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Abstract An efficient image encryption algorithm us-
ing the generalized Arnold map is proposed. The algo-
rithm is composed of two stages, i.e., permutation and
diffusion. First, a total circular function, rather than
the traditional periodic position permutation, is used
in the permutation stage. It can substantially reduce the
correlation between adjacent pixels. Then, in the stage
of diffusion, double diffusion functions, i.e., positive
and opposite module, are utilized with a novel gener-
ation of the keystream. As the keystream depends on
the processed image, the proposed method can resist
known- and chosen-plaintext attacks. Experimental re-
sults and theoretical analysis indicate the effectiveness
of our method. An extension of the proposed algorithm
to other chaotic systems is also discussed.
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1 Introduction

Image encryption algorithms or schemes have been
extensively studied in recent years. The main reason
is that our digital information must be protected to
avoid being copied, read, and held up by the illegal
authorization in public places. Many methods [1–4],
including the data encryption standard (DES), Fourier
transform, chaos, and wave transmission, have been
proposed for the encryption of digital images.

Due to the features of sensitive to the initial con-
dition, pseudorandomness, and ergodicity, the algo-
rithms based on chaotic systems show the promising
results and high efficiency [5–10]. The structure of
permutation followed by diffusion has been widely
adopted. As the duplicated scanning effort can be re-
duced and the encryption can be accelerated, the au-
thors of [5] combined the two separate stages and sug-
gest a fast efficient method for image encryption. Gao
and Chen [6] proposed a total shuffling algorithm con-
sidering the pixel position permutation to frustrate the
strong correlation in the original plain image. To solve
the problem of small key space, a coupled nonlinear
chaotic map was suggested in [7]. Patidar et al. [9] in-
vestigated the algorithm of substitution and permuta-
tion for color RGB images using standard map, where
the 3D matrix is converted to a new 2D matrix by col-
umn. Three-dimensional or high-dimensional chaotic
systems were further studied in [8, 10] to enlarge the
key space for resisting the brute-force attack. Fur-
ther, time-delayed systems were studied in [11, 12];

mailto:guodongye@gmail.com
mailto:itkwwong@cityu.edu.hk


2080 G. Ye, K.-W. Wong

a suitable controller was chosen to keep corresponding
chaotic state suggested by Banerjee [11], the numeri-
cal results showed the good effectiveness. Ghosh [12]
considered the chaos synchronization for time-delayed
dynamical systems when the delay is not constant.

However, some chaos-based cryptographic
schemes have been successfully cryptanalyzed [13, 14].
Alvarez and Li [13] pointed out that chaotic maps
with a nonuniform distribution are weak and are not
suitable cryptographic purposes. From the statistical
analysis on the plaintext, the approach suggested in
[15] possesses a low security and is breakable. In [14],
Cokal and Solak demonstrated that the secret keys can
be revealed using chosen- and known-plaintext attacks
due to the simple XORing operation of the plain image
and the pseudorandom sequence generated by Chen’s
chaotic system. Thus, the encryption algorithm [8] was
broken.

To resist statistical analyses, chosen- and known-
plaintext attacks, we suggest a novel chaotic image en-
cryption in which two generalized Arnold maps are
used to generate the pseudorandom sequences. The
whole algorithm is divided into three parts, i.e., circu-
lar permutation, positive diffusion, and opposite dif-
fusion. The rest of the paper is organized as follows.
In Sect. 2, the proposed encryption scheme, especially
the encryption steps, is described in detail. Simula-
tions results are presented in Sect. 3 to show the ef-
ficiency and the validity of the algorithm. In Sect. 4,
common security analyses are demonstrated. Finally,
conclusions are drawn in the last section.

