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Abstract In this work, we deal with a micro elec-
tromechanical system (MEMS), represented by a
micro-accelerometer. Through numerical simulations,
it was found that for certain parameters, the system
has a chaotic behavior. The chaotic behaviors in a frac-
tional order are also studied numerically, by historical
time and phase portraits, and the results are validated
by the existence of positive maximal Lyapunov expo-
nent. Three control strategies are used for controlling
the trajectory of the system: State Dependent Riccati
Equation (SDRE) Control, Optimal Linear Feedback
Control, and Fuzzy Sliding Mode Control. The con-
trols proved effective in controlling the trajectory of
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the system studied and robust in the presence of para-
metric errors.

Keywords Optimal control · SDRE control · Fuzzy
sliding mode control · Chaos · MEMS · Fractional
order

1 Introduction

It is well known that microelectromechanical sys-
tems (MEMS) are small integrated devices or systems,
which combine both electrical and mechanical compo-
nents.

MEMS, are a new technology, which exploits exist-
ing databases to create complex machines, with sizes
of micrometers; these machines have many functions,
including sensing and actuation.

Currently, a great deal of research has been per-
formed to report nonlinear dynamic phenomena in
MEMS resonators [1–3].

We remarked that nonlinearities, in MEMS, includ-
ing nonlinear springs and damping mechanisms [4],
nonlinear resistive, inductive and capacitive circuit el-
ements [5] and nonlinear surface, fluid, electric, and
magnetic forces [6].

Nonlinearities also may lead to chaotic behav-
iors [7].

The work done by [8], predicted the existence of
chaotic motion in electrostatic MEMS. The appear-
ance of chaotic motion, was also reported in [9, 10].
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To reduce the chaotic movement to a stable orbit, an
optimal linear feedback control was used in [11], ro-
bust adaptive fuzzy control in [12], and fuzzy sliding
mode control design in [13].

In this paper, we characterized the chaotic behavior
of a MEMS system, and also consider the fractional
order approach.

The main goal of this work was to control the
chaotic behavior of the considered system, into a sta-
ble orbit, which was obtained by the method of mul-
tiple scales, and consider three nonlinear control tech-
niques: the State Dependent Riccati Equation (SDRE)
Control, Optimal Linear Feedback Control, and Fuzzy
Sliding Mode Control.

Fractional calculus, although it has a long history,
its applications to physics and engineering, are just a
recent focus of interesting.

More recently, many investigations are devoted to
dynamics of fractional order dynamical systems [14–
18]. In [14]; it is shown that the fractional order in
Chua’s circuit can produce a chaotic attractor. In [15],
it is shown that non-autonomous Duffing systems of
fractional order can still behave in a chaotic regime.
In [16], the chaotic dynamics of the fractional Lorenz
system was shown. In [17], it was shown that modified
Duffing systems of fractional order also has chaotic
behavior.

The SDRE strategy has become very popular
within the control community over the last decade.
This method, first proposed by [19] and later expanded
by [20], was independently studied by [21] and also
used by [22]. The method, entails factorization (that
is, parameterization) of the nonlinear dynamics, into
the state vector and the product of a matrix valued
function, which depends on the state itself. The SDRE
strategy is an effective algorithm for synthesizing non-
linear feedback controls, by allowing nonlinearities,
in the system states while additionally offering great
design flexibility through state-dependent weighting
matrices [23].

The Optimal Linear Feedback Control was pro-
posed by [24]. In [24], the nonquadratic nonlinear Lya-
punov function was proposed to solve the optimal non-
linear control design problem for a nonlinear system.
Being formulated, the linear feedback control strate-
gies for nonlinear systems, asymptotic stability of the
closed-loop nonlinear system guaranteeing both sta-
bility and optimality. The theorem formulated by [24],
expresses explicitly the form of minimized functional

and gives the sufficient conditions that allow using
the linear feedback control for nonlinear systems. Re-
cent works, published using the Optimal Linear Feed-
back Control has shown interest in using the control in
MEMS [11], synchronization of chaotic systems [25,
26], control of vehicle suspension [27] and control in
a nonlinear oscillator [28, 29].

