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Abstract The system under investigation comprises a
linear oscillator coupled to a strongly asymmetric 2
degree-of-freedom (2DOF) purely cubic nonlinear en-
ergy sink (NES) under harmonic forcing. We study pe-
riodic, quasiperiodic, and chaotic response regimes of
the system in the vicinity of 1:1 resonance and evalu-
ate the abilities of the 2DOF NES to mitigate the vibra-
tions of the primary system. Earlier research showed
that single degree-of-freedom (SDOF) NES can effi-
ciently mitigate the undesired oscillations, if limited
to relatively low forcing amplitudes. In this paper, we
demonstrate that the additional degree-of-freedom of
the NES considerably broadens the range of ampli-
tudes where efficient mitigation is possible. Efficiency
limits of the system with the 2DOF NES are evalu-
ated numerically. Analytic approximations for simple
response regimes are also developed.
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1 Introduction

Targeted energy transfer (TET) or “energy pumping”
from a linear oscillator to an attached nonlinear en-
ergy sink (NES) has been an object of extensive recent
studies. It was shown for a single degree-of-freedom
(SDOF) NES that it can efficiently and irreversibly
draw energy from a linear oscillator under various
forms of excitation including impulse [1–6], periodic
[7–12], and quasiperiodic forcing [13]. Its efficiency
has been demonstrated numerically and experimen-
tally for seismic excitations [14] and it has also been
applied for passive suppression of aeroelastic instabil-
ities [15, 16] in reducing oscillations of the primary
system to a more desirable level for a wide range of
excitations and frequencies. It was shown that such at-
tachment can be more efficient than a traditional linear
solution (a tuned mass damper) under harmonic forc-
ing [9]. Recent developments in the field were summa-
rized in the review paper [17].

It was revealed, however, that a strategy of vi-
bration absorption based on the SDOF NES displays
some limitations in terms of excitation amplitude, es-
pecially in the most interesting vicinity of 1:1 reso-
nance [8, 13]. Under stronger excitation, instead of the
simple periodic response observed for low forcing, the
primary mass exhibits a strongly modulated response
(SMR) [7–13, 17]. For even stronger forcing, the mit-
igation capability of the NES almost disappears, since
the system exhibits periodic responses with very high
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amplitudes. One possible solution is an inclusion of
nonlinear damping in the system [18, 19].

It was shown that the NES with few degrees-
of-freedom (multiple-DOF, MDOF) has an advan-
tage over the SDOF NES in terms of the TET ef-
ficiency [20–22]. It was demonstrated that this type
of the NES exhibits enhanced TET abilities for im-
pulse excitations—both efficient energy pumping and
wide effective work diapason [23]. These results mo-
tivated us to investigate the system with single pri-
mary mass and the 2DOF NES under periodic exter-
nal forcing. Although such system eventually suffers
from the same drawbacks as the SDOF NES system,
we demonstrate that the external forcing threshold un-
der which there is effective energy pumping is consid-
erably wider in the system with the 2DOF NES.

In addition, the study of the possible response
regimes in the 2DOF NES system shows that apart
from behaviors already discussed in the context of the
SDOF NES system, such as coexistence of simple pe-
riodic responses and the SMRs under the same param-
eters [7, 8] or the existence of nontrivial quasiperi-
odic regimes [9], we also find coexisting periodic,
quasiperiodic, and chaotic regimes, sometimes differ-
ing from one another by an order of magnitude in
terms of resulting amplitudes. These patterns and re-
sponse regimes are also discussed in the paper.

2 Description of the system

We consider a system that comprises a SDOF linear
oscillator coupled to a 2DOF NES as shown in Fig. 1.
The NES consists of two relatively small masses con-
nected by a cubic spring with relatively small stiffness
and weak linear damping The primary mass is con-
nected to the NES via cubic spring and weak linear
dashpot. In general, the system is similar to one dis-
cussed in [23].

