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Abstract The phenomenon that the stable smooth
grinding process coexists with chatter vibrations with
large amplitudes in a cylindrical plunge grinding pro-
cess is investigated in this paper. In the analyzed dy-
namic model, the workpiece and the grinding wheel
involved in the grinding process are regarded as a
slender hinged-hinged Euler–Bernoulli beam and a
damped spring mass system, respectively, and the con-
tact force between the two is treated as the main fac-
tor that affects the dynamic behaviors of the process.
Called regenerative force, the contact force represents
the interaction with regenerative effects between the
workpiece and the wheel. To clarify the relation be-
tween the force and the dynamical behaviors in the
grinding process, all the effects of the system param-
eters related to the interaction, such as the grinding
stiffness, the rotation speeds of the workpiece and the
wheel, on the dynamic motions of the process are stud-
ied. To this end, the eigenvalues analysis is firstly car-
ried out to find the chatter-free-region, in which the
smooth grinding process is stable and the chatter vi-
bration may be absent. And then the nonlinear chat-
ter vibrations when the values of concerned parameter
leave the chatter-free region are predicted numerically.
It is interesting that both the supercritical and subcrit-
ical Hopf bifurcations are found on the same bound-
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ary of the chatter-free region. As we know, there must
be a zone in the chatter-free region where the stable
smooth grinding process coexists with the chatter vi-
bration when the subcritical one arises and the switch-
ing point between the supercritical and the subcriti-
cal ones is a Bautin bifurcation point mathematically.
Thus, the Bautin bifurcation analysis is performed to
scan the subregion in which the smooth grinding pro-
cess is not unconditional stable anymore.

Keywords Plunge grinding · Regenerative chatter ·
Continuation algorithm · Bautin bifurcation

1 Introduction

Grinding craft is a historic powerful machining pro-
cess which has been widely used in surface finish for
its high precision. However, the grinding performance
is still restricted by some unsolved problems [1], such
as chatter vibrations. Called regenerative chatter, this
is a kind of vibration with high frequency usually oc-
curring in the machining process. The onset of the
chatter in the grinding process will cause bad sur-
face finish and poor precision, which are both the
main objectives of this craft [2]. To clarify the mech-
anism of the chatter and suppress this vibration, many
researches had been performed by mechanical engi-
neers at universities or in industry [3]. There was a
time when the negative damping was regarded as the
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source of the chatter, but nowadays, it is widely ac-
cepted that the chatter is a self-excited vibration in-
duced by the force-displacement interactions [4]. Sim-
ilar to the metal cutting and milling processes, the in-
teraction between the workpiece and the tool involves
the so-called regenerative effects. When the machine
is started, the surface of the workpiece generated by
the tool on the pass becomes the upper surface of the
chip on the subsequent pass [5], and the same phe-
nomenon also exists on the surface of the tool when
it comes to the grinding process [6]. To study the re-
lation between the regenerative effect and the onset
of the chatter, many excellent researches were carried
out.

In 1946, Arnold did a lot of experimental works
to observe the chatter in turning process, and then
he first described the regenerative effects in his re-
port [7]. After the regenerative theory had been ac-
cepted, some researchers started to introduce this con-
cept into the researches on grinding chatter. Besides
experimental works [8, 9], some theoretical and nu-
merical researches also had been done to study the re-
generative chatter in the grinding process. Hahn did
the first theoretical study on the chatter in a grind-
ing process [10], in which the wheel was assumed
to be wear-resistant and only the regeneration on the
workpiece surface was considered. This study was per-
formed theoretical by Laplace transform and Nyquist
diagram, and the stability information of the grinding
process was obtained. Taking a further step, Thomp-
son proposed a new method to analyze the stability
of the steady-state response of the grinder in a grind-
ing process with doubly regenerative effects [11]. His
method involved a so-called amplitude growing rate
which was adopted as an index to predict the grinding
stability. Based on this theory, he successively pub-
lished a series of papers [12–15] to discuss the ef-
fects of different factors, such as grinding stiffness,
wave filtering, and the rotational speeds of the work-
piece and the grinding wheel, on the grinding stabil-
ity. However, the expression of the regenerative force
considered in his model was assumed to be a sinusoid
function. This assumption may cause the loss of the
interactive information, thus the relation between sys-
tem parameters and dynamic behaviors cannot be re-
vealed thoroughly. Since the chatter-free or the stable
smooth grinding process is always needed to obtain a
good surface quality, it is important to clarify the ef-
fects of the parameter values on the dynamic motions

