= JlockΩ + Jrotϕ̇ + mζ(Γ ) × (

Ω × ζ(Γ )
)

+
2∑

i=1

miri × υi. (25)

In order to render equations manageable and get profit
of more reduction, one can consider the fact that the
eccentric mass centre can always be accommodated to
identify precisely with the geometric centre (e = 0).
Assuming an out-of-phase vibration disposition of the
oscillators due to rotational manoeuvre excitations,
their corresponding unbalancing terms cancel out and
can be completely suppressed, if not negligible at all.
At this step, let’s figure out the analogy with the space
realm by setting the dimension parameter r to zero,
equivalent to suppressing the mechanism of angular to
linear momentum conversion. Equations of motion of
the on-orbit satellite arise subsequently [22]. Conse-
quently the on-orbit case arises as a special case of the
ground-based system.

By further investigations, one can conclude that
other Coriolis terms appearing in the right-hand side of
(24-a) almost neutralize each other in the case of anti-
symmetric internal deformations. With all these con-
siderations, the accordingly revised equation becomes

d

dt

(
∂�c

∂Ω

)
+ Ω × ∂�c

∂Ω
= 0. (26)

Next let’s elaborate the following time derivative,
which by combining with above equation and angu-
lar velocity definition, vanishes:

d

dt

(
R

∂�c

∂Ω

)
= 0, (27)

where R ∈ SO(3) is the matrix which represents the
rotation mapping the body-fixed frame to the earth-
fixed frame. Thus the space representation of this mo-
mentum co-vector, ∂�c/∂Ω , reckonable as the angu-
lar momentum about the contact point, is conserved; a
conclusion that could also have been obtained by em-
ploying symmetry-inherited momentum conservation
facts [21]. This result permits one to reduce further the
equations from a dynamic to kinematic level, suppos-
ing the system initially at rest:

R
∂�c

∂Ω
= cte = 0

⇒ JlockΩ + Jrotϕ̇ + mr2Γ × (Ω × Γ )

+
2∑

i=1

miri × υi = 0. (28)

For the purpose of control design, the flexibility ef-
fect may initially be neglected then reconsidered in
the evaluation of the controller performance as some
un/structured perturbation, albeit in the case of high
flexibility, there may be structural modes within the
control bandwidth which will necessarily require ac-
tive control schemes to be considered. Nevertheless
noting that the operators engaged in (28) are linear
with respect to Ω , it is easily solved for if flexibility
terms are neglected:

Ω = −[Jlock − mr2Γ̂ Γ̂ ]−1Jrotϕ̇

⇒ Ω = −
(

J + mr2

1 − mr2〈Γ,JΓ 〉JΓ Γ T

)
Jrotϕ̇

�= −A(Γ )ϕ̇, (29)

where J
�= (Jlock +mr2 Id3×3)

−1 and A(Γ ) is denoted
as the linear operator acting on ϕ̇. This last equation
provides the necessary terms for evaluating the in-
stant angular velocity Ω without a gyroscope, requir-
ing only data measurements (ϕ̇,Γ ) obtainable from
other gauge devices. Furthermore, this last equation
can be restructured as

Ṙ = −R
∑

A∧
i (Γ )ui, Γ = RT e3, u = ϕ̇, (30)

where Ai(Γ ) is the ith column of matrix A(Γ ) defined
above.

6 Control of nonholonomic systems

Nonholonomic systems pose a particular challenge
from the control point of view because of under-
actuation and that even though controllable in a non-
linear sense, the linearization process ruins their struc-
ture, so attempts to deal with standard control meth-
ods fail. Moreover Brockett’s theorem inhibits asymp-
totic stabilization using smooth feedback but fortu-
nately does not affect tracking tasks [23].