This system is allowed to move only in the hori-
zontal direction ignoring any possible bending forces
or perpendicular vibration. Equations of motion of this
system are written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M̄Ü + λ̄0U̇ + k̄1U + λ̄1(U̇ − V̇1)

+ 4
3 k̄2(U − V1)

3 = Ā cos(t̄ · ω̄(1 − σ̄ ))

m̄1V̈1 − λ̄1(U̇ − V̇1) − 4
3 k̄2(U − V1)

3

+ λ̄2(V1 − V2) + 4
3 k̄3(V1 − V2)

3 = 0

m̄2V̈2 − λ̄2(V̇1 − V̇2) − 4
3 k̄3(V1 − V2)

3 = 0

(1)

Fig. 1 Sketch of the dynamical system with 2DOF NES

where U,V1,V2 are displacements of the primary sys-
tem, the first NES and the second NES, respectively,
M̄ is a value of the primary mass, m̄1, m̄2 are masses
of the first and the second NES, respectively, λ̄0, k̄1

are the linear oscillator’s damping and stiffness coef-
ficient, respectively, λ̄1, k̄2 are a damping and a cubic
stiffness coefficients of the first NES, λ̄2, k̄3 are the
damping and the cubic stiffness coefficients of the sec-
ond NES, Ā is the excitation amplitude, ω =

√
k̄1/M̄

is the undamped eigenfrequency of the primary oscil-
lator and σ̄ is a relative frequency detuning of the ex-
ternal force.

System (1) is then reduced to nondimensional vari-
ables and yields
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ü + ελ0u̇ + u + ελ1(u̇ − v̇1)

+ 4
3k2ε(u − v1)

3 = εA cos(t (1 − εσ))

m1v̈1 − λ1(u̇ − v̇1) − 4
3k2(u − v1)

3

+ λ2(v̇1 − v̇2) + 4
3k3(v1 − v2)

3 = 0

m2v̈2 − λ2(v̇1 − v̇2) − 4
3k3(v1 − v2)

3 = 0

(2)

Detailed expressions for the nondimensional pa-
rameters are presented in Appendix A. Note that in
the most general form all of the parameters are inde-
pendent and the NESs not necessarily have equal mass
or any other parameter. Small parameter ε is related to
relative mass of the NESs with respect to the mass of
the primary oscillator. We adopt that the same small
parameter defines the scale of the excitation ampli-
tude, all damping coefficients, and the frequency de-
tuning. The scale of the nonlinear stiffness has been
tuned to the same order by appropriate choice of the
characteristic displacement (see Appendix A).

For the purpose of numeric analysis, the param-
eters were set arbitrarily but within practical limits.
Unless otherwise stated, ε = 0.05, σ = 1.0044, both
m1 and m2 are set to be 1 so that each NES is 5 %
of the primary mass, λ1,2 = 0.2, λ0 = 0, k2 = 1, and



Response regimes in linear oscillator with 2DOF nonlinear energy sink under periodic forcing 1891

k3 = k = 0.01. In addition, unless otherwise stated,
all initial conditions (displacements and velocities) are
considered to be 0.

3 Numerical analysis

3.1 Performance and comparison to SDOF NES
system

In order co compare the performance of the system
with the 2DOF NES to that with the single degree-
of-freedom, we use the SDOF NES system with the
mass doubled so that the total NES mass is the same
for both systems. Both systems are simulated in the
most interesting regime of 1:1 resonance. The fre-
quency detuning is chosen in order to get as close
as possible to the resonant peak. The comparison re-
veals very similar phenomena in both systems. Per-
haps, the most interesting is effective “locking” of the
NES and growth of the response amplitude by orders
of magnitude when the excitation amplitude achieves
certain critical value. Such response indicates that the
NES completely ceases to be efficient for the vibra-
tion absorption. This “explosion” is discussed more
thoroughly in Sect. 3.2. Here, we are going to mention
that such response exists both in the systems with the
SDOF NES and with the 2DOF NES; these results are
presented in Fig. 2. One can mention that the 2DOF
NES system can withstand much higher excitation am-
plitudes while keeping low primary mass’ displace-
ment magnitudes (Fig. 3) and also have a wide region
where the NES efficiently channels the energy away
from the primary mass (Fig. 4). The energy of each
mass is defined here as the time average of the sum
of its kinetic energy and the potential energy stored in
the spring that couples it to the previous element in the
chain in the steady state. So, one can see that the 2DOF
NES demonstrates obvious superiority over the SDOF
NES with respect to the TET in this forced system.

Another testimony of the efficiency of the 2DOF
system can be found looking at the energy distribu-
tion between the primary mass and the NES. As seen
in Fig. 5, while the total energy in the system grows
with the increase in excitation amplitude, nearly all of
it is concentrated in the NES. However, as mentioned
earlier, this is true only up to certain threshold ampli-
tude at which the NES “locks” to the primary mass
(i.e., the relative displacements of the NES elements

Fig. 2 Primary mass’ displacement after “explosion” of SDOF
NES system (a) with A = 4, σ = 0.4668 and 2DOF NES system
(b) with A = 16, σ = 1.001

become lower by an order of magnitude than those
of the primary mass) and ceases to be effective as in
Fig. 6 where the oscillations of the primary mass has
about 10 times larger amplitude than the relative dis-
placements of the NES elements.