This paper also develops a fuzzy sliding mode con-
trol [13, 30–32] as a methodology to control chaos
in MEMS. Firstly, the switching surface, which is re-
quired to achieve chaos control, is specified, and then
a switching control law based on fuzzy linguistic rules
is developed to generate a suitable chatter-free control
signal for driving the error dynamic system such that
the error state trajectories converge asymptotically to
zero [13].

This paper was organized as follows. In Sect. 2, we
obtained the mathematical model of the MEMS sys-
tem and then we carried out numerical simulations to
show its dynamical behavior. In Sect. 3, the chaotic be-
haviors, in the fractional order model, were studied, by
using phase portraits, time history, and the Lyapunov
exponent evaluation. In Sect. 4, an approximate ana-
lytical solution is obtained of the mathematical model,
obtained in Sect. 2. In Sect. 5, the Optimal Linear
Feedback Control is applied. In Sect. 6, it is applied to
the SDRE control. In Sect. 7, the Fuzzy Sliding Mode
Control is applied. In Sect. 8, we analyzed the robust-
ness of the three controls, according to their sensitiv-
ities to parametric errors. The paper is concluded in
Sect. 9. Finally, we list the bibliographic references.

2 Modelling of micro electromechanical systems

The microelectromechanical system studied in this
work is represented by an electrostatic generator of en-
ergy and can be seen in Fig. 1 (as an example, unde-
served others).

It may be observed that the work done, against the
electrostatic force between the plates, provides energy
harvested [33]. According to [34], the physical sys-
tem represented by Fig. 1, may be considered as a
set of micro-beams. Microbeams have a wide range
of applications, due to their simple geometries, easy
productions, durabilities, and compact area of move-
ments. Microbeams are also widely used in accelera-
tion sensors, inertial navigation units, signal process-
ing, electro, microturbines, weapon fusion, and mass
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Fig. 1 In-plane gap closing [33]

Fig. 2 Micro electromechanical system [34]

storage devices motion detectors, and mechanical fil-
ters for telecommunications [2].

Considering a part of the device of Fig. 1, as con-
sisting of two fixed plates and a movable plate be-
tween them (see Fig. 2), which it is applied a voltage
V (t) composed of a polarization voltage (DC)Vp , and
an alternating voltage (AC)Vi sin(ωt) [34]. The (DC)

voltage applies an electrostatic force on the beam and
usually changes the equilibrium position. The plates
have the function of providing electrodes to form a
capacitor or storage of electrical energy, and provide
elasticity or mechanical strength.

Although the flexible structure has many vibration
modes, this work will be considered the model, with
one degree of freedom, denoted by x(t), the lateral
movement of the front panel mass (m).

It is important to analyze the possible nonlinearities
of the system, described in Fig. 2. It is also important
to find both chaotic and periodic oscillations [11] and
it is necessary, in many cases eliminate the chaotic be-
havior and control the system into to a periodic orbit.

2.1 Mathematical model of micro electromechanical
systems

The governing equations of motion of the plates is
given by

mẍ = −Fk − Fc + Fe (1)

where Fk is the conservative force of the spring, Fc the
damping force of the elastic term, and Fe the electric
force.

We note in Fig. 2 that the distance d between the
fixed and movable plates depends on the position of
both x and d0 (initial distance between the plates).
Whereas the fixed plates have the same characteris-
tics, the amount of total electric energy stored, in the
system, can be obtained from:

W ∗ = ε0

2
V 2A

(
1

d0 − x

)
+ ε0

2
V 2A

(
1

d0 + x

)

= ε0AV 2 d0

d2
0 − x2

(2)

where ε0 is the permittivity of vacuum, A is the plate
area, and V = (Vp + Vi sin(ωt)).

Thus, the electric force Fe is a nonlinear function of
displacement in x and a quadratic function of voltage:

Fe = ∂W ∗

∂x
= 2ε0d0AV 2 x

(d2
0 − x2)2

(3)

The spring stiffness is also a parameter that can be
affected by elastic term phenomena and nonlinearities,
considering these variations Force (Fk) conservative
spring can be represented by:

Fk = k1x + k3x
3 (4)

The force dissipation Fc can be obtained from:

Fc = cẋ (5)
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Fig. 3 (a) Displacement, (b) velocity

Substituting (3), (4), and (5) in (1), we obtain the
equation of motion:

mẍ + k1x + k3x
3 + cẋ = 2ε0d0AV 2 x

(d2
0 − x2)2

(6)

Considering x(0) = x0, ẋ(0) = ẋ0, and defining the
new variables: T = ω0t, u = x

x0
. Equation (10) can be

represented in dimensionless form:

ü + α1u + α3u
3 + bu̇ = βV 2 u

(d2 − u2)2
(7)

where

b = c

mω0
, α1 = k1

mω2
0

, α3 = k3x
2
0

mω2
0

,

β = 2ε0d0A

mω2
0x

4
0

, w = ω

ω0
and d = d0

x0
.

