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Abstract This paper investigates the nonzero mean
probability density function (PDF) of nonlinear os-
cillators under additive Poisson impulses. The PDF is
governed by the generalized Fokker–Planck–
Kolmogorov (FPK) equation which is also called the
Kolmogorov–Feller (KF) equation. An exponential-
polynomial closure (EPC) method is adopted to solve
the equation. Five examples are considered in numer-
ical analysis to show the effectiveness of the EPC
method. The nonzero mean response of nonlinear os-
cillators is formulated due to either nonlinearity type
or nonzero mean amplitude of Poisson impulses. The
analysis shows that the PDFs obtained with the EPC
method agree with the simulated results when the
polynomial order is 4 or 6. This agreement is also
observed in the tail regions of the obtained PDFs.
The comparison further shows that the nonzero mean
PDF of displacement is nonsymmetrically distributed.
Comparatively, the PDF of velocity still has a symmet-
rical distribution pattern when the nonlinearity only
exists in displacement.
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1 Introduction

The probability density function (PDF) solution to the
response of nonlinear stochastic oscillators has been a
challenging research topic. In particular, the PDF so-
lution of nonlinear oscillators under Poisson impulses
(i.e., Poisson white noise) has attracted much atten-
tion in recent years. Poisson white noise represents
a sequence of impulses with independent identically
distributed magnitudes arriving at random times. It
can be adopted to simulate earthquake ground mo-
tion, sea wave, traffic loads, etc. In the presence of
Poisson impulses, the PDF solution of the response
of nonlinear oscillators is governed by the general-
ized Fokker–Planck–Kolmogorov (FPK) equation or
so-called the Kolmogorov–Feller (KF) equation [1–4].
Only a few stationary PDF solutions have been ob-
tained subjected to some special cases [5–7]. Most
work has to be conducted by approximation meth-
ods, such as the perturbation method [1, 2], Petrov–
Galerkin method [8], cell-to-cell mapping (path in-
tegration) technique [9–12], and finite difference ap-
proach [13, 14]. These methods can present adequate
PDF solutions when the parameters (e.g., nonlinear-
ity degree, impulse arrival rate, etc.) of the systems
satisfy some requirements. Besides these approximate
PDF solutions, the response moments of the systems
have been extensively investigated by stochastic lin-
earization methods [15–20] or the cumulant-neglect
closure technique [21–23]. When the nonlinearity is
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weak and impulse arrival rate is high, these two meth-
ods can be applicable for the case of Poisson im-
pulses.

Although the above methods contribute much to
the study on the case of Poisson impulses, the PDF
solutions have been less developed for general cases,
especially for the tail region of the PDF solutions.
In addition, the nonzero mean PDF solutions are
scarcely mentioned in existing references in the case
of Poisson impulses. In fact, some physical excita-
tions, e.g., wind gusts or extreme waves, have nonzero
mean in nature. Furthermore, some types of nonlin-
earity may lead to the nonzero mean response of non-
linear oscillators even excited by zero mean excita-
tion [24].

In this paper, the nonzero mean PDF solution is
developed with an exponential-polynomial closure
(EPC) method by solving the generalized FPK equa-
tion [25–29]. The nonzero mean PDF solution was in-
vestigated in the case of Gaussian white noise [29].
Herein, the EPC method is extended to the case
of Poisson impulses in a straightforward manner.
Five nonlinear oscillators under additive Poisson im-
pulses are analyzed in the case of nonzero mean re-
sponse in numerical analysis. The nonzero mean re-
sponse of nonlinear oscillators is formulated due to
either nonlinearity type or nonzero mean amplitude
of Poisson impulses. The first example is about a
Duffing oscillator with a constant under zero mean
Poisson impulses. The second example is about a
Duffing oscillator under nonzero mean Poisson im-
pulses. The third example is about a Duffing oscil-
lator with an even order term in displacement un-
der zero mean Poisson impulses. The fourth exam-
ple is about a bimodal Duffing oscillator and the
last example is about a nonlinear oscillator with the
nonlinearity in velocity. The analysis shows that the
PDFs obtained with the EPC method are the same as
those obtained by the stochastic linearization method
when the polynomial order equals 2 with the EPC
method. The PDFs obtained with the stochastic lin-
earization method differ significantly from the sim-
ulated results. When the polynomial order is 4 or
6, the PDFs obtained with the EPC method agree
well with the simulated results, especially in the tail
regions. The results further show that the nonzero
mean PDF of the response is nonsymmetric about
its mean unlike the case of the zero mean PDF so-
lution.