of the grinding process and avoid the choice of the bad
values which may incur the chatter vibrations. To this
end, Yuan et al. proposed a nonlinear five-DOF system
to model and study the grinding process [16]. The nor-
mal and shear contact force considered in this model
were assumed to be proportional to the total penetra-
tion of the grindstone. Although the phenomenon that
the rotation speed can affect the system behaviors was
found in their work, the information revealed by their
results was still limited since the employed method
is only numerical simulations. Three years later, they
carried out a theoretical study on this topic [17], but
only the regeneration on the workpiece surface was
considered for simplicity, because it is hard to analyze
a system with two distinct time delays introduced by
the doubly regenerations. Thus, the results of this work
may still not be persuadable enough since the regener-
ation also exists on the wheel surface. Recently, Liu
et al. did some researches on the stability and chat-
ter motions in a transverse grinding process [18, 19].
The stability information was obtained by Liu through
a numerical method which is based on the labeling
of a bound region in the complex plane [18], and
then he cooperated with Chung to study the nonlinear
chatter motions [19] through a so-called perturbation-
incremental scheme [20–22].

It is known that theoretically analyzing the linear
stability of systems with multiple delays is next to
impossible. Although Campbell did some excellent
works on theoretically estimating the stability bound-
ary of a system with multiple delays [23], but the re-
sults were not accurate enough for further chatter mo-
tion prediction and the analysis method was not easy
to be applied in other analysis. Instead of theoretical
analysis, the stability information can also be obtained
via numerically calculating the right most eigenval-
ues [18]. When one group of the critical eigenval-
ues and parameters where the real parts of the right
most eigenvalues equal zero [18, 19] is obtained, the
continuation algorithm [24] can be employed to find
the profile of the chatter-free region in the parame-
ter space. Moreover, this algorithm had already been
integrated into a freely available software package
DDEBIFTOOL [25, 26], which can be used to ana-
lyze the stability and predict the periodic motions of
delayed differential equations (DDEs).

In this paper, a cylindrical plunge grinding process
is described by a dynamic model, where the expression
of the regenerative force between the workpiece and
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Fig. 1 Schematic of
cylindrical plunge grinding
process

the wheel is based on Liu’s work [18]. To find the pa-
rameter range in which the grinding process is chatter-
free, we firstly study the linear stability of the trivial
equilibrium of the model which is corresponding to
the smooth grinding process. This analysis is accom-
plished by a numerical method which involves eigen-
values analysis and continuation algorithm. Through
this, the linear critical boundaries in the parameter
space are found, thus the profile of the chatter-free
region is clearly presented. Then the nonlinear bifur-
cation analysis is carried out to predict the chatter mo-
tions when the values of system parameters are leaving
the chatter-free region. It is interesting that both super-
critical and subcritical Hopf bifurcations are found on
one boundary curve. It is known that the subcritical
one will cause the coexistence of stable equilibrium
and periodic motion with large amplitude, and then the
dynamic behaviors of the system will be affected by
the initial conditions. Thus, there exits a range of the
parameters, in which the grinding process might be ei-
ther chatter-free or chatter. We call this zone the con-
ditional chatter-free region. In engineering, this region
is also unavailable since the chatter might be incurred
by any misoperation. To locate this, the Bautin bifur-
cation analysis is carried out numerically with the help
of DDEBIFTOOL [25, 26]. Finally, we point out that
the results from not only the linear analysis but also the
nonlinear analysis must be considered in designing a
chatter-free grinding process.

2 Dynamic model for cylindrical plunge grinding
process

In machining processes, the material in the part sur-
face is gradually removed by tools to help people to

make things. For example, this operation is performed
by abrading the part surface with a wheel in the grind-
ing process. Mostly, the grinding craft is adopted when
the demand for surface quality is high for its high pre-
cision, thus the chatter vibration in this operation is
strictly avoided. To this end, the dynamic motion of
the grinding process is studied by considering the dy-
namic model which is shown in Fig. 1. In this model,
the workpiece is regarded as a damped hinged-hinged
slender Euler–Bernoulli beam rotating at an angular
speed ωw , and the grinding wheel a damped spring
mass system rotating at another angular speed ωg and
moving toward the workpiece at a speed of f per rev-
olution.