3.2 Response regimes of the system with varying
frequency and amplitude

In order to investigate possible response regimes of
this system, a number of simulations with changing
amplitude and frequency detuning of the forcing has
been performed. Other system parameters were kept
fixed, as we have mentioned in Sect. 2. All simulations
were run near the 1:1 resonance, where maximum re-
sulting displacement amplitudes were observed.

The results suggest four distinct types of possi-
ble response, depending on the forcing amplitude. In
Fig. 7, we depict the time series for the displacements
of the main mass for different response types.
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Fig. 3 Primary mass’ displacement of SDOF NES system
(a) with A = 2, σ = 0.4668 and 2DOF NES system (b) with
A = 12, σ = 1.001

Fig. 4 Total system energy and total NES energy with respect
to excitation amplitude for a set of initial conditions

In Fig. 7a, which depicts the system’s response
to relatively low forcing amplitude, one observes a

Fig. 5 Energy levels with respect to excitation amplitude for a
set of initial conditions

Fig. 6 An example of the NES “locking” (A = 16)

constant-amplitude vibration, i.e., a simple periodic
response. On the other hand, in Fig. 7b, which de-
picts the system’s response to even lower forcing am-
plitude, we see a quasiperiodic response although it
seems to be a Weakly Modulated Response (WMR)
[17]. Meanwhile, in Fig. 7c, which depicts the sys-
tem’s response to higher forcing amplitude, we see the
SMR—a quasiperiodic response with much stronger
modulations. Another response regime, which appears
very suddenly at high forcing amplitudes, includes
very slow modulations, which usually decay over time,
i.e., the transient of this system is longer than the
time span of these figures (see Fig. 8b which depicts
a longer time span for a similar case). After the tran-
sient ends, we observe a high-amplitude WMR as in
Fig. 7d.

Note that for the first three figures the maximal am-
plitude of the displacement is of the same order of
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Fig. 7 Response regimes for σ = 1.0044: (a) Periodic response (A = 4), (b) WMR (A = 1), (c) SMR (A = 10), (d) High Amplitude
WMR (A = 16)

magnitude as the forcing amplitude, while in the last
case the magnitude is more than 20 times the exci-
tation amplitude. In the examples above, the forcing
amplitude varies considerably; even under small vari-
ations this change is very sudden.

As it is demonstrated in Fig. 8, increasing the forc-
ing amplitude by about 0.7 % causes an increase in the
displacement amplitude by over 2000 %. It seems that
one observes here a transition from the SMR to the
high-amplitude WMR. This transition is clearly vis-
ible when determining the amplitude of the primary
mass while varying the detuning with constant forcing
amplitude as we depict in Fig. 9.

Note that the transition is not “smooth” but very
sudden and that the high amplitudes continue to char-
acterize the response regime as the excitation am-
plitude grows. The discrepancies around the bifurca-
tion point are presumably related to high sensitivity
to initial conditions, as discussed later on. It was also
determined that this transition depends both on the

frequency and the amplitude of the external forcing.
Defining the “transition amplitude” as the forcing am-
plitude at which the system displays a 10-fold growth
in the displacement amplitude and plotting it versus
forcing frequency shows it clearly.

In Fig. 10 also, the variations are likely caused by
the sensitivity to the initial conditions. We also see that
there is no clear bifurcation point here, as there is a
“band” in which the system can stabilize on one of the
two response regimes depending on initial conditions,
implying fractal boundaries between the different re-
sponse regimes in the state-space.

3.3 Spectral analysis

In order to further study the observed response regimes,
we have produced a frequency spectrum using Fast
Fourier Transform (FFT) on a span of the time series
after the initial transient, i.e., when the system reaches
the steady-state. Under certain weak forcing, as one
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Fig. 8 Time series before (A = 14.8) (a) and after (A = 14.9)
(b) bifurcation

Fig. 9 Maximal displacement of the primary mass versus the
frequency detuning for A = 15

should expect, the response consists primarily of the
component frequency equal to that of the excitation.