6.1 Controllability

This section develops an algorithm for steering the
system from one orientation to another. If we con-
sider the velocities of the rotors as our input to this
system, we now have a kinematic model of the satel-
lite. Controllability of the fully and under-actuated
systems, from a kinematic standpoint, is checked via
the Lie bracket distribution as follows. As the origi-
nal task concerned attitude control, the xy-position of
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the rolling sphere and spin angles of the rotors did not
matter. The controllability of the mobile sphere is re-
duced to the analysis of the Lie algebra g of the Lie
group G underlying the system. Returning to the re-
duced kinematic equations encountered for the rolling
sphere system, (30), let us denote the control vector
fields as Yi, i = 1..3. By combining them through Lie
bracket operations, new directions become accessible
which were not directly attainable. The question is
whether these combinations would extend to the span
of the entire tangent space.

The Lie brackets are computed according to the
definition while observing the already present Lie al-
gebra structure of the system, as follows [19]:

Yi = −RA∧
i (Γ ), (31)

[Yi, Yj ] = −R

(
Ai × Aj + ∂Aj

∂Γ
[Γ × Ai]

− ∂Ai

∂Γ
[Γ × Aj ]

)∧
. (32)

For computational convenience, these control vector
fields Yi are transformed via group translation to an
isomorphic form Ỹi with Lie brackets subsequently
calculated as follows:

Ỹi = ei ⇒ [Ỹi , Ỹj ] = ei × ej , (33)

where ei is the i-unit vector [21]. Derived as above, it
is now particularly easier to verify the rank dimension,

ρ
({Ỹ1, Ỹ2, Ỹ3}

) = 3, ρ
({

Ỹ1, Ỹ2, [Ỹ1, Ỹ2]
}) = 3

(34)

which means that the input vector fields for three ro-
tors or only two rotors with their first level of Lie
brackets, span the tangent space of the fibre at each
point of the state space. Hence by Frobenius theorem,
orientation controllability can be deduced with at least
two nonaligned rotors. The open-loop techniques of
steering by sinusoids and performing cyclic motions in
the shape space to induce spatial motion by the princi-
ple of holonomy may be applied here [9, 21, 22].

6.2 Symmetry-preserving observer on Lie groups

Driftless assessment of the actual system’s orientation
is required for practical implementation of developed
control laws. Measurements of angular velocity and
acceleration, completed by earth magnetic field com-
ponents may be fused together for this purpose ac-
cording to equations of motion. Such set of outputs

is made available by the employment of a multi-axes
sensor, intentionally positioned in the sphere centre.
The earth magnetic field B can be measured by the
magnetometers in the body-fixed frame as yB = R−1B

and the accelerometer will measure a = (d/dt)υ+gΓ

where (d/dt)υ is the acceleration of the sphere’s cen-
tre and gΓ is the gravity vector in body frame. Notice
that in our case, these two components of the accel-
eration vector are orthogonal to each other. Without
losing generality, the local magnetic field R−1B can
be considered mainly horizontal and thus orthogonal
to Γ . By supposing that inertial acceleration is neg-
ligible compared to the gravitational acceleration, the
data measured by the accelerometer can be assessed

as yG = gΓ = RT G where G
�= ge3 denotes the con-

stant vector of gravity. Next one can apply the theory
on symmetry-preserving observers [17], as the equa-
tions of motion were recognized as left-invariant and
the outputs y = (yB, yG) = (R−1B,R−1G) are indeed
right-equivariant. This yields the following first-order
convergent observer:

d

dt
R̂ = R̂Ω∧ − k1

[
R̂yB × (R̂yB − B)

]∧
R̂

− k2
[
R̂yG × (R̂yG − G)

]∧
R̂ (35)

k1 and k2being positive arbitrary scalars and R̂ is
the rotation matrix evaluation. Indeed one can ex-
pect to evaluate the rotation matrix through above
equation and (29) by providing instant measurements
(yB, yG,Ω) available from the body-fixed sensors.

