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Abstract A delayed Lotka–Volterra predator-prey
system of population allelopathy with discrete delay
and distributed maturation delay for the predator popu-
lation described by an integral with a strong delay ker-
nel is considered. By linearizing the system at the pos-
itive equilibrium and analyzing the associated charac-
teristic equation, the asymptotic stability of the posi-
tive equilibrium is investigated and Hopf bifurcations
are demonstrated. Furthermore, the direction of Hopf
bifurcation and the stability of the bifurcating periodic
solutions are determined by the normal form theory
and the center manifold theorem for functional differ-
ential equations. Finally, some numerical simulations
are carried out for illustrating the theoretical results.
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1 Introduction

In recent years, a large number of population models,
especially the Lotka–Volterra predator-prey models
modeled by ordinary differential equations (ODEs),
have been proposed and studied extensively since
the pioneering theoretical works by Lotka [1] and
Volterra [2]. With the modification of Brelot [3], the
model has the form
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)[r1 − a11x(t)

−a12
∫ t

−∞ F(t − s)y(s) ds],
ẏ(t) = y(t)[−r2 + a21

∫ t

−∞ G(t − s)x(s) ds

−a22y(t)],

(1)

where ri > 0, aij > 0, (i, j = 1,2) and
∫ ∞

0 F(s) ds =
1,

∫ ∞
0 G(s)ds = 1.

Systems such as (1) with various delay kernels and
delayed intraspecific competitions have been investi-
gated extensively by many researchers; see [4–13].
When F(s) = δ(s − τ) (τ ≥ 0) and G(s) = δ(s − η)

(η ≥ 0), namely, system (1) has two different discrete
delays, He [14] and Lu and Wang [15] investigated
the stability of the positive equilibrium of the system,
and they found that the positive equilibrium is globally
asymptotically stable for any values of delays τ and η

when the coefficients of the system satisfy the condi-
tion a11a22 −a12a21 > 0. In addition, under the condi-
tion that η > 0, by considering η as the bifurcation pa-
rameter and using the linearization method, Faria [5]
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investigated the stability of the positive equilibrium of
system (1) and the Hopf bifurcation of nonconstant
periodic solutions near the positive equilibrium, and
the normal form of Hopf bifurcations was also given
by using the normal form theory and the center man-
ifold theorem developed by Faria and Magalhes [16].
Following Faria [5], some researchers pay attention to
stage-structured population models. For the predator-
prey system, see [17–21]. For the study of system (1)
with delayed intraspecific competitions, one can refer
to [7, 10, 11, 22].

When one of F(s) and G(s) is taken as the Dirac
delta function δ(s − τ), then system (1) has two dif-
ferent styles delay, discrete delay and distributed de-
lay. These types of models have been considered in
[8, 23, 25]. For example, assume that F(s) = δ(s − τ)

(τ ≥ 0), then system (1) is reduced to the following
Lotka–Volterra two-species predator-prey system with
a discrete delay and a distributed delay:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = x(t)[r1 − a11x(t) − a12y(t − τ)],
ẏ(t) = y(t)[−r2 + a21

∫ t

−∞ G(t − s)x(s) ds

−a22y(t)],
(2)

where the nonnegative constant τ can be interpreted
as the hunting delay of the predator population. The
delay kernel function G(s) may take the so-called
“weak” generic kernel function G(s) = αe−αs (α > 0)

and “strong” generic kernel function G(s) = α2se−αs

(α > 0), where the “weak” generic kernel implies
that the importance of events in the past simply de-
creases exponentially the further one looks into the
past while the “strong” generic kernel implies that
a particular time in the past is more important than
any other [24]. When G(s) takes the “weak” generic
kernel function and the “strong” generic kernel func-
tion G(s) = α2se−αs (α > 0), Song and Yuan [8] and
Zhang, Yan, and Cui [25] separately investigated the
stability of the positive equilibrium of system (2) and
Hopf bifurcations of nonconstant periodic solutions by
using the linearization method and regarding the dis-
crete hunting delay τ as the bifurcation parameter; by
using the normal form theory and the center mani-
fold reduction for FDEs [26, 27], Song and Yuan [8]
and Zhang, Yan, and Cui [25] also studied the direc-
tion of the Hopf bifurcations and the stability of bifur-
cated periodic solutions occurring through Hopf bifur-
cations.