In Fig. 11, we present the FFT spectrum of the time
series in Fig. 7a. The majority of the energy in this sig-
nal is concentrated around the 1:1 peak, and rapidly

Fig. 10 Bifurcation amplitude versus the frequency detuning

Fig. 11 Single-sided amplitude spectrum of the primary mass
displacement for A = 4 (the response in Fig. 7a)

decays as frequency grows. Quite expectable peaks at
the following odd multipliers of the primary frequency
are present but barely notable. Still, even in these con-
ditions, the spectrum of the NES, corresponding to the
relative displacement between the NES components
(Fig. 12) displays much more significant peaks at the
odd multipliers.

However, further simulations show that, again as
one should expect, for both weaker and stronger forc-
ing amplitudes, the spectrum may consist of many ad-
ditional harmonics, as demonstrated here for forcing
amplitudes of A = 1 and A = 8, respectively.

The spectra in Fig. 13 describe the motion of the
primary mass, but both nonlinear energy sinks behave
in rather similar fashion. In both cases, the significant
responses are still concentrated around the first few
odd multipliers, and due to the difference in magni-
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Fig. 12 Single-sided amplitude spectrum of the relative dis-
placements for A = 4

tude, the system’s behavior is still determined mainly
by the first peak cluster around the 1:1 resonance.

Under higher forcing amplitudes, the spectrum is
different. Near the transition amplitude, the spectrum
of the main mass shows additional peaks (Fig. 14a),
at even multipliers, while the spectra of the NES
(Fig. 14b–c) resemble that expected of an impact-like
response, i.e., a relatively strong excitation of all the
multiplies of the excitation frequency.

Under these conditions, both NESs almost “lock”
to the primary mass, their relative displacement being
more than an order of magnitude smaller than that of
the primary mass as mentioned in Sect. 3.1. Further
evidence is found in comparison between the behav-
ior of the NES before and after the critical amplitude.
Shown in Fig. 15 are the relative displacements of the
primary mass and the first NES.

Fig. 13 Primary mass displacement and its single-sided ampli-
tude spectrum for A = 1 (a) and A = 8 (b)

The spectrum before the transition in Fig. 15a
shows much noisier peaks than the one after the bifur-
cation in Fig. 15b. The time series show that while the
displacement amplitude of the NES is about 20 % that
of the primary mass before the transition (see Fig. 8
for time series of the primary mass in corresponding
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Fig. 14 Single-sided amplitude spectrum of the primary mass
(a) and the relative displacements (b–c) for A = 14.5—an ex-
ample of an impulse-like spectra

cases), it is only about 3 % after it. These differences
can be attributed to “locking” of the NES to the main
mass over certain amplitudes, thus considerably lim-
iting relative oscillations and drastically reducing the
performance of the NES.

The implications of these results on the possible an-
alytical approximations are discussed in more detail
below.

Fig. 15 Relative displacements before (a) (A = 14.6) and after
(b) (A = 14.7) bifurcation, respectively, and their single-sided
amplitude spectrum

3.4 Stability

As discussed earlier, the system can be very sensitive
both to small changes in the parameters and in the
initial conditions. This sensitivity cannot only be dis-
cussed in terms of modulations, but also in terms of
periodicity.

In Fig. 16a, we see a time series of the system for
some given parameters and its stroboscopic map with
respect to the period of the external excitation. The
response regimes presented in the map reveal seem-
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Fig. 16 The primary mass displacement and the stroboscopic
map of A = 9.9, σ = 0.9 (a) and A = 10, σ = 0.9 (b)

ingly quasiperiodic nature with relatively neat orbits.
In the map obtained for the same system under slightly
stronger excitation at Fig. 16b, the random scatter im-

plies a very complex quasiperiodic response or even a
chaotic response as investigated in Sect. 3.5. Note that
although the time series seem similar at first glance,
additional focus on the beat reveals a small difference
between the two responses.

It is important to note that the aforementioned re-
sponse regimes can also coexist as can be seen in
Fig. 17 where we can see a quasiperiodic response and
what seems to be a chaotic one for the same parame-
ters, differing only in initial condition. This is most in-
teresting since even though the stroboscopic maps re-
veals essentially different response regimes; the time
series shows that these are two close attractors that co-
exist there.

The coexistence of very close attractors along with
the similarity of the responses in both Fig. 16 and
Fig. 17 was quite suspicious and, therefore, an addi-
tional simulation was ran for a much longer time se-
ries; the stroboscopic map remained the same, thus
denying the possibility of transient influence.

