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Abstract This paper introduces an adaptive control
scheme for chaos suppression of non-autonomous
chaotic rotational machine systems with fully un-
known parameters in finite time. To estimate the sys-
tem unknown parameters, some adaptation laws are
proposed. Using the adaptation laws and Lyapunov
control theory, an adaptive robust controller is derived
to suppress the chaos of non-autonomous centrifugal
flywheel governor systems in a given finite time. Some
mathematical approaches are presented to prove the
finite-time stability and convergence of the proposed
method. The exact value of the convergence time is
also given. A numerical simulation is provided to il-
lustrate the usefulness and effectiveness of the intro-
duced algorithm and to verify the theoretical results of
the paper.
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1 Introduction

Chaotic dynamical systems are very complex nonlin-
ear systems that display unpredictable and irregular
behaviors. The main special feature of the chaotic sys-
tems is that a tiny change in the initial conditions and
the system parameters leads to an enormous differ-
ence in the long-term behavior of the system. Since the
pioneering work by Ott, Grebogi and Yorke in 1990
[1], chaos control and synchronization of autonomous
chaotic and dynamical systems has received consid-
erable attention in recent years [2–11]. On the other
hand, with introducing some non-autonomous chaotic
systems in engineering sciences and physics, chaos
suppression of non-autonomous chaotic systems has
received significant interest among many researchers
and various control techniques for chaos suppression
and synchronization of non-autonomous chaotic sys-
tems have been developed, which include adaptive
control [12, 13], active control [14], sinusoidal state
error feedback control [15], nonlinear control [16],
fuzzy control [17], variable substitution control [18]
and so on.

The centrifugal flywheel governor [19] is one of
the most interesting and attractive rotational machine
systems. It is a mechanical device that automatically
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controls the speed of an engine and avoids the dam-
age caused by abrupt change of load torque. The cen-
trifugal flywheel governors have found useful applica-
tions in many practical systems such as diesel engine,
steam engine, gas turbine and so on. Recent research
has recognized different kinds of the centrifugal fly-
wheel governor systems with a rich variety of non-
linear behavior. Furthermore, it has been shown that
these systems display a diverse range of dynamic be-
havior including regular and chaotic motions [20–28].
On the other hand, if a rotational machine system op-
erates chaotically, the subsequently large broadband
vibration may increase the likelihood of fatigue fail-
ure and shorten the system lifetime. Therefore, de-
signing a controller to suppress the chaotic behavior
of the rotational machine systems is an important is-
sue.

In recent years, complex dynamics, chaos con-
trol, anti-control and synchronization of the centrifu-
gal flywheel governor systems have been studied by
researchers. In [20], the nonlinear dynamics of a
non-autonomous centrifugal flywheel governor sys-
tem and its synchronization have been studied. Reg-
ular and chaotic dynamics of both autonomous and
non-autonomous rotational machines with a centrifu-
gal governor subjected to an external disturbance have
been studied in [21]. Zhang et al. [22] have studied
complex dynamical behaviors of a class of centrifu-
gal flywheel governor systems and have proposed a
parametric open-plus-closed-loop approach for con-
trolling their chaos. By numerically integrating the La-
grangian equations of motion, bifurcation and chaos of
a non-autonomous centrifugal flywheel governor sys-
tem have been investigated in [23]. Sotomayor et al.
[24] have studied the Lyapunov stability and the Hopf
bifurcation in a system coupling a hexagonal centrifu-
gal governor with a steam engine. Ge and Jhuang [25]
have investigated the chaos, its control and synchro-
nization for a fractional-order rotational machine sys-
tem with a centrifugal governor. Nonlinear dynam-
ics and chaos control of a rotational machine with a
hexagonal centrifugal governor and a spring consid-
ering the effects of external disturbances have been
addressed in [26]. Chaos anti-control and synchroniza-
tion of an autonomous rotational machine system with
a hexagonal centrifugal governor have been reported
in [27]. Ge and Lee [28] have studied the chaotic
behavior of an autonomous rotational machine sys-
tem with a hexagonal centrifugal governor and spring.

They have considered the effects of time-delay and
have proposed linear feedback control and adaptive
control algorithms to suppress the chaos of the sys-
tem.