7 Adaptive control law

In this section, we present a feedback control algo-
rithm that ensures reliable tracking of attitude com-
mands in spite of inertia uncertainties. Because the in-
stant mass of the spacecraft and its distribution may be
uncertain due to fuel consumption or articulation de-
ployment, it is compulsory for the control system to
adapt accordingly. As a corollary, this tracking algo-
rithm may also help to identify the spacecraft inertia
matrix.

7.1 Adaptive scheme

Let’s return to the simplified governing dynamics
equations, (26), with applied torques terms appearing
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explicitly:
{

J (Γ )Ω̇ + Jrotϕ̈ + Ω × (JlockΩ + Jrotϕ̇) = 0,
d

dt
Jrot(Ω + ϕ̇) = τ,

(36)

where the adopted operator I (Γ ) is defined below:

I (Γ )ν
�= Jlockν + mr2Γ × (ν × Γ ). (37)

The objective is to develop an attitude controller en-
abling the body frame F to track the virtual frame
Fd . To achieve this goal, an attitude tracking error is
defined by the rotation matrix R̃ that transforms Fd

into F :

R̃ = R̃
(
e(t)

) �= R(t)RT
d (t), (38)

where e(t) = (e0(t), ev(t)) ∈ R × R
3 is the quaternion

representation of the tracking error matrix. R,Rd are
the actual orientation matrices of frame F and Fd , re-
spectively. The angular velocity of F with respect to
Fd expressed in F , denoted Ω̃ ∈ R

3, is obtained as

Ω̃
�= Ω − R̃Ωd. (39)

Based on these definitions, the control objective can
be stated as
(
R̃

(
ev(t), e0(t)

) → I, Ω̃ → 0
)

as t → ∞. (40)

Kinematic equations that relate attitude and velocity
tracking error between the two frames are expressed
as

ėv = 1

2

(
e∧
v + e0I

)
Ω̃, ė0 = −1

2
eT
v Ω̃ (41)

In order to boost the tracking performance, an aug-
mented velocity error is defined as follows:

s
�= Ω̃ − αev, (42)

where α is a positive-definite constant matrix.
As a first step, the time derivative of s is derived

and combined with the system dynamics to give the
expression:

Ī (Γ )ṡ = −τ − Ω × (JlockΩ + Jrotϕ̇)

+Ī (Γ )

(
Ω∧R̃Ωd − R̃Ω̇d

+1

2
α(e∧

v + e0I )Ω̃

)
,

Ī (Γ )ν
�= (Jlock − Jrot)ν + mr2Γ × (ν × Γ ),

(43)

where it has been taken account that ˙̃
R = −Ω∧R̃. This

equation can be rearranged in order to isolate the terms
containing unknown inertia parameters, Jlock, as

Ī (Γ )ṡ = −τ − Ω × Jrotϕ̇ + (Jlockχ − Ω × JlockΩ)︸ ︷︷ ︸
≡YΘ

−Jrotχ + mr2Γ × (χ × Γ ),

χ
�= Ω∧R̃Ωd − R̃Ω̇d + 1

2
α
(
e∧
v + e0I

)
Ω̃,

(44)

where the terms involving unknown parameters have
been replaced by a factorization YΘ composed of a
measurable regression matrix Y and an array contain-
ing the unknown parameters, Θ .

In a first stage, feedback linearization is performed
through the control input, considering an evaluation
Θ̃(t) of the unknown parameters array which leads to
the following expression:

τ = −Ω × Jrotϕ̇ + YΘ̂(t) + τ̂

+ mr2Γ × (χ × Γ ) − Jrotχ, (45)

where the inner control input τ̂ will be designed in a
subsequent stability analysis. After performing substi-
tution in (44), the following results:

Ī (Γ )ṡ = YΘ̃ + τ̂ , (46)

where the parameter-estimate mismatch is represented
as

Θ̃
�= Θ − Θ̂. (47)

7.2 Stability analysis

Let put forward a Lyapunov candidate, V (e, s, Θ̃, t),
defined in above terms by the following function