3.5 Chaotic regimes

“Scattered” character of the observed stroboscopic
maps (Figs. 16, 17) gives a clue of some chaotic-like
behavior of the system. To validate this assumption,
we use the algorithm developed by Wolf et al. [24, 25]
of computing Lyapunov exponents from a time se-
ries. The Lyapunov exponents describe the exponen-
tial rate of separation of trajectories with infinitesi-
mal initial separation, i.e., a positive exponent means
divergence and therefore chaos. The results are pre-
sented in Fig. 19.

It is quite interesting that for all responses with
the excitation amplitude over critical value A = 0.7
we observe positive Lyapunov exponents. This result
holds even for the responses similar to one in Fig.
17b, which demonstrate seemingly “regular” strobo-
scopic map and their time series also look quite regu-
lar. It means that the chaotic behavior can be observed
on quite a large time span, whereas the dynamics on
a smaller span seems just “quasiperiodic.” As for the
critical amplitude of the external excitation, it is possi-
ble to reveal its nature by a simple analytic procedure.
This analysis is presented in the next section.
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Fig. 17 The primary mass displacement and the stroboscopic
map for A = 9 and σ = 0.9 with u(0) = 0 (a) and u(0) = 18 (b)

Fig. 18 Largest Lyapunov exponent with respect to excitation
amplitude for σ = 0.9

4 Theoretical analysis

4.1 Harmonic balance approximation for the case of
low amplitudes

In general, known analytic procedures cannot say
much about the behavior of this strongly nonlinear and
highly degenerate system. We use here a version of
common harmonic balance approach in order to study
the transition from steady-state to weakly modulated
response (Neimark–Sacker bifurcation) which occurs
at relatively low amplitude of the external forcing. In
this section, we use slightly modified equations of mo-
tion so that the detuning is not in the forcing but in
the linear oscillator’s resonant frequency as in Eq. (3).
This change introduces the discrepancy of order O(ε2)

and does not affect the qualitative behavior of this sys-
tem.
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ü + ελ0u̇ + (1 + εσ )u + ελ1(u̇ − v̇1)

+ 4
3k2ε(u − v1)

3 = εA cos(t)

m1v̈1 − λ1(u̇ − v̇1) − 4
3k2(u − v1)

3

+ λ2(v̇1 − v̇2) + 4
3k3(v1 − v2)

3 = 0

m2v̈2 − λ2(v̇1 − v̇2) − 4
3k3(v1 − v2)

3 = 0

(3)

Simple change of variables in Eq. (3) brings about
more convenient set of equations (See Eq. (4).)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 + λ0ε(ẋ1+ε(m1+m2)ẋ2+εm2ẋ3)
1+ε(m1+m2)

+ (1+εσ)(x1+ε(m1+m2)x2+εm2x3)
1+ε(m1+m2)

= εA cos(t)

ẍ2 − ẍ1 + (ε + 1
m1

)λ1ẋ2 + 4
3x3

2(ε + 1
m1

)

− 1
m1

λ2ẋ3 − 4
3m1

kx3
3 = 0

ẍ3 − 1
m1

λ1ẋ2 − 4
3m1

x3
2 + (m1+m2

m1m2
)λ2ẋ3

+ 4
3kx3

3(m1+m2
m1m2

) = 0

(4)

with

x1 = u + εm1v1 + εm2v2

x2 = u − v1

x3 = v1 − v2

This still leaves us with second-order differential
equations, therefore, further simplification is neces-
sary. To reduce the order of our differential equations,
we use complexification-averaging approach [19]. At
the first stage, we replace ϕn = ẋn+ixn

2 in Eq. (4) and
obtain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ϕ̇1 − (ϕ1 + ϕ∗
1 )i + (1 + ε(m1 + m2))

−1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ελ0

⎛

⎜
⎝

ϕ1 + ϕ∗
1

−ε(m1 + m2)(ϕ2 + ϕ∗
2 )

−εm2(ϕ3 + ϕ∗
3 )

⎞

⎟
⎠

−i(1 + σε)

⎛

⎜
⎝

ϕ1 − ϕ∗
1

−ε(m1 + m2)(ϕ2 − ϕ∗
2 )

−εm2(ϕ3 − ϕ∗
3 )

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= εA cos(t)