However, all of the above-mentioned methods
and control strategies have been proposed to sup-
press/synchronize chaos of the rotational machine sys-
tems asymptotically. In other words, these studies have
guaranteed that the state trajectories of the system can
converge to zero as time goes infinite. Nevertheless,
from a practical engineering point of view, it is more
valuable to control chaos of the centrifugal flywheel
governor system in a finite time rather than merely
asymptotically. To achieve faster convergence speed
in control systems, the finite-time control method is
an effective technique. Finite-time control means the
optimality in settling time. Moreover, the finite-time
control techniques have demonstrated better robust-
ness and disturbance rejection properties [29]. On the
other hand, in real world applications, the parameters
of the chaotic systems are inevitably disturbed by ex-
ternal inartificial factors, such as temperature, volt-
age oscillation and mutual interfere among compo-
nents, etc., and cannot be exactly known in advance.
Since chaotic systems are very sensitive to any sys-
tem parameter variations, the effects of unknown pa-
rameters may cause to instability of the chaotic sys-
tem. Therefore, the effects of the unknown parameters
should not be neglected in the chaos suppression of
the centrifugal flywheel governor systems. However,
to the best knowledge of the authors there is little re-
sult in the literature about the problem of finite-time
chaos suppression of non-autonomous centrifugal fly-
wheel governor systems with fully unknown parame-
ters.

Based on the above discussion, in this paper the
problem of finite-time chaos suppression of non-
autonomous chaotic centrifugal flywheel governor
systems with completely unknown parameters is in-
vestigated. To tackle the unknown parameters of the
system, suitable adaptation laws are introduced. On
the basis of the adaptation laws and finite-time con-
trol technique, an adaptive controller is designed to
suppress the chaos of the uncertain non-autonomous
centrifugal flywheel governor system in a given finite
time. The finite-time stability and convergence of the
closed-loop system are analytically proven. A numer-
ical simulation is given to illustrate the robustness and
applicability of the proposed technique and to validate
the theoretical results of the paper.
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Fig. 1 Physical model of a mechanical centrifugal flywheel
governor [20]

2 Description of the system and problem
formulation

In this section, first a brief description of a non-
autonomous chaotic centrifugal flywheel governor
system is given. Then, the problem of robust finite-
time chaos suppression of the centrifugal flywheel
governor with fully unknown parameters is formulated
and the precise definition of the finite-time stability is
presented.

2.1 Centrifugal flywheel governor system description

The mechanical centrifugal flywheel governor system
[19] is schematically depicted in Fig. 1. The motor
drives the flywheel to rotate with angular velocity ω.
The flywheel is joined to the axis through a gear case,
so the axis rotates with angular velocity nω. Rods 1
and 2 have length 1 and are joined to a hinge at the
end of the axis. Both rods are also attached to a ball of
mass m. The balls are also connected to a sleeve over
the axis by rods 3 and 4. A linear spring of stiffness
k is attached to the sleeve, covering the upper portion
of the axis. The vapor’s flux Q into the engine is ad-
justed by a mechanical governor on the sleeve, which
is set to make the flywheel rotate at a certain angular
velocity ω0. When �ω = ω − ω0 �= 0, the balls will
move outward or inward, and the sleeve will slide up
or down [20].

With some assumptions, the motion of the mechan-
ical non-autonomous centrifugal flywheel governor is
given by [20]:

ϕ̈ = (
e + n2ω2) sinϕ cosϕ − (e + g/l) sinϕ − bϕ̇

ω̇ = (α cosϕ − F)/I − a sinwt
(1)

where ϕ is the angle between the rotational axis and
the rods and n = 3, l = 1.5, a = 0.8, w = 1, e = 0.3,
b = 0.4, I = 1.2, α = 0.611, F = 0.3, g = 9.8 are sys-
tem parameters. For the above-mentioned parameters
values the system (1) exhibits chaotic behavior [20].
The strange attractors of this system are illustrated in
Fig. 2.

2.2 Formulation of finite-time chaos suppression
problem

Defining x1 = ϕ,x2 = ϕ̇, x3 = ω, one can rewrite the
non-autonomous centrifugal flywheel governor sys-
tem (1) with fully unknown parameters and control in-
puts as follows:

ẋ1 = x2

ẋ2 = (
e + n2x2

3

)
sinx1 cosx1

−
(

e + g

l

)
sinx1 − bx2 + u1(t)

ẋ3 = (α cosx1 − F)/I − a sinwt + u2(t)

(2)

where x = [x1, x2, x3]T is the state vector of the sys-
tem and u(t) = [u1(t), u2(t)]T is the vector of control
inputs.