Rewriting (7) in state space:

u̇1 = u2

u̇2 = −α1u1 − α3u
3
1 − bu2 + βV 2 u1

(d2 − u2
1)

2

(8)

Considering the parameters: α1 = 1, α3 = 0.4, β =
69141.6, b = 0.5, d = 25, w = 6.28, Vp = 2, Vi = 10,
u0 = 10, and u̇0 = 5. The displacement and veloc-
ity can be observed in Fig. 3, the phase portrait and
Poincare map in Fig. 4, and Lyapunov exponent in
Fig. 5.

As can be observed in Fig. 5, the considered sys-
tem, has a positive Lyapunov exponent. Evaluating
the these exponents, for T = 104, we obtain: λ1 =
0.985693 and λ2 = −1.485693. The chaotic behavior
also can be observed in the phase portrait, in Fig. 4a
and Poincare map, in Fig. 4b.

3 Dynamic analysis of a fractional-order system

Differential equations may involve Riemann–Liouville
differential operators of fractional-order q > 0, which
generally take the form below [35]:

Dqx(t) = 1

�(η − q)

∫ t

t0

x(η)(u)

(t − u)q−η+1
du (9)

where η is the first integer not less than q . It is easily
proved that the definition is the usual derivatives def-
inition when q = 1. The case 0 < q < 1 seems to be
particularly important. For simplicity and without loss
of generality, in the following, we assume that: t0 = 0,
0 < q < 1.

3.1 Chaos in system with a fractional

In this section, we use the techniques of fractional cal-
culus, to analyze the behavior of the system (5) with
a fractional order. The system (8) is described as fol-
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Fig. 4 (a) Phase portrait, (b) Poincare map

Fig. 5 Lyapunov exponent

lows:

dq1u1

dT q1
= u2

dq2u2

dT q2
= −α1u1 − α3u

3
1 − bu2 + βV 2 u1

(d2 − u2
1)

2

(10)

where 0 < q1, q2 ≤ 1, its order is denoted by q =
(q1, q2) here.

The dynamical behavior of the system, in the frac-
tional order approach, is studied numerically, by using
time history and phase portraits, considering the algo-
rithm proposed by [36].

In Fig. 6, we may observe the results of numerical
simulations, those carried out, considering of q1 = 1
and 0.4 ≤ q2 ≤ 0.9.

In Fig. 7, we can observe the results of numeri-
cal simulations, considering that 0.4 ≤ q1 ≤ 0.9 and
q2 = 1.

In Fig. 8, we can observe the results considering
that 0.4 ≤ q1, q2 ≤ 0.9.

Using the numerical algorithms for the deter-
mination of the largest Lyapunov exponent (λ) of
fractional-order [37], we found that chaos exists in the
fractional-order for the model of MEMS (11).

Analyzing the numerical results, we find chaotic
behavior for: Fig. 6a, q1 = 1, q2 = 0.9, λ = 0.0015;
Fig. 6c, q1 = 1, q2 = 0.7, λ = 0.0016; Fig. 7a, q1 =
0.9, q2 = 1, λ = 0.0022; Fig. 7c, q1 = 0.7, q2 = 1,
λ = 0.0018; Fig. 7d, q1 = 0.6, q2 = 1, λ = 0.0018,
and Fig. 8b, q1 = q2 = 0.8, λ = 0.0015.

4 Analytical approximate solutions obtained
through the perturbation method

The basic idea is to use power series for a small param-
eter, which represents the greatness of a perturbation.
This is a procedure used to obtain analytical solutions
in time. These methods are used to generate an ana-
lytical solution to the problem, that is, an approximate
solution [38].