2 Image encryption scheme

2.1 Generalized Arnold map

The discrete generalized Arnold map can be expressed
as(

xn+1

yn+1

)
=

(
1 a

b 1 + ab

)(
xn

yn

)
mod 1 (1)

where a and b are real numbers, xi, yi ∈ [0,1). The
largest Lyapunov characteristic exponent of the map

(1) is λ = 1 + ab+
√

a2b2+4ab
2 > 1, which means that

the map is always chaotic for any a > 0, b > 0. More
on the generalized Arnold map can be found in [16].

2.2 Pseudo-random sequence

Suppose that the plain-image is denoted as Im×n. The
generalized Arnold map is iterated to obtain two pseu-
dorandom sequences P 11×mn and P 21×mn with the
initial conditions and parameters a1, b1, x0, y0, and
a2, b2, x̄0, ȳ0 in (1). The first p and q Arnold map out-
puts are ignored in generating P 11×mn and P 21×mn,
respectively.{

P 1(2i − 1) = x(p + i),

P 1(2i) = y(p + i), i = 1,2, . . . ,mn,
(2)

{
P 2(2j − 1) = x̄(q + j),

P 2(2j) = ȳ(q + j), j = 1,2, . . . ,m
(3)

The two chaotic sequences P 11×mn and P 21×mn are
formed by real numbers with values between 0 and 1.
They are used in both the circular permutation and the
diffusion stages.

2.3 Circular permutation

To reduce the high correlation between adjacent pix-
els in the plain-image, a permutation process is usu-
ally adopted. Instead of using two-dimensional chaotic
map for permutation, we propose to use a circular
shuffling with both row and column relocations. For
column relocation, the pseudorandom sequence with n

elements is selected after the r th element of P 11×mn,
where 1 ≤ r ≤ mn − n. Then we obtain {μi}ni=1 (0 ≤
μi ≤ m − 1) by converting the pseudo-random real
numbers to integers using the formula

μ = floor
([

P 1(1, r + 1 : r + n) × 1014]mod(m)
)

(4)

The function floor(x) rounds x to the nearest integer
toward minus infinity.

The same method is used for row relocation. The
pseudorandom sequence {νj }mj=1 (0 ≤ νi ≤ n − 1) is
obtained from P 2 with the control parameter t (1 ≤
t ≤ mn − m) as

ν = floor
([

P 2(1, t + 1 : t + m) × 1014]mod(n)
)

(5)

There are four directions, i.e., (left, up), (left,
down), (right, up), and (right, down), for performing
the permutation, as shown in Table 1. The first element
denotes the shift direction along the row while the sec-
ond one determines the move direction in the column.
For example, the first case (0, 0) means that the ith row
is shifted νi pixels toward left with i = 1,2, . . . ,m

while the j th column is moved up μj pixels where
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Table 1 Circle
permutation directions Cases Directions

(0, 0) (left, up)

(0, 1) (left, down)

(1, 0) (right, up)

(1, 1) (right, down)

Fig. 1 Permutation for Lena image: (a) traditional Arnold map
(b) generalized Arnold map [16] (c) traditional row and column
method (d) the proposed circular permutation

j = 1,2, . . . , n. The effect of two rounds of permu-
tations are shown in Fig. 1. A sorting operation is
required to obtain the index sequence in [16] and so
more time is required. However, this is not required in
our scheme and the permutation time is reduced.

2.4 Diffusion function

The main goal of the diffusion function is to change
the gray values of the image pixels to confuse the
relationship between the plain-image and the cipher-
image. An efficient encryption algorithm should sat-
isfy the requirement that a tiny change in any pixel
spreads out to almost all pixels in the whole image.
First, the two-dimensional permutated image is con-
verted to a one-dimensional vector ϕ1×mn by scanning
from left to right and then from top to bottom. To make

the keystream depend on the permutated image, the
following forward diffusion is carried out:

fi = fi−1 + ϕi + α × ai, i = 1,2, . . . ,mn (6)

where

ai =
{

P 1(2i − 1), mod(fi−1,2) = 0
P 1(2i), mod(fi−1,2) = 1

fi and fi−1 denote the current and the former en-
crypted pixels, respectively, f0 can be considered as
a constant, and α is a new control parameter.