Assume that the parameters n, l, a,w, e, b, I,α,F ,
and g are unknown in advance and consider θ =
[θ1, θ2, θ3, θ4]T = [e,n2, e + g/l, b]T and ψ =
[ψ1,ψ2]T = [α/I,F/I + a]T as the vectors of the
unknown parameters of the system (2). Then, the fol-
lowing assumption is made.

Assumption 1 It is assumed that the unknown vector
parameters θ and ψ are bounded by

‖θ‖ ≤ Θ, ‖ψ‖ ≤ Ψ (3)

where ‖.‖ denotes the Euclidean norm in �n, and Θ

and Ψ are known positive constants.

Definition 1 Consider the non-autonomous centrifu-
gal flywheel governor system described by (2). If there
exists a constant T = T (x(0)) > 0, such that
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Fig. 2 Strange attractors of
the chaotic centrifugal
flywheel governor system

lim
t→T

∥∥x(t)
∥∥ = 0 (4)

and ‖x(t)‖ ≡ 0 if t ≥ T , then the chaos suppression
of the non-autonomous centrifugal flywheel governor
system (2) is achieved in a finite time.

The main objective of this paper is that for the non-
autonomous centrifugal flywheel governor system (2)
with unknown parameters an adaptive control law u(t)

is designed such that the chaos of the system is sup-
pressed in finite time.

3 Design procedure of adaptive finite-time control
scheme

In this section, an adaptive finite-time controller is
designed to suppress the chaos of the chaotic non-
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autonomous centrifugal flywheel governor system (2)
with unknown parameters. First, appropriate adapta-
tion laws are derived to estimate the unknown parame-
ters. Then, suitable adaptive control laws are proposed
to stabilize the closed-loop system in a given finite
time. Finally, the finite-time convergence and stabil-
ity of the proposed control scheme are proved via the
Lyapunov stability theory.

Lemma 1 ([30]) Assume that a continuous, positive-
definite function V (t) satisfies the following differen-
tial inequality:

V̇ (t) ≤ −cV ξ (t) ∀t ≥ t0, V (t0) ≥ 0 (5)

where c > 0,0 < ξ < 1 are two constants. Then, for
any given t0,V (t) satisfies the following inequality:

V 1−ξ (t) ≤ V 1−ξ (t0) − c(1 − ξ)(t − t0), t0 ≤ t ≤ t1

(6)

and V (t) ≡ 0,∀t ≥ t1 with t1 given by

t1 = t0 + V 1−ξ (t)

c(1 − ξ)
(7)

Lemma 2 For a1, a2, . . . , an ∈ �, the following in-
equality holds:

|a1| + |a2| + · · · + |an| ≥
√

a2
1 + a2

2 + · · · + a2
n (8)

This result is quite straightforward and the proof is
omitted here.

In order to guarantee the finite-time chaos suppres-
sion of the chaotic non-autonomous centrifugal fly-
wheel governor system (2), suitable control laws are
proposed as follows:

u1(t) = −x1 − (
θ̂1 + θ̂2x

2
3

)
sinx1 cosx1 + θ̂3 sinx1

+ θ̂4x2 − μ
(
Θ + Ψ + ‖θ̂‖ + ‖ψ̂‖)

×
(

x2

‖x‖2
+ x2

1

x2‖x‖2

)
− η1

|x1|
x2

− η2 sgn(x2)

u2(t) = −ψ̂1 cosx1 − ψ̂2 sgn(x3)

− μ
(
Θ + Ψ + ‖θ̂‖ + ‖ψ̂‖)

(
x3

‖x‖2

)

− η3 sgn(x3)

(9)

where θ̂ = [θ̂1, θ̂2, θ̂3, θ̂4]T and ψ̂ = [ψ̂1, ψ̂2]T are es-
timations for unknown parameters θ and ψ , respec-
tively, μ = min{ηi}, i = 1,2,3, ηi > 0, i = 1,2,3 is a

constant gain, sgn(.) is the sign function, if x2(t) = 0

then
x2

1
x2‖x‖2 = 0 and if x(t) = 0 then x3

‖x‖2 = x2
‖x‖2 = 0.