The approximate solution of (7) can be obtained by
using the methods of perturbation. Considering first
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Fig. 6 Time history and phase portrait for q1 = 1 and 0.4 ≤ q2 ≤ 0.9
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Fig. 6 (Continued)
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Fig. 7 Time history and phase portrait for 0.4 ≤ q1 ≤ 0.9 and q2 = 1
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Fig. 7 (Continued)
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Fig. 8 Time history and phase portrait for 0.4 ≤ q1, q2 ≤ 0.9
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Fig. 8 (Continued)
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the rational substitution of the term of (7): u

(d2−u2)2 ,

by a polynomial function P4(u) = δ0 + δ1u + δ2u
2 +

δ3u
3 + δ4u

4, for −12 ≤ u ≤ 12.
According to [36], one can approximate the two

functions by the least squares method minimizing the
error:

∫ 9

−9

[(
u

(d2 − u2)2

)
− (

P4(u)
)]2

du (11)

Resulting in the following approximation:

u

(d2 − u2)2
= 2.41

(
10−6)u + 1.26

(
10−8)u3 (12)

Substituting (12) in (7), we obtain the following
differential equation:

ü + au + bu̇ + cu3 − ρ1u sin(wT ) − ρ2u sin2(2wT )

−ρ3u
3 sin(wT ) − ρ4u

3 sin2(2wT ) = 0 (13)

where a = 0.3335, b = 0.5, c = 0.3965, ρ1 = 13.3305,
ρ2 = 16.6631, ρ3 = 0.0697, and ρ4 = 0.0871.

Now, we will use the method of multiple scales to
find analytically an approximate analytical solution to
the above governing equation; this is done for a bal-
ance of order as follows. Therefore, the equation is

ü + au + εbu̇ + εcu3 − ερ1u sin(wT )

−ε2ρ2u sin2(2wT ) − ε2ρ3u
3 sin(wT )

−ε2ρ4u
3 sin2(2wT ) = 0 (14)

where ε is the parameter responsible for this bal-
ance [38]. Introducing the scales T0 = T and T1 = εT .
Seeking solutions, in the following way:

u = u0(T0, T1) + εu1(T0, T1) + O
(
ε2) (15)

As the original independent variable (time scale T )
was substituted by independent scales T0 and T1,
derivatives with respect to T should be expressed in
terms of partial derivatives in respect of Tn such that

d

dT
= D0 + εD1 + · · ·

d2

dT 2
= D2

0 + 2εD0D1 + · · ·
(16)

Substituting (15) in (14) and considering the deriva-
tives (16), (14) is represented in the perturbed form:

(
D2

0 + 2εD0D1
)
(u0 + εu1) + a(u0 + εu1)

+ εb(D0 + εD1)(u0 + εu1) + εc(u0 + εu1)
3

− ερ1(u0 + εu1) sin(wT0)

− ε2ρ2(u0 + εu1) sin2(2wT0)

− ε2ρ3(u0 + εu1)
3 sin(wT0)

− ε2ρ4(u0 + εu1)
3 sin2(2wT0) = 0 (17)

Separating the terms in relation with the potential
for ε0 and ε1, we have

ε0 : D2
0u0 + au0 = 0, (18)

ε1 : D2
0u1 + au1 = −2D0D1u0 − bD0u0 − cu3

0

+ ρ1 sin(wT0)u0 (19)

one possible solution for (18) is

u0 = a0 cos(
√

aT0 + β0) (20)

Or in polar form: u0 = Aei
√

aT0 + Āe−i
√

aT0 , where
A = 1

2ake
iβk and Ā is the complex conjugate of A, for

k = 0,1, . . . , n. Substituting (20) in (19), we obtain

D2
0u1 + au1

= (−2iD1A−3cA2Ā−bA+ρ1 sin(wT0)A
)
ei

√
aT0

+ (−2iD1Ā − 3cAĀ2 − bĀ

+ ρ1 sin(wT0)Ā
)
e−i

√
aT0 − cA3e3i

√
aT0

− cĀ3e−3i
√

aT0 (21)

Eliminating the secular terms, (21) is as follows:

D2
0u1 + au1 = − c

4
a3

0 cos(3β0 + 3
√

aT0) (22)

Solving (22) considering the homogeneous solution
and private solution:

u1 = a1 cos(
√

aT1 + β1)