In the real nature world, some species may produce
substances which are toxic or stimulatory to the others
while they themselves do not experience any recipro-
cal effects. For example, some species of poisonous
snake release toxic substance to control prey during
the process of prey. The production of toxic substance
by the predator species will not be instantaneous, but
mediated by some time lag [6, 28–30]. From this view-
point and to reflect the nature fact actively, we have
modified the model of (2); therefore, by considering
that one specie produces a substance toxic to the other
during the process of prey, but only when the other is
present. Then the system (2) can be written as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)[k1 − α1x(t) − β12y(t)

−γ1x(t)y(t − τ)],
ẏ(t) = y(t)[−k2 + α2

∫ t

−∞ G(t − s)x(s) ds

−β21y(t)],

(3)

where G(s) = α2se−αs (α > 0), ki > 0, αi > 0, βij >

0, γi > 0 (i, j = 1,2). We have investigated the bi-
furcation behavior on time delay of this modified dy-
namical system (3). It has also been observed that time
delay can drive the competitive system to sustained os-
cillations, as shown by Hopf bifurcation analysis and
limit cycle stability. Hence, interaction between the
time delay effect produced by delayed toxin and other
distributed delay can regulate the densities of different
competing species in the aquatic ecosystem, thus in-
fluencing seasonal succession, blooms and pulses. To
the best of our knowledge, no such attempts have been
taken to include interaction between the time delay ef-
fect produced by delayed toxin and other distributed
delay in a predator-prey system. Therefore, this re-
search might be helpful to the study of predator-prey
model and related problem in biological system.

This paper is organized as follows. In Sect. 2, by
linearizing the resulting four-dimensional system at
the positive equilibrium and analyzing the associated
characteristic equation, it is found that under suitable
conditions on the parameters the positive equilibrium
is asymptotically stable when the delay is less than a
certain critical value and unstable when the delay is
greater than this critical value. Meanwhile, according
to the Hopf bifurcation theorem for functional differ-
ential equations (FDEs), we find that the system can
also undergo a Hopf bifurcation of nonconstant peri-
odic solution at the positive equilibrium when the de-
lay crosses through a sequence of critical values. In
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Sect. 3, to determine the direction of the Hopf bifurca-
tions and the stability of bifurcated periodic solutions
occurring through Hopf bifurcations, an explicit algo-
rithm is given by applying the normal form theory and
the center manifold reduction for FDEs developed by
Hassard, Kazarinoff and Wan [31]. To verify our the-
oretical predictions, some numerical simulations are
also included in Sect. 4.

2 Stability of equilibria and existence of Hopf
bifurcations

The equilibrium points of system (3) for τ = 0 are as
follows:

E0(0,0), E1

(

0,− k2

β21

)

, E2

(
k1

α1
,0

)

,

E
(
x∗, y∗),

where

x∗ = −l1 + s

2α2γ1
,

y∗ = −l2 + s

2β21γ1

and

l1 = α1β21 + α2β12 − γ1k2,

l2 = α1β21 + α2β12 + γ1k2,

s =
√

(α1β21 + α2β12 − γ1k2)2 + 4α2γ1(β12k2 + β21k1).

E(x∗, y∗) is a unique positive equilibrium when the
condition

(H1) k1α2 − k2α1 > 0

holds. Throughout this section, we always assume that
the condition (H1) holds.

Clearly, the characteristic equation of the linearized
system of system (3) at the equilibrium E0(0,0)

is (λ − k1)(λ + k2) = 0, which has two real roots,
k1 > 0, −k2 < 0. Therefore, the equilibrium E0(0,0)

is unstable and is a saddle point of system (3).
The characteristic equation of linearized system of
system (3) at the equilibrium E1(0,− k2

β21
) is (λ −

k2)(λ − β12k2+β21k1
β21

) = 0, which has two real roots,

k2 > 0, β12k2+β21k1
β21

> 0. Therefore, the equilibrium

E1(0,− k2
β21

) is an unstable node of system (3). The

characteristic equation at the equilibrium E2(
k1
α1

,0) re-
sulting from the linear system (3) has the form

(λ + k1)

(

λ − α2k1 − α1k2

α1

)

= 0. (4)

Under the condition (H1), Eq. (4) has a negative real
root −k1 and a positive real root α2k1−α1k2

α1
. Therefore,

the equilibrium E2(
k1
α1

,0) is unstable and is also a sad-
dle point of system (3) when the condition (H1) is sat-
isfied.

In what follows, we investigate the stability of the
positive equilibrium E(x∗, y∗) of system (3). To this
end, we define the new variables u(t) and v(t) by

u(t) =
∫ t

−∞
α2(t − s)e−α(t−s)x(s) ds

and

v(t) =
∫ t

−∞
αe−α(t−s)x(s) ds.

Then according to the law of solving the derivative for
an integral with parameterized variables, one can ob-
serve that
{

u̇(t) = αv(t) − αu(t),

v̇(t) = αx(t) − αv(t).
(5)

By means of (5), system (3) can be transformed into
the following four-dimensional system of FDEs with a
discrete delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)[k1 − α1x(t) − β12y(t)

−γ1x(t)y(t − τ)],
ẏ(t) = y(t)[−k2 + α2u(t) − β21y(t)],
u̇(t) = αv(t) − αu(t),

v̇(t) = αx(t) − αv(t)

(6)

and the equilibrium E(x∗, y∗) of system (3) is trans-
formed into the equilibrium E∗(x∗, y∗, x∗, x∗) of
system (6). Thus, the stability study of equilibrium
E(x∗, y∗) of system (3) is equivalent to the stability
study of equilibrium E∗(x∗, y∗, x∗, x∗) of system (6).