2 EPC procedure

A single degree-of-freedom nonlinear oscillator can be
expressed as

Ẍ + h0(X, Ẋ) = W(t), (1)

where X and Ẋ are the response variables of the oscil-
lator such as displacement and velocity, respectively.
h0 is the function of X and Ẋ. The functional form of
h0 is assumed to be deterministic; W(t) represents a
process of Poisson impulses as follows:

W(t) =
N(T )∑

k=1

Ykδ(t − τk), (2)

where N(T ) is the total number of impulses arriving
in the time interval (−∞, T ]. Yk is the amplitude of
the kth impulse arriving at time τk . δ(t) is Dirac delta
function. Herein N(T ) is assumed to yield the Pois-
son law with a constant impulse arrival rate λ. The im-
pulse amplitudes Yk are independent and identically
distributed (i.i.d.) random variables. Yk is also inde-
pendent of the impulse arrival time τk . When the ar-
rival rate λ is constant and the impulse amplitudes Yk

are i.i.d., the response of the oscillator becomes sta-
tionary [30]. Setting X = x1 and Ẋ = x2, Eq. (1) can
be expressed as

ẋ1 = x2, (3)

ẋ2 = −h0(x1, x2) + W(t). (4)

The response vector {x1, x2}T is Markovian and the
PDF solution of the response is equivalently governed
by the following KF equations either in an integrodif-
ferential form or in an infinite series form [4]

∂p(x1, x2, t)

∂t

= −x2
∂p(x1, x2, t)

∂x1
+ ∂{h0p(x1, x2, t)}

∂x2

−λp(x1, x2, t)

+ λ

∫ ∞

−∞
p(x1, x2 − y, t)pY (y) dy, (5a)

∂p(x1, x2, t)

∂t

= −x2
∂p(x1, x2, t)

∂x1
+ ∂{h0p(x1, x2, t)}

∂x2
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+ λ

∞∑

j=1

(−1)j

j ! E
[
Y j

]∂jp(x1, x2, t)

∂x
j

2

, (5b)

where E[•] denotes the expectation of (•). Further-
more, if only the stationary PDF solution is consid-
ered, the term on the left side of Eq. (5b) vanishes and
Eq. (5b) is reduced to be

−x2
∂p(x1, x2)

∂x1
+ ∂{h0p(x1, x2)}

∂x2

−λE[Y ]∂p(x1, x2)

∂x2

+ 1

2!λE
[
Y 2]∂2p(x1, x2)

∂x2
2

(6)

− 1

3!λE
[
Y 3]∂3p(x1, x2)

∂x3
2

+ 1

4!λE
[
Y 4]∂4p(x1, x2)

∂x4
2

+ · · · = 0.

In the EPC method [25–29], an approximate PDF

solution
∼
p (x1, x2;a) to Eq. (6) is assumed to be

∼
p (x1, x2;a) = C exp

{
Qn(x1, x2;a)

}
, (7)

where C is a normalization constant; exp {·} is an ex-
ponential function; a is an unknown parameter vector
containing Np entries. The polynomial Qn(x1, x2;a)

is expressed as

Qn(x1, x2;a) =
n∑

i=1

i∑

j=0

aij x
i−j

1 x
j

2 , (8)

which is an nth-degree polynomial in x1 and x2. It is
also required that

lim
xi→±∞Qn(x1, x2;a) = −∞, i = 1,2. (9)

Substituting
∼
p (x1, x2;a) for p(x1, x2) leads to the

following residual error

Δ(x1, x2;a) = −x2
∂

∼
p

∂x1
+ ∂

∂x2
(h0

∼
p) − λE[Y ] ∂

∼
p

∂x2

+ 1

2!λE
[
Y 2]∂2

∼
p

∂x2
2

− 1

3!λE
[
Y 3]∂3

∼
p

∂x3
2

+ 1

4!λE
[
Y 4]∂4

∼
p

∂x4
2

. (10)

Here, only the terms up to the fourth-order derivative
are retained for analysis given that the contribution of
higher order terms is small to the whole equation. It is
expected that the approximate solution will work well
when the neglected higher order terms are very small.