2ϕ̇2 − (ϕ2 + ϕ∗
2 )i − 2ϕ̇1 + (ϕ1 + ϕ∗

1 )i

+ λ1
(
ε + 1

m1

)
(ϕ2 + ϕ∗

2 ) + 4i(ϕ2−ϕ∗
2 )3

3 (ε + 1
m1

)

− λ2(ϕ3+ϕ∗
3 )

m1
− 4ki(ϕ3−ϕ∗

3 )3

3m1
= 0

2ϕ̇3 − (ϕ3 + ϕ∗
3 )i − λ1(ϕ2+ϕ∗

2 )

m1

− 4i(ϕ2−ϕ∗
2 )3

3m1
+ λ2

(
m1+m2
m1m2

)
(ϕ3 + ϕ∗

3 )

+ 4ki(ϕ3−ϕ∗
3 )3

3 · (m1+m2
m1m2

) = 0

(5)

Then we assume that the system is close to 1:1
resonance and only one frequency component should
be taken into account. Consequently, we look for a
harmonic solution with the excitation frequency ϕn =
ψn exp(t · i) then averaging in Eq. (6).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ψ̇1 + iψ1

+ ελ0−(1+σε)i
1+ε(m1+m2)

(
ϕ1 − ε(m1 + m2)ψ2

−εm2ψ3

)

= εA
2

2ψ̇2 + iψ2 + ελ0−(1+σε)i
1+ε(m1+m2)

(
ψ1 − ε(m1 + m2)ψ2

−εm2ψ3

)

+ (
ε + 1

m1

)
(λ1ψ2 − 4i|ψ2|2ψ2)

+ 1
m1

(
4ik|ψ3|2ψ3

−λ2ψ3

)

= εA
2

2ψ̇3 + iψ3 + 1
m1

(4i|ψ2|2ψ2 − λ1ψ2)

+ (
m1+m2
m1m2

)
(λ2ψ3 − 4ik|ψ3|2ψ3) = 0

(6)

Steady-state responses of the initial system corre-
spond to fixed points of Eq. (6). Algebraic equations
for these points may be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ10(λ0 + i(m1 + m2 − σ))

+ ψ20(ελ0 − i(1 + σε))(m1 + m2)

+ ψ30m2(ελ0 − i(1 + σε))

= A
2 (1 + ε(m1 + m2))

iψ10m1 + ψ20

(
λ1(εm1 + 1) + im1

−4i(εm1 + 1)|ψ20|2
)

+ψ30(4ik|ψ30|2 − λ2) = 0

ψ20(4im2|ψ20|2 − λ1m2)

+ψ3

⎛

⎜
⎝

im1m2

−4ik(m1 + m2)|ψ30|2
+λ2(m1 + m2)

⎞

⎟
⎠ = 0

(7)

For a more comfortable presentation of the equa-
tions, we replace qn = |ψn|2 in Eq. (7) with some al-
gebraic manipulations.
⎧
⎪⎨

⎪⎩

ψ10h1 + ψ20h2 + ψ30m2h3 = H

ψ10g1 + ψ20g2(q2) + ψ30g3(q3) = 0

ψ20f2(q2) + ψ30f3(q3) = 0

(8)

where the new functions are defined in Appendix B.
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Fig. 19 A sample of the intersections of F and G for some
arbitrary parameters

Fig. 20 Analytical and numerical displacement magnitudes in
respect to excitation amplitude for σ = 0.9

From Eq. (8), we can derive two functions, pre-
sented below:
{

F = q2
∣
∣f2
f3

· g3
g1

h1 − g2
g1

h1 + h2 − f2
f3

h3
∣
∣ − H 2

G = q2|f2| − q3|f3|
(9)

Requesting nullification of both these functions,
and using Eqs. (4), (8), we find the steady state am-
plitudes for u, v1, and v2 and compare them with the
numerical results in Fig. 20.

4.2 Stability of steady-state responses

To determine the stability, we add a small perturba-
tion to the results found in the previous subsection, i.e.,

ψn = ψn0 + δn (δn � ψn), and replace it in Eq. (6) to
result in Eq. (10).

δ̇1 + C1δ1 + C2δ2 + C3δ3 = 0

δ̇2 + D1δ1 + D2δ2 + D3δ3 + D4δ
∗
2 + D5δ

∗
3 = 0

δ̇3 + E1δ2 + E2δ3 + E3δ
∗
2 + E4δ

∗
3 = 0

(10)

Coefficients in these equations are defined in Ap-
pendix C.