To make the influence of every pixel equal, the dif-
fusion is performed again in the reverse direction [16]
using the following formula:

ei = ei+1 + fi + β × bi, i = mn, mn − 1, . . . ,2,1
(7)

where

bi =
{

P 2(2i − 1), mod(ei+1,2) = 0
P 2(2i), mod(ei+1,2) = 1

emn+1 can be considered as a constant and β is another
control parameter. Finally, the encrypted image is gen-
erated after the diffusions (6) and (7) in two directions.

2.5 Encryption steps

The whole encryption process is composed of five
steps, as shown in Fig. 2:

step 1 Read the plain-image and store the pixel values
in the matrix Im×n.

step 2 Iterate (1) using the chosen initial conditions
and parameters a1, b1, x0, y0, a2, b2, x̄0, ȳ0, p,
q , r , and t to generate μ and ν.

step 3 Perform the circular permutation on I to obtain
F . Then arrange it into ϕ by scanning from left
to right and top to bottom.

step 4 Carry out the diffusion processes (6) and (7)
on f with parameters α and β , respectively, to
obtain e.

step 5 Output the cipher image E after rearrange e

into a matrix of size m × n.

2.6 Decryption steps

The decryption process is just a reverse of the above
encryption steps. As the operations are similar, the
computation complexity in this part is roughly the
same as that in encryption:
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Fig. 2 Block diagram

step 1 Read the cipher-image and denote it as Em×n.
Then arrange it into a vector e1×mn.

step 2 Perform the inverse diffusions with parameters
β and α for (7) and (6), respectively:

fi = ei − ei+1 − β × bi,

i = mn, mn − 1, . . . ,2,1. (8)

ϕi = fi − fi−1 − α × ai,

i = 1,2, . . . ,mn. (9)

step 3 Iterate (1) from the initial conditions a1, b1, x0,
y0, a2, b2, x̄0, ȳ0, p, q , r , and t , to obtain μ and
ν.

step 4 Rearrange ϕ into a matrix of m × n. Then per-
form the reverse circular permutation by col-
umn and row, respectively, to reconstruct the
original plain-image I .

3 Experiments

The proposed algorithm is implemented using Mat-
lab 6.5 on the Windows XP platform using a personal
computer with an Intel(R) Core(TM) 2, 2.00 GHz
CPU. A 256 × 256 8-bit Cameraman image shown in
Fig. 3(a) is chosen as the test image. Figure 3(b) shows
the corresponding cipher-image after applied only one
round of our encryption algorithm. The initial param-
eters are randomly set to x0 = 0.434, y0 = 0.506,
a1 = 33, b1 = 20, p = 100, x̄0 = 0.811, ȳ0 = 0.223,
a2 = 57, b2 = 42, q = 120, r = 80, t = 90, α = 6, and
β = 21.

We also test our algorithm using other test images
such as Lena, Rice, and Grass. They all show that the
proposed scheme is a fast and efficient encryption al-
gorithm, with a large key space and high key sensitiv-
ity.

4 Security analysis

A practical image encryption method should resist the
existing attacks such as brute-force attack, known-
plaintext attack, chosen-plaintext attack, statistical at-
tack, differential attacks, and so on. In this section, we
analyze the properties of our algorithm to show its ef-
fectiveness in resisting these common attacks.

4.1 Key space analysis

The size of the key space determines the total num-
ber of different keys which can be used in the process
of encryption. A good algorithm should have a suffi-
ciently large key space to resist the brute-force attack.
In the proposed method, there are 14 parameters, i.e.,
x0, y0, a1, b1, p, x̄0, ȳ0, a2, b2, q , r , t , α, and β . There-
fore, the key space is large enough to resist a brute-
force attack.