Under the assumption (H1), let x1(t) = x(t) − x∗,
x2(t) = y(t) − y∗, x3(t) = u(t) − x∗,
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x4(t) = v(t) − x∗. Then system (6) is equivalent to
the following four-dimensional system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = Mx1(t) + Nx2(t) + Qx2(t − τ) + a11x
2
1(t)

+a12x1(t)x2(t) + a13x1(t)x2(t − τ)

+a14x
2
1(t)x2(t − τ),

ẋ2(t) = Dx2(t) + Ex3(t) + b11x
2
2(t)

+b12x2(t)x3(t),

ẋ3(t) = −αx3(t) + αx4(t),

ẋ4(t) = αx1(t) − αx4(t),

(7)

where

M = k1 − 2α1x
∗ − β12y

∗ − 2γ1x
∗y∗

= −α1x
∗ − γ1x

∗y∗,

N = −β12x
∗,

Q = −γ1
(
x∗)2

,

D = −k2 + α2x
∗ − 2β21y

∗ = −β21y
∗,

E = α2y
∗,

a11 = −α1 − γ1y
∗,

a12 = −β12,

a13 = −2γ1x
∗,

a14 = −γ1,

b11 = −β21,

b12 = α2,

and the positive equilibrium E∗(x∗, y∗, x∗, x∗) of
system (6) is transformed into the zero equilibrium
(0,0,0,0) of system (7). It is easy to see that the char-
acteristic equation of the linearized system of system
(7) at the zero equilibrium (0,0,0,0) is

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 + b0e
−λτ = 0, (8)

where

b0 = −α2QE,

a0 = α2(MD − NE),

a1 = 2αMD − α2(M + D), (9)

a2 = α2 − 2α(M + D) + MD,

a3 = 2α − (M + D).

It is well known that the stability of the zero equilib-
rium (0,0,0,0) of system (7) is determined by the real
parts of the roots of Eq. (8). If all roots of Eq. (8) locate
the left-half complex plane, then the zero equilibrium
(0,0,0,0) of system (7) is asymptotically stable. If Eq.
(8) has a root with positive real part, then the zero so-
lution is unstable. Therefore, to study the stability of
the zero equilibrium (0,0,0,0) of system (7), an impor-
tant problem is to investigate the distribution of roots
in the complex plane of the characteristic equation (8).

For Eq. (8), according to the Routh–Hurwitz crite-
rion, we have the following result.

Lemma 2.1 If b0 and positive constants ak(k =
0,1,2,3) defined by (9) satisfy the condition:

(H2) a1a2a3 − a2
1 > (a0 + b0)a

2
3,

then all roots of Eq. (8) have negative real parts when
τ = 0, and hence the zero equilibrium (0,0,0,0) of
system (7) with τ = 0 is asymptotically stable.

Next, we consider the effects of a positive delay τ

on the stability of the zero equilibrium (0,0,0,0) of
system (7). Since the roots of the characteristic equa-
tion (8) depend continuously on τ , a change of τ must
lead to a change of the roots of Eq. (8). If there is a crit-
ical value of τ such that a certain root of (8) has zero
real part, then at this critical value the stability of the
zero equilibrium (0,0,0,0) of system (7) will switch,
and under certain conditions a family of small am-
plitude periodic solutions can bifurcate from the zero
equilibrium (0,0,0,0); that is, a Hopf bifurcation oc-
curs at the zero equilibrium (0,0,0,0).

Now, we look for the conditions under which the
characteristic equation (8) has a pair of purely imag-
inary roots, see [32]. Clearly, iω(ω > 0) is a root of
Eq. (8) if and only if ω satisfies the following equa-
tion:

ω4 − ia3ω
3 − a2ω

2 + ia1ω + a0

+ b0(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts of the above
equation yields the following equations:

{
ω4 − a2ω

2 + a0 = −b0 cosωτ,

−a3ω
3 + a1ω = b0 sinωτ.

(10)
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Adding up the squares of the corresponding sides of
the above equations yields the following algebra equa-
tion with respect to ω:

ω8 + (
a2

3 − 2a2
)
ω6 + (

2a0 + a2
2 − 2a1a3

)
ω4

+ (
a2

1 − 2a0a2
)
ω2 + a2

0 − b2
0 = 0. (11)

Let z = ω2, and denote

a = a2
3 − 2a2,

b = 2a0 + a2
2 − 2a1a3, (12)

c = a2
1 − 2a0a2,

d = a2
0 − b2

0.

Then Eq. (11) can be denoted simply as the following
equation:

z4 + az3 + bz2 + cz + d = 0. (13)

If Eq. (13) has positive real roots, then the character-
istic equation (8) has a pair of purely imaginary roots
at the associated critical value of τ ; otherwise, (8) has
no purely imaginary root.

From the definition of b0, ak (k = 0,1,2,3), we
have

a = a2
3 − 2a2 = 2α2 + M2 + D2,

b = 2a0 + a2
2 − 2a1a3

= α4 − 2α2NE + 2α2(M2 + D2) + (MD)2, (14)

c = a2
1 − 2a0a2 = 2α2(MD)2 + α4M2 + α4D2

+ 2α2NE
[
α2 − 2α(M + D) + MD

]
,

d = a2
0 − b2

0 = α4[(MD − NE)2 − (QE)2].