+ c

32a
a3

0 cos(3β0 + 3
√

aT0) (23)
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Fig. 9 (a) Phase portrait for solution with MMS (25), (b) Phase portrait for (7) and analytical solution (25)

Substituting (23) and (20) in (15), we obtain:

u = a0 cos(
√

aT + β0) + ε

[
a1 cos(ε

√
aT + β1)

+ c

32a
a3

0 cos(3β0 + 3
√

aT )

]
(24)

where a0, a1, β0, and β1 are constant and can be ob-
tained considering the initial conditions. Considering
that u(0) = u0 and u̇(0) = u̇0, (24) is in the following
way:

u = a0 cos(
√

aT ) + ε

[
− ca3

0

32a
cos(ε

√
aT )

+ c

32a
a3

0 cos(3
√

aT )

]
(25)

where a0 =
√

u2
0 + u̇2

0.
The phase portrait for the approximate analytical

solution for ε = 10−2 can be observed in Fig. 9a.
In Fig. 9b, it can be observed comparing the phase
portrait of (7), and the approximate analytical solu-
tion (25).

5 Control design, using the optimal linear
feedback control

The objective is to find the optimal control, such that
the response of the controlled system (8) results in a
periodic orbit u∗(t) asymptotically stable.

Considering of the introduction of the control sig-
nal U in the system (8):

u̇1 = u2

u̇2 = −α1u1 − α3u
3
1 − bu2

+ βV 2 u1

(d2 − u2
1)

2
+ U

(26)

where U = ur + ũ, ur is the state feedback control
and ũ is the feedforward control and is the control that
maintains the system in the desired trajectory is given
by

ũ = u̇∗
2 +α1u

∗
1 +α3u

∗3
1 +bu∗

2 −βV 2 u∗
1

(d2 − u∗2
1 )2

(27)

Substituting (27) in (26) and defining the desired
trajectory errors as

e =
[
u1 − u∗

1
u2 − u∗

2

]
(28)

The system (26) can be represented as deviations in
the following way:

ė1 = e2

ė2 = −α1e1 − be2 − α3
[(

e1 + u∗
1

)3 − u∗3
1

]

+ βV 2
{

(e1 + u∗
1)

[d2 − (e1 + u∗
1)

2]2

− u∗
1

(d2 − u∗2
1 )2

}
+ ur

(29)
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The system (29) can be represented in deviation
as

ė = Ae + G
(
e,u∗) + Bur (30)

Or in matrix form:
[
ė1

ė2

]
=

[
0 1

−α1 −b

][
e1

e2

]
+ G

(
e,u∗) +

[
0
1

]
ur (31)

where

G
(
e,u∗) =

[
0

−α3[(e1 + u∗
1)

3 − u∗3
1 ] + βV 2{ (e1+u∗

1)

[d2−(e1+u∗
1)2]2 − u∗

1
(d2−u∗2

1 )2 }
]

(32)

According to [27], if there exist matrices Q and R,
with a positive definite symmetric matrix, such that the
matrix:

Q̃ = Q − GT
(
e,u∗)P − PG

(
e,u∗) (33)

is positive definite for the limited matrix G(e,u∗) then
the control ur is optimal and transfers the nonlin-
ear systems (29) from any initial state to final state
e(∞) = 0.

Minimizing the functional:

J =
∫ ∞

0

(
eT Q̃e + uT

r Rur

)
dt (34)

The control ur can be found by solving the equa-
tion:

ur = −R−1BT Pe = −Ke (35)

Being the symmetric matrix P and can be found
from the algebraic Riccati equation:

PA + AT P − PBR−1BT P + Q = 0 (36)

In addition, with the feedback control (35), there
exists a neighborhood �0 ⊂ �, � ⊂ �n, of the ori-
gin such that if e0 ∈ �0, the solution e(T ) = 0, T ≥ 0,
of the controlled system (30) is locally asymptotically
stable, and Jmin = eT

0 Pe0. Finally, if � = �n, then
the solution e(T ) = 0, T > 0, of the controlled sys-
tem (30) is globally asymptotically stable [25].