At the top-right of Fig. 1, the details of the con-
tact zone are magnified to illustrate the regenerative
effects on the surfaces of both the workpiece and
the wheel. The force between the workpiece and the
wheel is proportional to the current penetrations of
both the wheel and the workpiece owing to the dou-
bly regenerative effects. The depth of the wheel pen-
etration into the workpiece εg is the difference be-
tween the current and previous positions of the wheel
xg(t) − xg(t − τg) + f , and the depth of the work-
piece penetration εw is xw(t) − xw(t − τw). It is no-
ticed that f is the initial feed from the moving of
the grinding-wheel-rack and xg(t) is the position of
the wheel with respect to the rack. Then the contact
force is expressed as multiplying these penetrations by
a so-called grinding stiffness kc which stands for the
combined effects of many physical factors, such as the
contact width, the material of the workpiece, and the
feed.

The dynamic motions of the grinding process is
governed by
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mgẍg + cgẋg + kgxg = N,

ρA
∂2xw

∂t2
+ cw

∂xw

∂t
+ EI

∂4xw

∂s4

− EA

2L

∂2xw

∂s2

∫ L

0

(
∂xw

∂s

)2

ds = −Nδ(s − l),

⎧⎪⎪⎨
⎪⎪⎩

xw(t,0) = 0,
∂2xw

∂s2
(t,0) = 0,

xw(t,L) = 0,
∂2xw

∂s2
(t,L) = 0,

(1)

where N is the normal regenerative force between the
workpiece and the wheel [18], and it is given by

N = kc(εw + εg)

= kc

[
f + (

xw(t) − xw(t − τw)
)

+ (
xg(t − τg, l) − xg(t, l)

)]
, (2)

where kc is the grinding stiffness. Given the bound-
ary conditions, the displacement of the workpiece is
expanded in sine series

xw(t, s) =
∞∑
i=1

xi(t) sin

(
iπs

L

)
. (3)

In engineering, the first mode of the beam is the most
important one because it is prone to be promoted,
thus only the dynamic behaviors of the first mode will
be discussed in the following analysis. Substituting
Eqs. (2) and (3) into Eq. (1), applying Galerkin pro-
jection and keeping the first, one can obtain

mgẍg + cgẋg + kgxg

= kc

[
f + (

x1(t) − x1(t − τw)
)

sin

(
lπ
L

)

+(
xg(t − τg) − xg(t)

)]
,

ρAL
2 ẍ1 + cw

2L
ẋ1 + EIπ4

2L3 x1 − EAπ4

8L3 x3
1

= −kc

[
f + (

x1(t) − x1(t − τw)
)

sin

(
lπ
L

)

+ (
xg(t − τg) − xg(t)

)]
sin

(
lπ
L

)
.

(4)

Defining a new state vector y = (y1, y2, y3, y4) =
(
xg

H
−p, x1

H
−q,

ẋgT

H
, ẋ1T

H
), where (p, q) is the equilib-

rium point of Eq. (4), and introducing the nondimen-
sional parameters listed as

ξ1 = cg

mg

√
mg

kg

, κ1 = kc

kg

, τ1 = τg

T
, γ = 2mg

LρA
,

ξ2 = cw

L2ρA sin( lπ
L

)

√
mg

kg

,

κ2 = EIπ4mg

L4ρAkg sin( lπ
L

)
+ 3Eπ4q2mg

4L4ρkg sin( lπ
L

)
,

τ2 = τw

T
,

μ2 = 3EH 2π4mgq

4L4ρkg sin( lπ
L

)
, μ3 = EH 2π4mg

4L4ρkg sin( lπ
L

)

(5)

and

q =
3

√√
3
√

27f 2κ2
1μ4

3 + 4κ3
2μ3

3 + 9f κ1μ
2
3

3
√

232/3μ3

−
3
√

2/3κ2

3

√√
3
√

27f 2κ2
1μ4

3 + 4κ3
2μ3

3 + 9f κ1μ
2
3

,

where T = √
mg/kg and H = 0.001(m), one can

transform Eq. (4) into

ẏ(t) = Ay(t) + D1y(t − τ1) + D2y(t − τ2) + f, (6)

where

A =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 − κ1 κ1 −ξ1 0
γ κ1 −γ κ1 − κ2 0 −ξ2

⎞
⎟⎟⎠ ,

f =

⎛
⎜⎜⎝

0
0
0

−μ2x
2
2 − μ3x

3
2

⎞
⎟⎟⎠ ,

D1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
κ1 0 0 0

−γ κ1 0 0 0

⎞
⎟⎟⎠ ,

D2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 −κ1 0 0
0 γ κ1 0 0

⎞
⎟⎟⎠ .