In order to study the bifurcation of system (3), Eq.
(13) should have at least a positive real root. Therefore,
we suppose

(H3) c > 0.

Let h(z) = z4 + az3 + bz2 + cz + d = 0. Then
ḣ(z) = 4z3 + 3az2 + 2bz + c. Noticing that a > 0,
b > 0 and the condition (H3), therefore, ḣ(z) > 0 on
(0,+∞), and hence h(z) is strictly monotonically in-
creasing on (0,+∞). Thus, h(z) has a unique positive
root if d < 0 and h(z) has no positive root when d > 0.

Now, suppose that d < 0 and that the unique pos-
itive root of h(z) is denoted by z0. Then the unique
positive root of Eq. (11) is ω0 = √

z0. From the first
equation of (10), we know that the value of τ associ-
ated with ω0 should satisfy

cosω0τ = a2ω
2
0 − ω4

0 − a0

b0
. (15)

If we define

τj = 1

ω0

[

arccos

(
a2ω

2
0 − ω4

0 − a0

b0

)

+ 2jπ

]

,

j = 0,1,2,3, . . . , (16)

then when τ = τj (j = 0,1,2,3, . . .), Eq. (8) has a
pair of purely imaginary roots ±iω0.

Let λ(τ) = α(τ) + iω(τ) be a root of Eq. (8) near
τ = τj satisfying α(τj ) = 0 and ω(τj ) = ω0. For this
pair of conjugate complex roots, we have the following
result.

Lemma 2.2

dα(τ)

dτ

∣
∣
∣
∣
τ=τj

> 0, (j = 0,1,2,3, . . .).

Proof It is similar to the proof of Lemma 2.2 in [25].
From the above discussion and the Hopf bifurcation

theorem of FDEs [26, 31], we can obtain the following
results on the stability of the zero equilibrium of sys-
tem (7), that is, the stability of the positive equilibrium
E(x∗, y∗) of system (3). �

Theorem 2.3 Suppose that the coefficients ki , αi (i =
1,2) in system (3) satisfy the condition (H1). Let
α > 0, (H2) and (H3) hold. Then the following results
hold.

(i) If d ≥ 0, then the positive equilibrium E(x∗, y∗)
of system (3) is absolutely stable, that is, asymp-
totically stable for any values of τ ≥ 0.

(ii) If d < 0, then E(x∗, y∗) is asymptotically sta-
ble when 0 ≤ τ < τ0 and unstable when τ > τ0.
In addition when τ crosses through each τj (j =
0,1,2,3, . . .), system (3) can undergo a Hopf bi-
furcation at the positive equilibrium E(x∗, y∗),
that is, a family of nonconstant periodic solu-
tions can bifurcate from the positive equilibrium
E(x∗, y∗) when τ crosses through each critical
value τj (j = 0,1,2,3, . . .).
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3 Properties of Hopf bifurcations

In the previous section, we studied mainly the stabil-
ity of the positive equilibrium E(x∗, y∗) of system (3)
and the existence of Hopf bifurcations at the positive
equilibrium E(x∗, y∗).

In this section, we shall study the properties of
the Hopf bifurcations obtained by Theorem 2.3 and
the stability of bifurcated periodic solutions occurring
through Hopf bifurcations by using the normal form
theory and the center manifold reduction for retarded
functional differential equations (RFDEs) due to Has-
sard, Kazarinoff and Wan [31]. To guarantee the exis-
tence of the above Hopf bifurcations, throughout this
section, we always assume that the conditions (H1),
(H2), and (H3) hold and that d < 0. Under these con-
ditions, for fixed j ∈ {0,1,2,3, . . .}, let τ = τj + μ;
then μ = 0 is the Hopf bifurcation value of system (3)
at the positive equilibrium E(x∗, y∗). Since system (3)
is equivalent to system (7), in the following discussion
we shall consider mainly system (7).

In system (7), let x̄k(t) = xk(τ t) and drop the bars
for simplicity of notation. Then system (7) can be
rewritten as a system of RFDEs in C([−1,0],R4) of
the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = (τj + μ)[Mx1(t) + Nx2(t) + Qx2(t − 1)

+a11x
2
1(t) + a12x1(t)x2(t)

+a13x1(t)x2(t − 1) + a14x
2
1(t)x2(t − 1)],

ẋ2 = (τj + μ)[Dx2(t) + Ex3(t) + b11x
2
2(t)

+b12x2(t)x3(t)],
ẋ3 = (τj + μ)[−αx3(t) + αx4(t)],
ẋ4 = (τj + μ)[αx1(t) − αx4(t)].