What can be demonstrated considering to the dy-
namic programming rules one knows that if the min-
imum of functional (35) exists and if V is a smooth
function of the initial conditions, then it satisfies the
Hamilton–Jacobi–Bellman equation [25]:

min
u

(
dV

dT
+ eT Q̃e + uT

r Rur

)
= 0 (37)

Considering a function,

V = eT P e (38)

Substituting V̇ in the Hamilton–Jacobi–Bellman
equation (37), one obtains

eT
[
AT P + PA − PBR−1BT P

+ GT
(
e,u∗)P + PG

(
e,u∗) + Q̃

]
e = 0 (39)

Then: Q̃ = Q − GT (e,u∗)P − PG(e,u∗). Note
that for positive definite matrices Q̃ and R, the deriva-
tive of the function (38) is given by V̇ = −eQ̃e −
uT

r Rur , is negative definite. Then the function (38) is
Lyapunov function, and the controlled system (30) is
locally asymptotically stable. Integrating the deriva-
tive of the Lyapunov function (39) given by V̇ =
−eQ̃e − uT

r Rur along the optimal trajectory, we ob-
tain Jmin = eT

0 Peo. Finally, if � = �n, global asymp-
totic stability follows as a direct consequence of the
radial unbondedness condition for the Lyapunov func-
tion (38) V (e) → ∞ as ‖e‖ → ∞ [25].

According to [27] to analyze the cases in which the
matrix Q̃ is analytically very difficult, it is possible to
analyze numerically considering the function:

L(T ) = eT (T )Q̃(T )e(T ) (40)

Calculated on the optimal debt trajectory, L(T ) is
positive definite for any time interval, then the matrix
Q̃ is defined positive.

5.1 Application of the optimal linear feedback
control

The matrix A and matrix B of the system (29) are rep-
resented by:

A =
[

0 1
−1 −0.5

]
, B =

[
0
1

]
(41)
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Fig. 10 (a) Displacement of u1. (b) Phase portrait

and defining

Q =
[

2000 0
0 2

]
, R = [0.0001] (42)

using the Matlab function “LQR,” we obtain

p =
[

76.0821 0.4471
0.4471 0.0169

]
,

K = [4471.1360 169.6250 ]
(43)

Substituting K in (35), we obtain the control:

u = −4471.1360e1 − 169.6250e2 (44)

Defining desired u∗(t) trajectory with the solution
obtained in (25). The displacement can be observed
in Fig. 10a, and the phase portrait shown in Fig. 10b,
considering the application of the control U in (26),

and the following substitution:
[ u1

u2

] = [ e1+u∗
1

e2+u∗
2

]
.

How it can be observed in Fig. 10, control U carried
the system (26) for the desired orbit (25). In Fig. 11, it
can be observed the value of L(t) calculated numeri-
cally [39].

In Fig. 11, it can be observed that L(T ) remained
positive until the moment e → 0, demonstrating that
the control (44) is optimal and that the matrix Q̃ is
positive definite.

Fig. 11 Function L(T ) numerically calculated

6 Control project, using of SDRE control

The SDRE method is used to determine the control
signal being applied to the control system in the de-
sired orbit. The dynamic system defined by (8) can be
parameterized in first-order equations and written in
the state-dependent coefficient (SDC) form [40]:

u̇ = f (u) + B(u)us

y = S(u)u
(45)

where the vector u = [u1 u2]T represents the system
state-dependent time, u̇ ∈ R2 is the vector of first or-
der time derivatives of the state, us ∈ Us ∈ R is the
control function, and Us is the control constraint set.
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This system represents the constraints from the non-
linear regulator problem, together with u(T0) = u0 and
u(∞) = 0, respectively, the initial and final conditions.

The state u and the control us is given by f (u) =
A(u)u and d(u) = S(u)u [33]. It is assumed that
f (0) = 0, which implies that the origin is an equilib-
rium point.

A state feedback rather that output feedback is
adopted to enhance the control performance. The non-
quadratic cost function for the regulator problem is
given by

J =
∫ ∞

0

(
uT Q(u)u + uT

s R(u)us

)
dt (46)

where Q(u) is semipositive-definite matrix and R(u)

positive definite. There are weighting matrices on the
outputs and control inputs, respectively. For a point-
wise linear fashion, there matrices are assumed with
constant coefficients.