Substituting Eq. (7) into Eq. (10) leads to

Δ(x1, x2;a) = F(x1, x2;a)
∼
p (x1, x2;a), (11)

where

F(x1, x2;a)

= −x2
∂Qn

∂x1
+ h0

∂Qn

∂x2
− λE[Y ]∂Qn

∂x2

+ 1

2!λE
[
Y 2]

[
∂2Qn

∂x2
2

+
(

∂Qn

∂x2

)2]

− 1

3!λE
[
Y 3]

[
∂3Qn

∂x3
2

+ 3
∂Qn

∂x2

∂2Qn

∂x2
2

+
(

∂Qn

∂x2

)3]

+ 1

4!λE
[
Y 4]

[
∂4Qn

∂x4
2

+ 4
∂Qn

∂x2

∂3Qn

∂x3
2

+ 3

(
∂2Qn

∂x2
2

)2

+ 6

(
∂Qn

∂x2

)2
∂2Qn

∂x2
2

+
(

∂Qn

∂x2

)4]
+ ∂h0

∂x2
. (12)

Subsequently, another set of mutually independent
functions Hs(x1, x2) that span space �Np can be intro-
duced to make the projection of F(x1, x2;a) on �Np

vanish, which leads to

∫ +∞

−∞

∫ +∞

−∞
F(x1, x2;a)Hs(x1, x2) dx1 dx2 = 0.

(13)

Selecting Hs(x1, x2) as

Hs(x1, x2) = xk−l
1 xl

2f1(x1)f2(x2), (14)

where k = 1,2, . . . , n; l = 0,1,2, . . . , k and s = 1
2 (k+

2)(k − 1) + l + 1.
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Numerical experience shows that a convenient and
effective choice for f1(x1) and f2(x2) is the PDF ob-
tained with stochastic linearization method or Gaus-
sian closure method under Gaussian excitation with
the same intensity λE[Y 2] as follows:

f1(x1) = 1√
2πσ1

exp

{
− (x1 − μ1)

2

2σ 2
1

}
, (15)

f2(x2) = 1√
2πσ2

exp

{
− (x2 − μ2)

2

2σ 2
2

}
. (16)

The integration in Eq. (13) can be easily evaluated
with Gaussian random variables as follows:

∫ +∞

−∞
xn · 1√

2πσ
exp

{
− (x − μ)2

2σ 2

}
dx

=
�n/2�∑

k=0

n!(2k − 1)!!
(n − 2k)!(2k)!μ

n−2kσ 2k, (17)

where μ denotes mean value; σ denotes standard de-
viation; and n denotes nonnegative integer.

Finally nonlinear algebraic equations are estab-
lished about the unknown parameters of the approx-
imate PDF solution as given by Eq. (18) [28].

n∑

i=1

i∑

j=0

n∑

q=1

q∑

r=0

n∑

ī=1

ī∑

j̄=0

n∑

q̄=1

q̄∑

r̄=0

αkl

ijqrīj̄ q̄ r̄
aij aqraīj̄ aq̄r̄

+
n∑

i=1

i∑

j=0

n∑

q=1

q∑

r=0

n∑

ī=1

ī∑

j̄=0

βkl

ijqrīj̄
aij aqraīj̄

+
n∑

i=1

i∑

j=0

n∑

q=1

q∑

r=0

γ kl
ijqraij aqr +

n∑

i=1

i∑

j=0

ηkl
ij aij

+ ψkl = 0, (18)

where αkl

ijqrīj̄ q̄ r̄
, βkl

ijqrīj̄
, γ kl

ijqr , ηkl
ij , and ψkl are pre-

sented in the Appendix. The nonlinear algebraic equa-
tions can be solved by conventional Newton–Raphson
method and the initial solution can be selected us-
ing the Gaussian PDF given by stochastic linearization
method.

Furthermore, when Y is Gaussian, the values of the
moments are evaluated by Eqs. (19)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E[Y ] = μY ,

E[Y 2] = μ2
Y + σ 2

Y ,

E[Y 3] = μ3
Y + 3μY σ 2

Y ,

E[Y 4] = μ4
Y + 6μ2

Y σ 2
Y + 3σ 4

Y ,

(19)

where μY is the mean of Y and σ 2
Y is the variance of Y .