Putting Eq. (10) in matrix form in Eq. (11) so we
can look for positive eigenvalues implying instability.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ̇1

δ̇2

δ̇3

δ̇∗
1

δ̇∗
2

δ̇∗
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−C1 −C2 −C3 0 0 0
−D1 −D2 −D3 0 −D4 −D5

0 −E1 −E2 0 −E3 −E4

0 0 0 −C∗
1 −C∗

2 −C∗
3

0 −D∗
4 −D∗

5 −D∗
1 −D∗

2 −D∗
3

0 −E∗
3 −E∗

4 0 −E∗
1 −E∗

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ1

δ2

δ3

δ∗
1

δ∗
2

δ∗
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

Results for particular set of parameters are pre-
sented in Fig. 20. Even without looking further into
the response, we can immediately see that there exists
a transition in the numerical result very close to the
Hopf bifurcation where the response becomes unsta-
ble.

It is also interesting to note that the loss of stability
is more or less in accordance with the appearance of
positive Lyapunov exponents as shown in Fig. 18.

Figure 21 indeed verifies the loss of stability; more-
over, we can see that the loss of stability brings about
weak modulation of the steady-state response.

However, for larger excitation amplitudes, the har-
monic balance becomes unusable, as expected for this
simple approximation.

5 Concluding remarks

The results presented above demonstrate that the
2DOF NES can have significantly better performance
as for the amplitude range of vibration absorption than
the SDOF NES with equal mass. In other terms, the
enhanced TET abilities [23] of the 2DOF NES ex-
ist for the periodic excitation as well. However, ad-
ditional complications also appear. The system with
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Fig. 21 Primary mass’ displacement before (A = 0.55,
σ = 0.9) and after (A = 0.65, σ = 0.9) loss of stability, respec-
tively

2DOF NES exhibits a multitude of possible dynami-
cal responses; even for moderate excitation amplitudes
most of them appear to have chaotic nature. There are
many interesting phenomena in this system, such as
existence of a multitude of rather close attractors and
the “locking” of the strongly nonlinear attachment;
needless to say, these phenomena deserve additional
study. As for engineering applications, further inves-
tigations are required to establish whether dynamical
systems with that complicated behavior can be feasi-
ble as the vibration absorbers.
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Appendix A

u = U/U0
where U0 is an arbitrary reference value

v1 = V1/U0

v2 = V2/U0

t = t̄ · ω̄
ε = (m̄1 + m̄2) · (2M̄)−1 � 1

σ = σ̄/ε

λi = λ̄i · (εM̄ω̄)−1

ki = k̄i ū
2
0 · (εM̄ω̄2)−1

mi = m̄i/(εM̄)

Appendix B

f2(q2) = (4iq2 − λ1)m2

f3(q3) =
(

im1m2 − 4ik(m1 + m2)q3

+λ2(m1 + m2)

)

g1 = −im1

g2(q2) =
(

λ1(εm1 + 1) + im1

−4i(εm1 + 1)q2

)

g3(q3) = (4ikq3 − λ2)

H = A

2

(
1 + ε(m1 + m2)

)

h1 = (
λ0 + i(m1 + m2 − σ)

)

h2 = (
ελ0 − i(1 + σε)

)
(m1 + m2)

h3 = m2
(
ελ0 − i(1 + σε)

)

Appendix C

C2 = ε

2
· (m1 + m2)

1 + ε(m1 + m2)

(
ελ0 − i(1 − εσ)

)

C3 = ε

2
· m2

1 + ε(m1 + m2)

(
ελ0 − i(1 − εσ)

)

D1 = 1

2
· ελ0 − i(1 − εσ)

1 + ε(m1 + m2)

D2 = 1

2

(

2C2 + i +
(

ε + 1

m1

)
(
λ1 − 8i|ψ20|2

)
)

D3 = 1

2

(

2C3 + 1

m1

(
8ik|ψ30|2 − λ2

)
)

D4 = −1

2

(

ε + 1

m1

)
(
4iψ2

20

)

D4 = 1

2
· 1

m1

(
4ikψ2

30

)
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E1 = 1

2
· 1

m1

(
8i|ψ20|2 − λ1

)

E2 = 1

2

(

i + m1 + m2

m1m2

(
λ2 − 8ik|ψ30|2

)
)

E3 = 1

2
· 1

m1

(
4iψ2

20

)

E4 = −1

2
· m1 + m2

m1m2

(
4ikψ2

30

)
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