Assuming full state feedback, the control law is
given by

us = −R−1(u)BT (u)P (u) = −K(u)u (47)

The estate-dependent Riccati equation to obtain
P(u) is given by

AT (u)P (u) + P(u)A(u)

− P(u)B(u)R−1(u)BT (u)P (u) + Q(u) = 0 (48)

In the neighborhood � about the origin the SDRE
method guarantees a closed-loop solution, local
asymptotic stability. In the scalar case, the SDRE
method reaches the optimal solution of the feedback
regulator problem performance index (46), even when
Q and R are functions of u [16].

The SDRE nonlinear feedback controller satisfies
the first and the second necessaries conditions for op-
timality, H = 0 (H is the Hamiltonian from the prob-
lem (45), (46) and λ̇ = −Hu). λ = P(u)u are the co-
state trajectories, and P(u) is the solution of the Ric-
cati equation (48).

The Hamiltonian for the optimal control problem is
given by

H(u,us, λ) = 1

2

(
uT Qu + uT

s Rus

)

+ λT
(
A(u)u + B(u)us

)
(49)

From the Hamiltonian, the necessary conditions for
the optimal control are found to be [41]

λ̇ = −Qu − 1

2

[
∂(A(u)u)

∂u

]T

λ −
[
∂(B(u)us)

∂u

]T

λ

ẋ = A(u)u + B(u)us

0 = Rus + B(u)λ

(50)

Since

us = −R−1(u)BT (u)λ (51)

From the costate assumption, we know that

λ = P(u)u (52)

Substituting (51) into (52) yields the SDRE con-
troller (47). The system (45) is pointwise controllable
and observable, for a region in neighborhood � about
the origin. For controllability, this mean [B...AnB]
from the static problem: u̇ = Au + Bus , in this neigh-
borhood. The SDRE method considers a solution for
this static pointwise problem, for a small time interval,
and obtains a suboptimal solution for dynamic control
problem [41].

6.1 Application of the state-dependent Riccati
equation (SDRE) control

Writing (8) in form (45):

u̇ =
[

0 1

−α1 − α3u
2
1 + βV 2

(d2−u2
1)

2 −b

][
u1

u2

]
+

[
0
1

]
us

(53)

The matrix A and matrix Bare represented by

A =
[

0 1

−α1 − α3u
2
1 + βV 2

(d2−u2
1)

2 −b

]
, B =

[
0
1

]

(54)

The Riccati equation was solved using the Matlab
function “LQR,” defining desired u∗(t) trajectory with
the solution obtained in (25).

The displacement can be seen in Fig. 12a, and the
phase portrait shown in Fig. 12b, considering the ap-
plication of the control (47) in (53), using the matrices
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Fig. 12 System (10) with control (47). (a) Displacement. (b) Phase portrait

A and B (54), the matrices Q and R (42), and the fol-

lowing substitution:
[ u1

u2

] = [ e1+u∗
1

e2+u∗
2

]
.

How it can be observed in Fig. 12, control us car-
ried the system (53) for the desired orbit (25).

7 Fuzzy sliding mode control technique

Consider (26) of the form:

u̇1 = u2

u̇2 = −α1u1 − α3u
3
1 − bu2

+ βV 2 u1

(d2 − u2
1)

2
+ Uf s

(55)

where Uf s = uf r + uf s, uf r is the feedforward con-
trol and uf s fuzzy sliding mode control.

Then the dynamic equations of these errors (28) can
be obtained as

ė1 = e2

ė2 = −α1
(
e1 + u∗

1

) − α3
(
e1 + u∗

1

)3

− b
(
e2 + u∗

2

) + βV 2 (e1 + u∗
1)

(d2 − (e1 + u∗
1))

2
+ Uf s

(56)

The sliding mode control field, the sliding surface is
generally taken to be [13, 42]:

s = e2 + λe1 (57)

The existence of the sliding mode requires the fol-
lowing conditions to be satisfied [13, 42]:

{
s = e2 + λe1 = 0

ṡ = ė2 + λė1 = 0
(58)

Therefore, the uf r control law is given by

uf r = −λe2 + α1
(
e1 + u∗

1

) + α3
(
e1 + u∗

1

)3

+ b
(
e2 + u∗

2

) − βV 2 (e1 + u∗
1)

(d2 − (e1 + u∗
1))

2
(59)

where λ represents a real number.
Equation (57) defines the output of the sliding

mode control controller, while the reaching law is
given by

uf s = kf uf (60)

where kf is a normalization factor of the output vari-
able and uf is the fuzzy control, and is determined in
accordance with the normalized outputs of the sliding
mode control, s and ṡ.