4.2 Sensitivity analysis

It is observed from Figs. 3(c) and (d) that the pro-
posed image encryption algorithm is sensitive to the
keys. A small change 10−14 made to any part of the
key results in a completely different decrypted image.
The algorithm satisfies the sensitivity required by a se-
cure encryption scheme [17]. Additionally, Fig. 3(f)
shows the difference between two cipher-images us-
ing a slightly different initial condition. For other pa-
rameters, Figs. 3(g) and (h) are the wrong decrypted
images with p = 101 and β = 20, respectively. The
correctly decrypted image that all the parameters are
correct can be found in Fig 3(i), which is identical to
the plain-image.
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Fig. 3 Cameraman test
image: (a) plain-image;
(b) cipher-image;
(c) decrypted image with
10−14 change in the key x0;
(d) decrypted image with
10−14 change in the key x̄0;
(e) encrypted image with
10−14 change in the key y0;
(f) difference between
(b) and (e); (g) decrypted
image with p = 101,
(h) decrypted image with
β = 20; (i) correctly
decrypted image

To evaluate the influence of a single plain-image
pixel on the cipher-image, the common NPCR and
UACI [16, 17] measures governed by (10) and (11),
respectively, are computed. Here, NPCR means the
change rate of the number of pixels of the ciphered
image when one pixel of the plain-image is modified.
The unified average changing intensity (UACI) mea-
sures the average intensity of the differences between
two ciphered images C1(i, j) and C2(i, j) whose cor-
responding plain-images differ in only one pixel.

INPCR =
∑

ij D(i, j)

M × N
× 100 %, (10)

IUACI = 1

M × N

[∑
i,j

|C1(i, j) − C2(i, j)|
255

]
× 100 %

(11)

where D(i, j) = 0 if C1(i, j) = C2(i, j); otherwise,
D(i, j) = 1.

Table 2 lists the results of NPCR and UACI for dif-
ferent test images while Table 3 shows the NPCR and
UACI values for one-bit difference at various positions
in the Lena image. Only one round of encryption has
been performed. The results justify that the proposed
algorithm possesses a high sensitivity as over 99 %
pixels in the cipher-image change their gray levels
even with a tiny one-bit difference in any pixel of the
plain-image. More encryption rounds are performed
when the pixel values at positions (1, 1) and (50, 80)
of the Lena test image are changed, respectively. The
results listed in Table 4 show that the NPCR and UACI
values are close to the ideal values of 0.996 and 0.334,
respectively, for multiple encryption rounds.
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4.3 Histogram analysis

The histogram of an image is a plot of the distribution
of its pixel values. An effective cryptosystem should
lead to a uniform distribution in the histogram of the
cipher-image. Figures 4(a) and (b) show the histogram
of the original Rice image and that of the encrypted
image, respectively. If a wrong key is used, the his-
togram of the decrypted image is also uniform, as plot-
ted in Figs. 4(c) and (d). These justify that the pro-
posed method results in a uniform histogram and can
prevent statistical attacks on the cipher-image.

4.4 Correlation analysis

A natural image usually has a high correlation be-
tween adjacent pixels. However, an ideal encryption
algorithm should have the ability to generate cipher-
images with zero correlation between adjacent pix-
els. Here, the correlation coefficients between two ad-
jacent pixels in vertical, horizontal, and diagonal di-
rections are calculated for the plain- and the cipher-

Table 2 NPCR and UACI values for different test images

Image Size NPCR UACI

Lena 230 × 250 0.99920 0.34750

Rice 211 × 226 0.99943 0.37420

Grass 512 × 512 0.99800 0.36787

Table 3 NPCR and UACI
values corresponding to
different locations of the
changed pixel in a
256 × 256 Lena image

Position NPCR UACI

(1, 1) 0.99866 0.40147

(50, 80) 0.99774 0.34339

(200, 190) 0.99803 0.36712

(255, 255) 0.99896 0.33288

images, respectively. The following formula (12) is
employed in the calculation:

rxy = cov(x, y)√
D(x)D(y)

(12)

where cov(x, y) = 1
N

∑N
i=1(xi − E(x))(yi − E(y)),

D(x) = 1
N

∑N
i=1(xi − E(x))2, E(x) = 1

N

∑N
i=1 xi .