3 Numerical analysis

Five nonlinear oscillators under additive Poisson im-
pulses are analyzed in the case of nonzero mean re-
sponse. The nonzero mean response of nonlinear oscil-
lators is formulated due to either nonlinearity type or
nonzero mean amplitude of Poisson impulses. The first
example is about a Duffing oscillator with a constant
under zero mean Poisson impulses. The second exam-
ple is about a Duffing oscillator under nonzero mean
Poisson impulses. The third example is about a Duff-
ing oscillator with an even order term in displacement
under zero mean Poisson impulses. The fourth exam-
ple is about a Duffing oscillator with a bimodal PDF of
displacement and the last example is about a nonlinear
oscillator with the nonlinearity in velocity. A Monte
Carlo simulation (MCS) is also conducted and the sim-
ulation procedure follows the techniques introduced in
[2, 16]. A sample size of 2 × 107 is adopted to provide
adequate evaluation on the tail of the PDF solution.

3.1 Example 1

The first example is about a Duffing oscillator with a
constant under zero mean Poisson impulses, which is
given as

Ẍ + cẊ + kX + εX3 + m = W(t), (20)

where W(t) is a process of Poisson impulses as ex-
pressed by Eq. (2) in which Yk are assumed to be
Gaussian with zero mean. The system parameters are
given as: c = 0.1, k = 1.0, ε = 1.0, m = −1, λ = 1.0,
λE[Y 2] = 1.0, E[Y ] = 0, σY = 1 such that E[Y 2] = 1,
E[Y 3] = 0 and E[Y 4] = 3.

Figures 1(a) and 1(b) present the PDFs and loga-
rithmic PDFs obtained with each method for displace-
ment. The comparison shows that the result from EPC
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Fig. 1 Comparison of PDFs in example 1: (a) PDFs of displacement; (b) Logarithmic PDFs of displacement; (c) PDFs of velocity;
(d) Logarithmic PDFs of velocity

(n = 2) is the same as that given by stochastic lin-

earization method. Therefore, EPC (n = 2) presents a

Gaussian PDF. In Fig. 1(a), the PDF solution given by

stochastic linearization method (i.e., EPC n = 2) de-

parts significantly from the simulated result (MCS).

The difference is much more pronounced in the tail

region as Fig. 1(b) shows. When the polynomial order

increases to 6, the results from EPC method agree well

with those from MCS. In particular, good agreement is

also observed in the tails of the PDF solution as shown

in Fig. 1(b).

As expected, the distribution of the PDF solution is

shifted from zero mean for the PDF of displacement.

This is caused by the addition of the constant m. It

is also seen that the PDF solution is not symmetrically

distributed about its mean, which is caused by the non-

linear term in the oscillator.

For the velocity, the PDF obtained from EPC (n =
6) presents an improved result over that from EPC

(n = 2), even in the tails of the PDF, as shown in

Figs. 1(c) and 1(d). For the PDF of velocity, the distri-

bution is still symmetrical about zero mean. It shows
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Fig. 2 Comparison of PDFs in example 2: (a) PDFs of displacement; (b) Logarithmic PDFs of displacement; (c) PDFs of velocity;
(d) Logarithmic PDFs of velocity

that the symmetric distribution of the PDF of velocity
is not affected by the nonlinear term.

3.2 Example 2

The second example is about a Duffing oscillator un-
der nonzero mean Poisson impulses, which is pre-
sented as

Ẍ + cẊ + kX + εX3 = W(t), (21)

where W(t) is a process of Poisson impulses as ex-
pressed by Eq. (2) in which Yk are assumed to be

Gaussian with nonzero mean. The system parame-
ters are given as: c = 0.1, k = 1.0, ε = 1.0, λ = 1.0,
E[Y ] = 1, σY = 1 such that E[Y 2] = 2, E[Y 3] = 4
and E[Y 4] = 10. The effect of nonzero mean ampli-
tude of Poisson impulses is considered with the EPC
method. When the amplitude is Gaussian with nonzero
mean, both E[Y ] and E[Y 3] are retained in Eq. (10).