V
�= β((1 − e0)

2 + eT
v ev) + 1

2
sT Ī (Γ )s

+ 1

2
Θ̃T Λ−1Θ̃, (48)

where Λ is a constant positive-definite matrix and
β ≥ 0. This function is recognized as positive-definite
regarding the fact that the matrix operator Ī (Γ ) can be
reconstructed as

Ī (Γ ) = Jlock − Jrot + mr2I3×3 − mr2Γ ⊗ Γ, (49)

that according to Weil’s inequality [24] has eigenval-
ues lying between following intervals:

λi

{
Jlock − Jrot + mr2I3×3

} + λmin
{−mr2Γ ⊗ Γ

}
≤ λi

{
Ī (Γ )

}
≤ λi

{
Jlock − Jrot + mr2I3×3

}
+ λmax

{−mr2Γ ⊗ Γ
}
. (50)
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It is easily verified that Γ ⊗ Γ has an eigenvalue
λ1 = 1 associated to eigenvector Γ and also repeated
eigenvalues λ2,3 = 0,0 corresponding to the set of
eigenvectors Γ ⊥ orthogonal to Γ . So, consequently

Ii + mr2 − mr2(1) ≤ λi

{
Ī (Γ )

} ≤ Ii + mr2 − mr2(0)

⇒ Ii ≤ λi

{
Ī (Γ )

} ≤ Ii + mr2 (51)

which implies the positive definiteness of the opera-

tor Ī (Γ ), considering the fact that eigenvalues Ii
�=

λi{Jlock − Jrot} are positive since the rotors are a sub-
set part of the locked system.

The time derivative of this candidate Lyapunov
function can be elaborated to form the subsequent:

dV

dt
= βeT

v

(
e∧
v + e0I

)
Ω̃ + β(1−)eT

v Ω̃ + 1

2
ṡT Ī (Γ )s

+ 1

2
sT d

dt

(
Ī (Γ )s

) − Θ̃T Λ
˙̂
Θ (52)

which turns out to simplify considering the fact that
eT
v e∧

v Ω̃ = 0. The derivative term in above sentence can
be expanded as

d

dt
(Ī (Γ )s) = (Jlock − Jrot)ṡ + mr2

(
Γ̇ × (s × Γ )

+ Γ × d

dt
(s × Γ )

)
(53)

which can be restructured by replacing the term Γ̇

with Γ × Ω and defining

χ1
�= (Γ × Ω) × (s × Γ ) + Γ × (

s × (Γ × Ω)
)

(54)

for concluding on this final form:

d

dt

(
Ī (Γ )s

) = Ī (Γ )ṡ + mr2χ1. (55)

Replacing this last expression into (52) and taking into
account that the operator Ī (Γ ) is symmetric, we ob-
tain

dV

dt
= βeT

v Ω̃ + sT Ī (Γ )ṡ + 1

2
mr2χ1 − Θ̃T Λ−1 ˙̂

Θ.

(56)

Substituting (46) into (56), we get

dV

dt
= βeT

v Ω̃ + sT (Y Θ̃ + τ̂ ) + 1

2
mr2χ1 − Θ̃T Λ−1 ˙̂

Θ.

(57)

This final contracted form permits to define a parame-
ter updating rule as follows:

˙̂
Θ = ΛYT s (58)

which results in

dV

dt
= βeT

v (s − αev) + sT τ̂ + 1

2
mr2sT χ1

= −eT
v αev + sT

(
βev + τ̂ + 0.5mr2χ1

)
. (59)

The last step consists of designing the auxiliary input
judiciously as

τ̂ = −βev − 0.5mr2χ1 − Υ s (60)

which contains only known and measurable terms and
where Υ is a positive-definite matrix. After this last
substitution, a negative-definite derivative results for
the proposed Lyapunov-like function:

dV

dt
= −eT

v αev − sT Υ s ≤ 0. (61)