We randomly select 2,500 pairs of adjacent pixels
in each direction for calculating the correlation coef-
ficients. Table 5 lists the results along different direc-
tions while Figs. 5(a) and (b) plot the correlation coef-
ficients of two vertically adjacent pixels for the plain-
and the cipher-images, respectively.

4.5 Resistance to known-plaintext and
chosen-plaintext attacks

To resist the known-plaintext and chosen-plaintext at-
tacks, the keystream generated in the diffusion stage
must rely on the permuted plain-image [16]. It is ob-
served from (6) and (7) that the pseudorandom se-
quences a, b depend on the values of xi , fi , yi , and ei .
As a result, the generated keystream is different if the
processed image does not match.

4.6 Speed analysis

Only the circular permutation and modulo function
are employed in our algorithm, which does not re-
quire the solving of differential equations or other
time-consuming calculations. Therefore, the proposed

Table 5 Correlation coefficients

Direction Plain-image Encrypted image

Diagonal 0.95138 −0.06153

Horizontal 0.98327 0.07700

Vertical 0.96263 −0.07236

Table 4 NPCR and UACI values at different rounds for Lena

No. of rounds 2 4 6 8 10 20

(1, 1) NPCR 0.99596 0.99617 0.99635 0.99660 0.99568 0.99576

UACI 0.33554 0.33459 0.33562 0.33529 0.33429 0.33441

(50, 80) NPCR 0.99644 0.99603 0.99609 0.99596 0.99631 0.99594

UACI 0.33595 0.33616 0.33586 0.33446 0.33619 0.33366
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Fig. 4 Histogram of: (a) the Rice plain-image (b) encrypted image (c) decrypted image with a tiny change in key y0 (d) decrypted
image with a small change in key ȳ0

Table 6 Encryption time

Image size 128 × 128 256 × 256 512 × 512

Encryption time 0.046 s 0.150 s 0.573 s

method can offer a fast and efficient way for digital im-
age encryption. The time required for encryption im-
ages with different sizes are listed in Table 6.

Table 7 is a comparison of our algorithm with
other methods with the same structure of permuta-
tion followed by diffusion. The proposed algorithm
has the highest operating efficiency. The approach in
[16] needs the longest running time as much time has

Table 7 Comparison using a 256 × 256 image

Methods Ours Ref. [6] Ref. [16] Ref. [18]

Encryption time 0.150 s 0.633 s >10 s 0.547 s

been spent in the sorting process to find the index order
of the chaotic map output.

5 Conclusions and further work

An image encryption algorithm based on the chaotic
generalized Arnold map has been investigated. The
conventional confusion-diffusion architecture is
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Fig. 5 Lena image: (a) plain image (b) encrypted image

adopted, in which the keystream used depends on the
plain-image. Security analyses demonstrate that the
proposed encryption algorithm possesses the advan-
tages of large key space and high key and plain-image
sensitivities. Hence, it is suitable for secure image
communication.

The proposed method can be easily extended to
adopt other chaotic systems, simply changing the gen-
eration of the chaotic sequences P 1 and P 2 in the con-
fusion stage. For example, using four Logistic maps
(13) with initial conditions x0, y0, x̄0, ȳ0, we can get
P 1 and P 2 by the same formula (2) and (3).

xi+1 = 1 − μx2
i (13)

where 1.40015 · · · < μ ≤ 2, xi ∈ (−1,1).
Our scheme can also adopt high-dimensional

chaotic systems such as Chen’s system, spatial chaotic
system, and 3D cat map. In the diffusion stage, we
need to generate the pseudorandom sequence a and b

in (6) and (7) which depend on the permutated image.
Different permutated images result in different a and
b in the diffusion function.
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