Figure 13 shows the membership functions of the
input linguistic variables (s and ṡ) and the output lin-
guistic variable (uf ), respectively.

The fuzzy control rules are represented by the map-
ping of the input linguistic variables s and ṡ, to an out-
put linguistic variable uf .

Table 1 shows the corresponding fuzzy rule table.



1854 A.M. Tusset et al.

Fig. 13 Membership functions of the input–output variables for fuzzy sliding mode control [13]

Fig. 14 System (10) with control (59). (a) Displacement. (b) Phase portrait

Table 1 The corresponding
fuzzy rule [13, 30] s

uf PB PM PS ZE NS NM NB

ṡ PB NB NB NB NB NM NS ZE

PM NB NB NB NM NS ZE PS

PS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

NS NM NS ZE PS PM PB PB

NM NS ZE PS PM PB PB PB

NB ZE PS PM PB PB PB PB

Considering the controls (59) and (60), we have

Uf r = −λe2 + α1
(
e1 + u∗

1

)
+ α3

(
e1 + u∗

1

)3 + b
(
e2 + u∗

2

)

− βV 2 (e1 + u∗
1)

(d2 − (e1 + u∗
1))

2
+ kf uf (61)

Let the Lyapunov function of the system, be defined
as V = 1

2 s2.
The first derivative of this system with respect to

time can be expressed as

V̇ = sṡ = s[ė2 + λė1]
= s

[
α1

(
e1 + u∗

1

) − α3
(
e1 + u∗

1

)3 − b
(
e2 + u∗

2

)
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Fig. 15 Error for uncertainty in parameters. (a) Optimal linear feedback control, (b) SDRE control, (c) Fuzzy sliding mode control

+ βV 2 (e1 + u∗
1)

(d2 − (e1 + u∗
1))

2

+ ueq + kf uf + λe2

]

= s[kf uf ] ≤ −kf |s| (62)

If kf > 0 is selected, then the reaching condition
(sṡ < 0) is always satisfied. Therefore, the system (10)
can be stabilized to a desired trajectory u∗(t) [13, 30].

Defining desired u∗(t) trajectory with the solution
obtained in (23), λ = 4, kf = 4, considering the appli-
cation of the control (61) and the following substitu-

tion:
[ u1

u2

] = [ e1+u∗
1

e2+u∗
2

]
. The displacement can be seen in

Fig. 14a, and the phase portrait shown in Fig. 14b.

8 The effect of parameter uncertainties on the
control strategies

To consider the effect of the parameter uncertainties
on the performance of the controller they are added to
the state. The nominal values of parameters are stated
above.

The real unknown parameters of system are sup-
posed to be as follows: ᾱ1 = 0.8 + 0.4r(t), ᾱ3 =
0.32 + 0.16r(t), β̄ = 55313.4 + 27656.64r(t), b̄ =
0.4+0.2r(t), d̄ = 20+10r(t), w̄ = 5.024+2.496r(t),
V̄p = 1.6+0.8r(t), and V̄i = 8+4r(t), where r(t) are
normally distributed random functions.

Numerical simulation results are shown in Fig. 15.



1856 A.M. Tusset et al.

This figure shows the robustness of the used meth-
ods when the systems parameters have random uncer-
tainties.

9 Conclusions

By analysis of the MEMS vibrating system, which is
studied here, has chaotic behavior, includes the case
of fractional order. The total orders of the system for
the existence of chaos are: q1 = 1, q2 = 1, q1 = 1,
q2 = 0.9, q1 = 1, q2 = 0.7, q1 = 0.9, q2 = 1, q1 = 0.7,
q2 = 1, q1 = 0.6, q2 = 1, and q1 = q2 = 0.8.

The two control strategies (Optimal Linear Feed-
back, SDRE, and Fuzzy Sliding Mode controls) were
used, controlling of the chaotic trajectory to a desired
orbits, obtained from the application of the method of
multiple scales. A comparison of the obtained results
showed that both controls were efficient. The controls
presented may be used for different physical models.
An interesting contribution of these controls is that
they do not need linearization or lose the nonlinear-
ity of the considered systems and show the robustness
of the controls when the systems parameters have ran-
dom uncertainties.
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