(17)

Define the linear operator L(μ) : C → R4 and the non-
linear operator f (·,μ) : C → R4 by

Lμφ = (τj + μ)

⎛

⎜
⎜
⎝

M N 0 0
0 D E 0
0 0 −α α

α 0 0 −α

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

φ1(0)

φ2(0)

φ3(0)

φ4(0)

⎞

⎟
⎟
⎠

+ (τj + μ)

⎛

⎜
⎜
⎝

0 Q 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

φ1(−1)

φ2(−1)

φ3(−1)

φ4(−1)

⎞

⎟
⎟
⎠

(18)

and

f (φ,μ) = (τj + μ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11φ
2
1(0) + a12φ1(0)φ2(0)

+a13φ1(0)φ2(−1)

+a14φ
2
1(0)φ2(−1)

b11φ
2
2(0) + b12φ2(0)φ3(0)

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(19)

respectively, where φ = (φ1, φ2, φ3, φ4)
T ∈ C, and let

x = (x1, x2, x3, x4).
By the Riesz representation theorem, there exists

a 4 × 4 matrix function η(θ,μ), −1 ≤ θ ≤ 0, whose
elements are of bounded variation such that

Lμφ =
∫ 0

−1
dη(θ,μ)φ(θ) for φ ∈ C

([−1,0],R4).

In fact, we can choose

η(θ,μ) = (τj + μ)η0δ(θ) − (τj + μ)η−1δ(θ + 1),

(20)

where

η0 =

⎛

⎜
⎜
⎝

M N 0 0
0 D E 0
0 0 −α α

α 0 0 −α

⎞

⎟
⎟
⎠ ,

η−1 =

⎛

⎜
⎜
⎝

0 Q 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .

For φ ∈ C1([−1,0],R4), define

A(μ)φ =
{ dφ(θ)

dθ
, θ ∈ [−1,0),

∫ 0
−1 dη(μ, θ)φ(θ), θ = 0,

(21)

and

R(μ)φ =
{

0, θ ∈ [−1,0),

f (μ,φ), θ = 0.
(22)

Then system (17) is equivalent to

ẋt = A(μ)xt + R(μ)xt . (23)
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For ψ ∈ C1([0,1], (R4)∗), define

A∗ψ =
{− dψ(s)

ds
, s ∈ (0,1],

∫ 0
−1 dη(t,0)ψ(−t), s = 0,

(24)

and a bilinear inner product

〈
ψ(s),φ(θ)

〉

= ψ̄(0)φ(0)

−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ) dη(θ)φ(ξ) dξ, (25)

where η(θ) = η(θ,0). Then A(0) and A∗ are adjoint
operators. In addition, from Sect. 2, we know that
±iω0τj are eigenvalues of A(0). Thus, they are also
eigenvalues of A∗. Let q(θ) be the eigenvector of A(0)

corresponding to iω0τj and q∗(s) is the eigenvector of
A∗ corresponding to −iω0τj .

Let q(θ) = (1, v1, v2, v3)e
iω0τj θ and q∗(s) = G(1,

v∗
1 , v∗

2 , v∗
3)eiω0τj s . From the above discussion, it is

easy to know that

A(0)q(0) = iω0τj q(0) and

A∗(0)q∗(0) = −iω0τj q
∗(0),

that is,

τj

⎛

⎜
⎜
⎝

M N 0 0
0 D E 0
0 0 −α α

α 0 0 −α

⎞

⎟
⎟
⎠q(0)

+ τj

⎛

⎜
⎜
⎝

0 Q 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠q(−1) = iω0τj q(0)

and

τj

⎛

⎜
⎜
⎝

M 0 0 α

N D 0 0
0 E −α 0
0 0 α −α

⎞

⎟
⎟
⎠q∗(0)

+ τj

⎛

⎜
⎜
⎝

0 0 0 0
Q 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠q∗(−1) = −iω0τj q

∗(0).

Thus, we can easily obtain

q(θ) =
(

1,
Eα2

(iω0 − D)(α + iω0)2
,

α2

(α + iω0)2
,

α

(α + iω0)

)

eiω0τj θ ,

q∗(s) = G

(

1,− (iω0 − α)2(iω0 + M)

Eα2
,

(iω0 − α)(iω0 + M)

α2
,− (iω0 + M)

α

)

× eiω0τj s .

Since

〈
q∗(s), q(θ)

〉

= q̄∗(0)q(0) −
∫ 0

−1

∫ θ

ξ=0
q̄∗(ξ − θ) dη(θ)q(ξ) dξ

= q̄∗(0)q(0)

−
∫ 0

−1

∫ θ

ξ=0
Ḡ

(
1, v̄∗

1 , v̄∗
2 , v̄∗

3

)

× e−iω0τj (ξ−θ) dη(θ)(1, v1, v2, v3)
T eiω0τj ξ dξ

= q̄∗(0)q(0) − q̄∗(0)

∫ 0

−1
θeiω0τj θ dη(θ)q(0)

= q̄∗(0)q(0) − q̄∗(0)τj

⎛

⎜
⎜
⎝

0 Q 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

× (−e−iω0τj
)
q(0)

= Ḡ
[(

1 + v1v̄
∗
1 + v2v̄

∗
2 + v3v̄

∗
3

) + τj e
−iω0τj Qv1

]
.