Barbalat’s lemma indicates that V̇ does tend to zero if
it is uniformly continuous and in particular if V̈ can be
shown to be bounded:

V̈ = −2eT
v αėv − 2sT Υ ṡ

= −eT
v α

(
e∧
v + e0I

)
Ω̃ − 2sT Υ ṡ. (62)

Since V ≥ 0 and V̇ ≤ 0,V remains bounded. Given
the expression for V in (48), this implies that both s

and Θ̃ are bounded. Furthermore ev being itself intrin-
sically bounded, (42) in turn implies that Ω̃ and hence
Ω are bounded. Next taking into consideration that the
inverse of I (Γ ) is the operator

Ī−1(Γ )ν = Ξν + mr2 〈Γ,Ξν〉
1 − mr2〈Γ,ΞΓ 〉ΞΓ (63)

with Ξ
�= (Jlock − Jrot + mr2I3×3)

−1, which remains
bounded as the inequalities

λmin(Ξ)〈Γ,Γ 〉 ≤ 〈Γ,ΞΓ 〉 ≤ λmax(Ξ)〈Γ,Γ 〉
⇒ 1

I3 + mr2
≤ 〈Γ,ΞΓ 〉 ≤ 1

I1 + mr2
(64)

prove that the term in the denominator of (63) lies in
the following interval:

1 − mr2

(I1 + mr2)
≤ 1 − mr2〈Γ,ΞΓ 〉

≤ 1 − mr2

(I3 + mr2)
. (65)

Consequently, the denominator term is always posi-
tive and does not approach zero. Returning to (46) and
(60), this trend shows that ṡ is also bounded. Now that
V̈ is proven to be bounded, V̇ will tend to zero which
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in turn means that ev → 0 and s → 0. Finally, this im-
plies that the attitude and angular velocity tracking er-
rors converge to zero:

e → 0 and Ω̃ → 0. (66)

Hence, the adaptive control law given by combining
(45), (58), and (60) ensures the asymptotic tracking
claim.

7.3 Control strategy and analogy

In a parallel construction, control rule (45) just ob-
tained can be applied for the corresponding space
satellite with the subtle change of eliminating terms
involving the radius parameter. As maintained previ-
ously, the on-orbit case emerges as a special case of
the nonholonomic system. So it is obvious that the sys-
tem will admit a similar Lyapunov function as the one
proposed in (48). This fact can be verified by elabo-
rating the corresponding dynamic equations through
the same sequence of operations within the Lyapunov
function derivative developed earlier. It is then estab-
lished that the same control rule of (45) proves con-
venient with r = 0 substituted. The result follows that
this control rule inherited from ground-based investi-
gations can command the space satellite to track any
desired pointing direction.

8 Numerical simulations

In this section, we present simulations to illustrate
performance of the adaptive scheme to achieve track-
ing commands and simultaneous identification of the
spacecraft inertia parameters. Desired manoeuvres
consist of a finite rotation about a fixed space axis, a
spinning state about specified body-fixed axis and next
a swirling motion describing a conic path. Throughout
these accomplishments, the adaptive controller perfor-
mance is investigated. Note that while the control rule
is estimating the locked inertia as a part of the adapta-
tion process, the mass centre eccentricity introduced as
a parameter of the system is assumed to be zero. This
is practically achievable by balancing the system mass
until it maintains a neutral equilibrium state. Also no-
tice that the scheme does not necessarily estimate the
unknown parameters exactly, but simply generates val-
ues that ensure zero tracking error. More demanding
desired-trajectories would imply parameter-estimate
convergence to more exact values.

Fig. 2 Initial configuration of the sphere

Fig. 3 Configuration after π/2 radians rotation

8.1 Finite rotation

The control rule of (45) has been applied for accom-
plishing a simple maneuver consisting of a rest-to-rest
finite rotation about a fixed axis in space. Results of
simulation shown in Figs. 2 and 3 describe the ini-
tial and final configurations reached by applying those
torques. The contact point left a trace on the plane,
showing how the rolling scenario has taken place. Ap-
plying those torques to the spatial spacecraft would
have resulted in a spinning rotation about the same
fixed axis.