To tackle the unknown parameters, the following
adaptation laws are proposed:

˙̂
θ1(t) = x2 sinx1 cosx1, θ̂1(0) = θ̂10

˙̂
θ2(t) = x2x

2
3 sinx1 cosx1, θ̂2(0) = θ̂20

˙̂
θ3(t) = −x2 sinx1, θ̂3(0) = θ̂30

˙̂
θ4(t) = −x2

2 , θ̂4(0) = θ̂40

˙̂
ψ1(t) = x3 cosx1, ψ̂1(0) = ψ̂10

˙̂
ψ2(t) = |x3|, ψ̂2(0) = ψ̂20

(10)

where θ̂10, θ̂20, θ̂30, θ̂40, ψ̂10 and ψ̂20 are the initial val-
ues of the adaptation parameters θ̂1, θ̂2, θ̂3, θ̂4, ψ̂1 and
ψ̂2, respectively.

Theorem 1 If the non-autonomous centrifugal fly-
wheel governor system (2) with fully unknown parame-
ters is controlled by the control laws (9) with the adap-
tation laws (10), then the system trajectories will con-
verge to zero in finite time and the chaotic behavior of
the system will be suppressed.

Proof Choose a positive-definite Lyapunov function
in the form of

V (t) = 1

2

(‖x‖2 + ‖θ̂ − θ‖2 + ‖ψ̂ − ψ‖2) (11)

Taking the time derivative of V (t), one has

V̇ (t) =
3∑

i=1

[xi ẋi] + (θ̂ − θ)T
˙̂
θ + (ψ̂ − ψ)T

˙̂
ψ (12)

Inserting ẋi from (2) into the above equation, yields

V̇ (t) = x1x2 + x2
((

e + n2x2
3

)
sinx1 cosx1

− (e + g/l) sinx1 − bx2 + u1(t)
)

+x3
(
(α cosx1 − F)/I − a sinwt + u2(t)

)

+ (θ̂ − θ)T
˙̂
θ + (ψ̂ − ψ)T

˙̂
ψ (13)

Knowing that all the parameters of the centrifugal fly-
wheel governor system are positive [20], one obtains

V̇ (t) ≤ x1x2 + x2
((

e + n2x2
3

)
sinx1 cosx1

− (e + g/l) sinx1 − bx2 + u1(t)
)

+x3
(
α cosx1/I + u2(t)

) + |x3|(F/I + a)

+ (θ̂ − θ)T
˙̂
θ + (ψ̂ − ψ)T

˙̂
ψ (14)
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Fig. 3 State trajectories of
the controlled centrifugal
flywheel governor system

Using θT ˙̂
θ = ex2 sinx1 cosx1 +n2x2x

2
3 sinx1 cosx1 −

(e + g/l)x2 sinx1 − bx2
2 and ψT ˙̂

ψ = ax3 cosx1/I +
(F/l + a)|x3|, we have

V̇ (t) ≤ x1x2 + x2u1(t) + x3u2(t) + θ̂ T ˙̂
θ + ψ̂T ˙̂

ψ

(15)

Introducing control inputs u1(t) and u2(t) from (9)
into the right-hand side of the above inequality, one
has

V̇ (t) ≤ x1x2 + x2

(
−x1 − (

θ̂1 + θ̂2x
2
3

)
sinx1 cosx1

+ θ̂3 sinx1 + θ̂4x2 − μ
(
Θ + Ψ + ‖θ̂‖ + ‖ψ̂‖)

×
(

x2

‖x‖2
+

(
x2

1

x2‖x‖2

))

−η1
|x1|
x2

− η2 sgn(x2)

)

+x3

(
−ψ̂1 cosx1 − ψ̂2 sgn(x3)

−μ
(
Θ + Ψ + ‖θ̂‖ + ‖ψ̂‖)

(
x3

‖x‖2

)

−η3sgn(x3)

)
+ θ̂ T ˙̂

θ + ψ̂T ˙̂
ψ (16)