We may choose Ḡ as

Ḡ = 1

1 + v1v̄
∗
1 + v2v̄

∗
2 + v3v̄

∗
3 + τj e

−iω0τj Qv1
,

G = 1

1 + v̄1v
∗
1 + v̄2v

∗
2 + v̄3v

∗
3 + τj e

iω0τj Qv̄1
, (26)

which assures that 〈q∗(s), q(θ)〉 = 1.
By using the same notations as in [31], we first

compute the coordinates to describe the center man-
ifold C0 at μ = 0. Let xt be the solution of Eq. (17)



2162 X. Wang et al.

when μ = 0. Define

z(t) = 〈
q∗, xt

〉
, W(t, θ) = xt (θ) − 2�{

z(t)q(θ)
}
.

(27)

On the center manifold C0, we have W(t, θ) =
W(z(t), z̄(t), θ) where

W(z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2

+ W30(θ)
z3

6
+ · · · , (28)

z and z̄ are local coordinates for center manifold C0

in the direction of q∗ and q̄∗. Note that W is real if xt

is real. We consider only real solutions. For solution
xt ∈ C0 of (17), since μ = 0,

ż(t) = iω0τj z + q̄∗(0)f
(
0,W(z, z̄, θ) + 2�{

zq(θ)
})

= iω0τj z + q̄∗(0)f0, (29)

that is,

ż(t) = iω0τj z(t) + g(z, z̄), (30)

where

g(z, z̄) = g20
z2

2
+g11zz̄+g02

z̄2

2
+g21

z2z̄

2
+· · · . (31)

Then it follows from (27) that

xt = W(t, θ) + 2�{
z(t)q(θ)

}

= W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2

+ (1, v1, v2, v3)e
iω0τj θ z + (1, v̄1, v̄2, v̄3)

× e−iω0τj θ z̄ + · · · . (32)

It follows together with (19) that

g(z, z̄)

= q̄∗(0)f0(z, z̄) = q̄∗(0)f (0, xt )

= q̄∗(0)τj

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11(W
(1)(0) + z + z̄)2 + a12(W

(1)(0)

+z + z̄)(W(2)(0) + v1z + v̄1z̄)

+a13(W
(1)(0) + z + z̄)(W(2)(−1)

+v1e
−iω0τj z + v̄1e

iω0τj z̄)+
a14(W

(1)(0) + z + z̄)2(W(2)(−1)

+v1e
−iω0τj z + v̄1e

iω0τj z̄)

b11(W
(2)(0) + v1z + v̄1z̄)

2 + b12(W
(2)(0)

+v1z + v̄1z̄) · (W(3)(0) + v2z + v̄2z̄)

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Ḡτj

{

2
(
a11 + a12v1 + a13v1e

−iω0τj + b11v̄
∗
1v2

1

+ b12v̄
∗
1v1v2

)z2

2
+ 2

(
a11 + a12�{v1}

+ a13�
{
v1e

−iω0τj
} + b11v̄

∗
1v1v̄1

+ b12v
∗
1�{v1v̄2}

)
zz̄ + 2

(
a11 + a12v̄1

+ a13v̄1e
iω0τj + b11v̄

∗
1 v̄2

1 + b12v̄
∗
1 v̄1v̄2

) z̄2

2

+ [(
2a11 + a12v̄1 + a13v̄1e

iω0τj
)
W

(1)
20 (0)

+ (
a12 + 2b11v̄

∗
1 v̄1 + b12v̄

∗
1v2

)
W

(2)
20 (0)

+ b12v̄
∗
1 v̄1W

(3)
20 (0) + a13W

(2)
20 (−1)

+ (
4a11 + 2a12v1 + 2a13v1e

−iω0τj
)
W

(1)
11 (0)

+ (
2a12 + 4b11v

∗
1v1 + 2b12v

∗
1v2

)
W

(2)
11 (0)

+ 2b12v
∗
1v1W

(3)
11 (0) + 2a13W

(2)
11 (−1)

+ (
2a14v̄1e

iω0τj + 4a14v1e
−iω0τj

)]z2z̄

2
+ · · ·

}

.

Comparing the coefficients with (31), we obtain

g20 = 2Ḡτj

(
a11 + a12v1 + a13v1e

−iω0τj + b11v̄
∗
1v2

1

+ b12v̄
∗
1v1v2

)
,

g11 = 2Ḡτj

(
a11 + a12�{v1} + a13�

{
v1e

−iω0τj
}

+ b11v̄
∗
1v1v̄1 + b12v̄

∗
1�{v1v̄2}

)
,

g02 = 2Ḡτj

(
a11 + a12v̄1 + a13v̄1e

iω0τj + b11v̄
∗
1 v̄2

1

+ b12v̄
∗
1 v̄1v̄2

)
,

g21 = Ḡτj

[(
2a11 + a12v̄1 + a13v̄1e

iω0τj
)
W

(1)
20 (0)
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+ (
a12 + 2b11v̄

∗
1 v̄1 + b12v̄

∗
1v2

)
W

(2)
20 (0)

+ b12v̄
∗
1 v̄1W

(3)
20 (0) + a13W

(2)
20 (−1)

+ (
4a11 + 2a12v1 + 2a13v1e

−iω0τj
)
W

(1)
11 (0)

+ (
2a12 + 4b11v̄

∗
1v1 + 2b12v̄

∗
1v2

)
W

(2)
11 (0)

+ 2b12v̄
∗
1v1W

(3)
11 (0) + 2a13W

(2)
11 (−1)

+ (
2a14v̄1e

iω0τj + 4a14v1e
−iω0τj

)]
.