8.2 Fixed direction spin

As depicted in Fig. 4, the angular tracking task of
changing state from rest to rotation about a body-
fixed direction at a prescribed rate has been executed.
Figure 5 shows the parameters evaluation trend that
did not necessarily imply convergence to actual val-
ues, whilst the orientation deviation depicted in Fig. 6
in terms of Euler parameters proves that the track-
ing is accomplished accordingly. It is worth noting
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Fig. 4 Angular velocities of the body frame compared to those
of the virtual frame

Fig. 5 Parameters estimation by the adaptive updating scheme

that for all practical purposes, the tracking error does
not merely tend asymptotically to zero, but converges
within definite time lapses. It is also noted from the
numerical simulations that parameter identification is
achieved more rapidly, whereas tracking takes longer.
Illustration of the motion is shown in Fig. 7 which de-
scribes a fixed steady spinning state about body axis.

Fig. 6 Euler’s parameters description of attitude error

Fig. 7 Satellite tracking the body-fixed spinning motion

8.3 Coning motion tracking performance

Another simulation has been performed exhibiting the
ability of the controller to track a coning motion de-
spite parameters unawareness, as shown in Figs. 8, 9,
10, 11. Figure 11 illustrates the resulting steady pre-
cession. Although the performance can be enhanced
for a determined trajectory by the use of high gain val-
ues, there is a limitation due to the presence of high-
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Fig. 8 Body angular velocity component Ω1

Fig. 9 Body angular velocity component Ω2

frequency dynamics introduced here as structural res-
onant modes of the panels. As maintained, the anal-
ogy permits to anticipate a similar result using same
control inputs for the spatial prototype; the spacecraft
would thus approach a whirling precession motion.

Fig. 10 Body angular velocity component Ω3

Fig. 11 Coning motion tracking

9 Conclusions

An equivalence statement is asserted that presents the
similitude between a nonholonomic mobile system
imbedded in a sphere shell and the same system set
in an unconstrained state released of any gravity ef-
fects. This dual system is presented as an experiment
device adequate for implementing and testing on-orbit
attitude control rules for spacecrafts or satellites in
laboratory-sited conditions. Similarities existing be-
tween both dynamics governing rolling and free-rigid
motions permit to conduct an analogy between the free
system errant in orbit and the constrained prototype
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rolling on the ground. Encumbering flexible compo-
nents are also introduced by substituting them with
vibrational and inertial equivalent internal modules.
Symmetries involved in the system favour the use of
a nonholonomic version of Euler-Poincaré equations
which results in a reduced-order system of equations.
A mutual adaptive control law based on common-
based Lyapunov functions is used to compensate for
unknown parameters and provides global tracking of
demanding orientation commands. The control rule
assumes no previous knowledge of the system’s iner-
tia and is thus unconditionally robust with respect to
such parametric uncertainties. Other conceivable ap-
plication of this setting may reside in the evaluation of
the satellite inertia matrix by on-line parameter esti-
mation methods or by using the update rules imbedded
in the adaptive control law; each method being appli-
cable in the laboratory site.

Simulations of different maneuvers in the SO(3)

orientation manifold showed the viability of the algo-
rithm to pursue any commands for both terrestrial and
spatial systems, reinforcing the mentioned analogy
theory. Further investigations are needed to explore
stability issues due to dynamic interaction between the
rigid hub and flexible parts. The main purpose of this
analogy was to establish conditions as realistic as pos-
sible to space environment’s in order to confront any
theoretical results on control with the practical issues
involved, as the general behaviour of complex multi-
body systems inexorably stands beyond idealization
and necessitates experiments.
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