Using θ̂ T ˙̂
θ = θ̂1x2 sinx1 cosx1 + θ̂2x2x

2
3 sinx1 ×

cosx1 − θ̂3x2 sinx1 − θ̂4x
2
2 , ψ̂T ˙̂

ψ = ψ̂1x3 cosx1 +
ψ̂2|x3|, (

x2
1

‖x‖2 ) + (
x2

2
‖x‖2 ) + (

x2
3

‖x‖2 ) = 1 and xsgn(x) =
|x|, one can obtain

V̇ (t) ≤ −η1|x1| − η2|x2| − η3|x3|
−μ

(
Θ + Ψ + ‖θ̂‖ + ‖ψ̂‖) (17)

Based on Lemma 2, we have

V̇ (t) ≤ −μ‖x‖ − μ
(
Θ + Ψ + ‖θ̂‖ + ‖ψ̂‖) (18)

By Lemma 2, Assumption 1 and since ‖θ̂ − θ‖ ≤
‖θ̂‖ + ‖θ‖ ≤ ‖θ̂‖ + Θ and ‖ψ̂ − ψ‖ ≤ ‖ψ̂‖ + ‖ψ‖ ≤
‖ψ̂‖ + Ψ are always satisfied, we have

V̇ (t) ≤ −μ
(‖x‖ + ‖θ̂ − θ‖ + ‖ψ̂ − ψ‖)

= −√
2μ

(
1

2

(‖x‖2 + ‖θ̂ − θ‖2 + ‖ψ̂ − ψ‖2)
) 1

2

= −√
2μV

1
2 (t) (19)

Therefore, from Lemma 1, the system trajectories
x(t) will converge to zero in the finite time T =√

2
μ

( 1
2 (‖x(0)‖2 + ‖θ̂ (0) − θ‖2 + ‖ψ̂(0) − ψ‖2))

1
2 .

Hence the chaotic behavior of the non-autonomous
centrifugal flywheel governor system (2) will be sup-
pressed in finite time. Thus the proof is achieved com-
pletely. �

4 Numerical simulations

In this section, some numerical simulations are pre-
sented to validate the robustness and feasibility of the
proposed finite-time controller in chaos suppression
of the uncertain chaotic non-autonomous centrifugal
flywheel governor system. The simulations are done
using the MATLAB software. The parameters n = 3,
l = 1.5, a = 0.8, w = 1, e = 0.3, b = 0.4, I = 1.2,
α = 0.611, F = 0.3 and g = 9.8 are selected in the
simulation to ensure the existence of chaos for the cen-
trifugal flywheel governor system [20]. The parame-
ters’ bounds Θ and Ψ are chosen equal to 10 and 2,
respectively. The initial values of the system are cho-
sen as x1(0) = 0.6, x2(0) = 0.7 and x3(0) = 0.15. The
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Fig. 4 Time responses of
the adaptation vector
parameter θ̂

Fig. 5 Time responses of
the adaptation vector
parameter ψ̂

initial values of both adaptation vector parameters θ̂

and ψ̂ are all set to 1. All the constant gains η1, η2 and
η3 are chosen equal to 1.

State trajectories of the uncertain chaotic non-
autonomous centrifugal flywheel governor system (2)
are depicted in Fig. 3, where the control inputs are ac-
tivated at t = 5 s. It can be seen that the system trajec-
tories converge to zero quickly. This means that with
applying the proposed adaptive controller, the non-
autonomous centrifugal flywheel governor system (2)
with unknown parameters is stabilized in a finite time
and the closed-loop system is not chaotic anymore,
and, therefore, there is no strange attractor. The time
histories of the adaptation vector parameters θ̂ and ψ̂

are shown in Figs. 4 and 5, respectively. Obviously, all
adaptation parameters converge to some constants.

5 Conclusions

The problem of finite-time chaos suppression of rota-
tional machine systems is studied in this paper. It is

assumed that the parameters of the system are com-
pletely unknown in advance. To tackle the system
unknown parameters, proper adaptation laws are de-
signed. Using the Lyapunov stability theory and adap-
tation parameters, a finite-time adaptive controller is
proposed. Numerical simulations reveal that the pro-
posed controller works well for the finite-time chaos
suppression of the chaotic non-autonomous centrifu-
gal flywheel governor system, even when the system
parameters are fully unknown. To note, the results of
this paper are of practical utility to designers of rota-
tional machines.
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