Similar conclusions can be made as the first case.
Figures 2(a) through 2(d) show that the PDF solu-
tion given by EPC (n = 2) (i.e., stochastic linearization
method) differs much from MCS, especially in the tail
region. Comparatively, EPC (n = 6) agrees well with
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Fig. 3 Comparison of PDFs in example 3: (a) PDFs of displacement; (b) Logarithmic PDFs of displacement; (c) PDFs of velocity;
(d) Logarithmic PDFs of velocity

MCS even in the tail region. Because of the nonzero
mean amplitude, the PDF distribution of displacement
has positive mean and it is shifted from zero. For the
PDF solution of velocity shown in Figs. 2(c) and 2(d),
the symmetry and zero mean property are not influ-
enced by the nonzero mean amplitude.

3.3 Example 3

This example is about a Duffing oscillator with an even
order term in displacement under zero mean Poisson

impulses, which is expressed as

Ẍ + cẊ + k1X + k2X
2 + k3X

3 = W(t), (22)

where W(t) is a process of Poisson impulses as ex-
pressed by Eq. (2) in which Yk are assumed to be
Gaussian with zero mean. An even order term in dis-
placement is considered in this example. The system
parameters are given as: c = 0.1, k1 = 1.0, k2 = 2.0,
k3 = 1.0, λ = 1.0, λE[Y 2] = 1.0, E[Y ] = 0, σY = 1
such that E[Y 2] = 1, E[Y 3] = 0 and E[Y 4] = 3.

From Figs. 3(a) to 3(d), it is seen that the results
from EPC (n = 6) are in good agreement with MCS
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Fig. 4 Comparison of PDFs in example 4: (a) PDFs of displacement; (b) Logarithmic PDFs of displacement; (c) PDFs of velocity;
(d) Logarithmic PDFs of velocity

for the whole PDF distribution and the tail region. For
the PDF of velocity, the PDF distribution is symmetri-
cal about zero mean, which is not affected by the even
order term in displacement.

The comparison shows that similar conclusions can
be drawn as those of the previous cases. The strong
nonlinearity induces the large difference from Gaus-
sianity in the tail of the PDF solution for displacement.
The PDF of displacement has nonzero mean, which is
nonsymmetric about its mean. The PDF solution of ve-
locity presents a zero-mean symmetric shape, which is
not affected by the nonlinearity type of displacement.

3.4 Example 4

Example 4 is about a bimodal Duffing oscillator.
A negative linear restoring force leads to the bimodal
PDF of the response [31, 32]. The nonlinear oscillator
is given below:

Ẍ + cẊ − kX + εX3 = W(t), (23)

where W(t) is a process of Poisson impulses as ex-
pressed by Eq. (2) in which Yk are assumed to be
Gaussian with a nonzero mean. The system parame-
ters are given as: c = 0.1, k = 1.0, ε = 1.0, λ = 1.0,
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Fig. 5 Comparison of PDFs in example 5: (a) PDFs of displacement; (b) Logarithmic PDFs of displacement; (c) PDFs of velocity;
(d) Logarithmic PDFs of velocity

E[Y ] = 1, σY = 1 such that E[Y 2] = 2, E[Y 3] =
4 and E[Y 4] = 10. Figures 4(a) and 4(b) show the

PDFs of displacement obtained with each method.

EPC (n = 2) differs much from the simulated result,

which means the PDF of displacement is highly non-

Gaussian. When a complete sixth-order polynomial is

used (EPC n = 6), good agreement is made between

EPC (n = 6) and the simulated result. For the PDF of

velocity, EPC (n = 6) presents an improvement on the

whole PDF and the tail region as Figs. 4(c) and 4(d)

show.

The bimodal PDF of displacement is formulated
as Figs. 4(a) and 4(b) show. In the presence of the
nonzero Poisson impulses, one peak is much larger
than the other peak as shown in Fig. 4(a). In this case,
the PDF solution of velocity still presents a unimodal
and symmetric distribution as Figs. 4(c) and 4(d) show.

3.5 Example 5

The last example considers the effect of nonlinear term
in velocity. The following oscillator is studied:

Ẍ + cẊ + μẊ3 + kX + εX3 = W(t), (24)
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where W(t) is a process of Poisson impulses as ex-
pressed by Eq. (2) in which Yk are assumed to be
Gaussian with nonzero mean. The system parameters
are presented as: c = 0.1, μ = 0.01, k = 1.0, ε = 1.0,
λ = 1.0, E[Y ] = 1, σY = 1 such that E[Y 2] = 2,
E[Y 3] = 4 and E[Y 4] = 10.