Since there are W20(θ) and W11(θ) in g21, we still
need to compute them.

From (23) and (27), we have

Ẇ = ẋt − żq − ˙̄zq̄

=
{

AW − 2�{
q̄∗(0)f0q(θ)

}
, θ ∈ [−1,0)

AW − 2�{
q̄∗(0)f0q(0)

} + f0, θ = 0
(33)

= AW + H(z, z̄, θ),

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+· · · .

(34)

Substituting the corresponding series into (33) and
comparing the coefficients, we obtain

(A − 2iω0τj )W20(θ) = −H20(θ),

AW11(θ) = −H11(θ), . . . (35)

From (33), we know that for θ ∈ [−1,0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ) − q∗(0)f̄0q̄(θ)

= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ). (36)

Comparing the coefficients with (34) gives that

H20(θ) = −g20q(θ) − ḡ02q̄(θ) (37)

and

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (38)

From (35) and (37), we get

Ẇ20(θ) = 2iω0τjW20(θ) + g20q(θ) + ḡ02q̄(θ).

Note that q(θ) = q(0)eiω0τj θ , hence we obtain

W20(θ) = ig20

ω0τj

q(0)eiω0τj θ + iḡ02

3ω0τj

q̄(0)e−iω0τj θ

+ E1e
2iω0τj θ . (39)

Similarly, from (35) and (38), we have

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ)

and

W11(θ) = − ig11

ω0τj

q(0)eiω0τj θ

+ iḡ11

ω0τj

q̄(0)e−iω0τj θ + E2. (40)

In what follows, we shall seek appropriate E1 and E2

in (39) and (40), respectively. It follows from the defi-
nition of A and (35) that
∫ 0

−1
dη(θ)W20(θ) = 2iω0τjW20(0) − H20(0) (41)

and
∫ 0

−1
dη(θ)W11(θ) = −H11(0), (42)

where η(θ) = η(0, θ). From (33), we have

H20(0) = −g20q(0) − ḡ02q̄(0)

+ 2τj

⎛

⎜
⎜
⎜
⎝

a11 + a12v1 + a13v1e
−iω0τj

b11v̄
∗
1v2

1 + b12v̄
∗
1v1v2

0
0

⎞

⎟
⎟
⎟
⎠

(43)

and

H11(0)

= −g11q(0) − ḡ11q̄(0)

+ τj

⎛

⎜
⎜
⎜
⎝

2a11 + 2a12�{v1} + 2a13�{v1e
iω0τj }

2b11v̄
∗
1v1v̄1 + 2b12v̄

∗
1�{v1v̄2}

0
0

⎞

⎟
⎟
⎟
⎠

.

(44)

Substituting (39) and (43) into (41), we obtain
(

2iω0τj I −
∫ 0

−1
e2iω0τj θ dη(θ)

)

E1
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= 2τj

⎛

⎜
⎜
⎜
⎝

a11 + a12v1 + a13v1e
−iω0τj

b11v̄
∗
1v2

1 + b12v̄
∗
1v1v2

0
0

⎞

⎟
⎟
⎟
⎠

. (45)

From the definition of A, we have

∫ 0

−1
e2iω0τj θ dη(θ) = A(μ)e2iω0τj θ = Lμ

(
e2iω0τj θ

)
.

Therefore, when μ = 0, we have

∫ 0

−1
e2iω0τj θ dη(θ)

= τj

⎛

⎜
⎜
⎝

M N 0 0
0 D E 0
0 0 −α α

α 0 0 −α

⎞

⎟
⎟
⎠

+ τj

⎛

⎜
⎜
⎝

0 Q 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ e−2iω0τj .

Therefore,

⎛

⎜
⎜
⎜
⎜
⎝

2λ − M −(N + Qe−2iω0τj ) 0 0

0 2λ − D −E 0

0 0 2λ + α −α

−α 0 0 2λ + α

⎞

⎟
⎟
⎟
⎟
⎠

E1

= 2

⎛

⎜
⎜
⎝

a11 + a12v1 + a13v1e
−iω0τj

b11v̄
∗
1v2

1 + b12v̄
∗
1v1v2

0
0

⎞

⎟
⎟
⎠, (46)

where λ = iω0. Similarly, substituting (39) and (44)
into (42), we get

∫ 0

−1
dη(θ)E2

= −

⎛

⎜
⎜
⎜
⎝

2a11 + 2a12�{v1} + 2a13�{v1e
iω0τj }

2b11v̄
∗
1v1v̄1 + 2b12v̄

∗
1�{v1v̄2}

0
0

⎞

⎟
⎟
⎟
⎠

.

(47)

It follows from (39), (40), (46), and (47) that g21 can
be expressed. Thus, we can compute the following val-

ues:

c1(0) = i

ω0τj

(

g11g20 − 2|g11|2 − |g02|2
3

)

+ g21

2
,

μ2 = − �(c1(0))

�(λ′
0(τj ))

,

β2 = 2�(
c1(0)

)
,

T2 = 
(c1(0)) + μ2
(λ′
0(τj ))

ω0
,

(48)

which determine the quantities of bifurcating periodic
solutions at the critical value τj . Specifically, μ2 deter-
mines the directions of the Hopf bifurcation: if μ2 > 0
(μ2 < 0), then the Hopf bifurcation is supercritical
(subcritical) and the bifurcating periodic solutions ex-
ist for τ > τj (τ < τj ); β2 determines the stability of
the bifurcating periodic solutions: the bifurcating pe-
riodic solutions in the center manifold are stable (un-
stable) if β2 < 0 (β2 > 0); and T2 determines the pe-
riod of the bifurcating periodic solutions: the period
increase (decrease) if T2 > 0 (T2 < 0). Further, it fol-
lows from Lemma 2.2 and (48) that the following re-
sults about the direction of the Hopf bifurcations hold.

Theorem 3.1 Suppose that (H1), (H2), (H3) hold and
d < 0. If �(c1(0)) < 0 (�(c1(0)) > 0), then system
(3) can undergo a supercritical (subcritical) Hopf bi-
furcation at the positive equilibrium E(x∗, y∗) when
τ crosses through the critical values τj . In addition,
the bifurcated periodic solutions occurring through
Hopf bifurcations are orbitally asymptotically stable
on the center manifold if �(c1(0)) < 0 and unstable if
�(c1(0)) > 0.

4 Numerical simulations

In this section, we give some numerical simulations
for a special case of system (3) to support our analyt-
ical results obtained in Sects. 2 and 3. As an exam-
ple, we consider system (3) with the coefficients k1 =
2, α1 = 1, β12 = 1, γ1 = 2.6, k2 = 1, α2 = 1.2, β21 =
1, that is,
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = x(t)[2 − x(t) − y(t) − 2.6x(t)y(t − τ)],
ẏ = y(t)[−1 + 1.2

∫ t

−∞ α2(t − s)e−α(t−s)x(s) ds

− y(t)].
(49)
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Fig. 1 The numerical approximations of system (49) when τ = 0 and α = 1. The positive equilibrium E(1.04678,0.25613) is asymp-
totically stable

Fig. 2 The numerical approximations of system (49) when τ = 4 and α = 1. The positive equilibrium E(1.04678,0.25613) is asymp-
totically stable

Fig. 3 The numerical approximations of system (49) when τ = 4.5 and α = 1. The positive equilibrium E(1.04678,0.25613) is
unstable and a stable periodic solution bifurcates from E

Obviously, k2α1 < k1α2; therefore, system (49) has
a unique positive equilibrium E(1.04678,0.25613).
In addition, ak (k = 0,1,2,3) and b0 given by (9) be-
come b0 = 0.87564α2, a0 = 0.76839α2, a1 =
0.89332α + 2.00000α2, a2 = α2 + 4.00000α +
0.44666, a3 = 2α + 2.00000. Therefore,

a1a2a3 − a2
1 − (a0 + b0)a

2
3

= 11.21050α4 + 9.99428α3

+ 2.35706α2 + 0.79802α + 4.00000α5

for any α > 0. This shows that condition (H2) holds,
and from Lemma 2.1 we know that the positive equi-
librium E(1.04678,0.25613) of system (49) is asymp-
totically stable when τ = 0 (see Fig. 1).

On the other hand, since d = a2
0 − b2

0 =
−0.17631α4, the positive equilibrium E(1.04678,

0.25613) of system (49) is conditionally stable. In
this case, if we take α = 1, then a,b,c,d defined by
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(14) are a = 5.10668, b = 8.05636, c = 0.00093,
d = −0.17631, then (13) becomes

z4 + 5.10668z3 + 8.05636z2 + 0.00093z − 0.17631

= 0. (50)

By means of the software Maple14, one can find that
the unique approximately positive solution of sys-
tem (50) is z0 ≈ 0.14150, and hence ω0 ≈ 0.37619.
Thus, the τj (j = 0,1,2, . . .) defined by (16) are
τj = 4.22951 + 16.70308j (j = 0,1,2, . . .). From
Theorem 2.3, we know that the positive equilibrium
E(1.04678,0.25613) of system (49) is asymptoti-
cally stable when 0 ≤ τ < τ0 = 4.22951 and unsta-
ble when τ > τ0 = 4.22951, and system (49) can also
undergo a Hopf bifurcation at the positive equilib-
rium E(1.04678,0.25613) when τ crosses through
the critical values τj = 4.22951 + 16.70308j (j =
0,1,2, . . .), i.e., a family of periodic solutions bifur-
cate from E(1.04678,0.25613) (see Figs. 2 and 3).
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