The nonlinearity in velocity is considered in this ex-
ample. Figures 5(a) and 5(b) show EPC (n = 2) differs
significantly from the simulated result in the case of
displacement. When a complete fourth-order polyno-
mial is used in the EPC method, EPC (n = 4) presents
good agreement with the simulated one. In the case of
velocity, the PDF of velocity is well evaluated by EPC
(n = 4) as Figs. 5(c) and 5(d). The PDF of velocity
shows a little nonsymmetric distribution. The use of a
complete sixth-order polynomial is also studied with
the EPC method, which shows disconvergence on the
PDF solution.

4 Conclusions

An EPC method is extended to analyze the stationary
nonzero mean PDF solution of nonlinear oscillators
under additive Poisson impulses. The EPC solution
procedure is developed to solve the generalized FPK
equation or so-called the KF equation. Five examples
are considered in numerical analysis to show the ef-
fectiveness of the EPC method. The nonzero mean re-
sponse of nonlinear oscillators is made due to either
nonlinearity type or nonzero mean amplitude of Pois-
son impulses. The analysis shows that the results from
EPC (n = 2) are the same as those given by stochas-
tic linearization method. The PDFs given by stochas-
tic linearization method (i.e., EPC n = 2) differ sig-
nificantly from those of Monte Carlo simulation, es-
pecially in the tail region. When the polynomial order
equals 4 or 6, the PDFs obtained with the EPC method
are in good agreement with the simulation results. This
agreement is also observed in the tail regions of the ob-
tained PDFs. The nonzero mean PDF of displacement
is nonsymmetrically distributed. On the other hand,
the PDF of velocity presents a zero-mean symmetric
shape when only nonlinearity in displacement exists
in these systems.
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Appendix

αkl

ijqrīj̄ q̄ r̄
= 1

24
λE

[
Y 4]jrj̄ r̄I

i−j+q−r+ī−j̄+q̄−r̄+k−l

1

× I
j+r+j̄+r̄+l−4
2 , (25)

βkl

ijqrīj̄
= 1

4
λE

[
Y 4]jrj̄ (j̄ − 1)I

i−j+q−r+ī−j̄+k−l

1

× I
j+r+j̄+l−4
2

− 1

6
λE

[
Y 3]jrj̄ I

i−j+q−r+ī−j̄+k−l

1

× I
j+r+j̄+l−3
2 , (26)

γ kl
ijqr = 1

8
λE

[
Y 4]jr(j − 1)(r − 1)I

i−j+q−r+k−l

1

× I
j+r+l−4
2

+ 1

6
λE

[
Y 4]jr(r − 1)(r − 2)I

i−j+q−r+k−l

1

× I
j+r+l−4
2

− 1

2
λE

[
Y 3]jr(r − 1)I

i−j+q−r+k−l

1 I
j+r+l−3
2

+ 1

2
λE

[
Y 2]jrI

i−j+q−r+k−l

1 I
j+r+l−2
2 , (27)

ηkl
ij = −(i − j)I

i−j+k−l−1
1 I

j+l−1
2

+ 1

24
λE

[
Y 4]j (j − 1)(j − 2)(j − 3)I

i−j+k−l

1

× I
j+l−4
2

− 1

6
λE

[
Y 3]j (j − 1)(j − 2)I

i−j+k−l

1 I
j+l−3
2

+ 1

2
λE

[
Y 2]j (j − 1)I

i−j+k−l

1 I
j+l−2
2 + jI kl

ij ,

(28)

ψkl =
∫ +∞

−∞

∫ +∞

−∞
∂h0

∂x2
xk−l

1 xl
2f1(x1)f2(x2) dx1 dx2,

(29)

I kl
ij =

∫ +∞

−∞

∫ +∞

−∞
h0(x1, x2)x

i−j+k−l

1 x
j+l−1
2

× f1(x1)f2(x2) dx1 dx2

− λE[Y ]
∫ +∞

−∞

∫ +∞

−∞
x

i−j+k−l

1 x
j+l−1
2

× f1(x1)f2(x2) dx1 dx2, (30)
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Im
1 =

∫ +∞

−∞
xm

1 f1(x1) dx1, (31)

Im
2 =

∫ +∞

−∞
xm

2 f2(x2) dx2, (32)

where m = 0,1,2, . . ..
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