(7)

For simplicity, we let q = 1, or we can adjust f to this
end if not.
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3 Linear chatter criterion

It is seen from Fig. 1 that the trivial equilibrium point
y = (0,0,0,0) represents the smooth grinding pro-
cess, and its stability varies corresponding to the grind-
ing stability. Thus, the stability of the grinding process
can be perceived through analyzing the trivial equilib-
rium point. It is known that the equilibrium is linearly
stable only when the real parts of all the eigenvalues
are negative. Then there must be eigenvalues with real
parts being zero on the boundary of the chatter-free
region in which the smooth grinding process is stable.
Moreover, the critical eigenvalues are pure imaginary
when the chatter vibration is going to take place.

The characteristic equation is computed∣∣λI − A − D1 exp(−λτ1) − D2 exp(−λτ2)
∣∣ = 0, (8)

where | • | is the determinant of •. Substituting Eq. (7)
and λ = ±iω into Eq. (8) and separating the real and
imaginary parts, we obtain

ω4 + ω2(γ κ1 cos(τ2ω) − γ κ1 + κ1 cos(τ1ω)

− κ1 − κ2 − ξ1ξ2 − 1
) + ω

(−γ κ1ξ1 sin(τ2ω)

− κ1ξ2 sin(τ1ω)
) − (

γ κ1 cos(τ2ω)

+ γ κ1 − κ1κ2 cos(τ1ω) + κ1κ2 + κ2
) = 0 (9)

and

ω3(−ξ1 − ξ2) + ω2(κ1
(− sin(τ1ω)

) − γ κ1 sin(τ2ω)
)

+ (
γ κ1 sin(τ2ω) + κ1κ2 sin(τ1ω)

)
+ ω

(−γ κ1ξ1 cos(τ2ω) + γ κ1ξ1 − κ1ξ2 cos(τ1ω)

+ κ2ξ1 + κ1ξ2 + ξ2
) = 0. (10)

Since Eqs. (9) and (10) are transcendental and there is
no proper theoretical method to solve such equations,
we adopt a numerical scheme to achieve the same goal,
locating the chatter-free region.

When a good initial guess is given, one can obtain
a numerical solution of Eqs. (9) and (10) via Newton–
Raphson iteration. Since groups of numerical solu-
tions are needed to present the boundary of the chatter-
free region, we perform the iteration repeatedly, and
the scheme used to give the initial guesses at each step
is the continuation algorithm [25, 26], which is plotted
in Fig. 2.

Fig. 2 Continuation
algorithm
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To clarify the effect of the regenerative force on the
grinding stability, we fixed the values of other physical
parameters, except the grinding stiffness kc and the ro-
tation speeds of the workpiece ωw and the wheel ωg ,
which are related to the regenerative force. As an ex-
ample, a set of the parameters is given and stated in
Table 1, and then the continuation algorithm is started.
Following the algorithm presented in Fig. 2, the lin-
ear critical boundaries of the chatter-free region is ob-
tained and plotted in Fig. 3, where different critical

Fig. 3 Linear critical boundaries in the parameter space

surfaces are distinguished by its grey level. It is shown
that the grinding process is stable when the values
of the system parameters are located under these sur-
faces, and the grinding chatters with different frequen-
cies are about to occur when the values cross each
chatter boundary.

To illustrate the chatter and chatter-free regions,
one selected section (τ1 = 11.81) is plotted in Fig. 4.
When the value of the system parameters is located
in the grey region, the trivial equilibrium point is lin-
early stable, and the corresponding smooth grinding
process is stable, namely it is chatter-free. In the other
respect, the grinding stability will be lost and the chat-
ter vibration will occur when the parameters are leav-
ing the grey region for the white one. It also can be
seen from Fig. 4 that the grinding stability is inde-
pendent of the rotation speeds of the workpiece ωw

and the wheel ωg(where ωw = 2π/τw = 2π/T τ2 and
ωg = 2π/τg = 2π/T τ1) as long as the grinding stiff-
ness is small. Namely, a weak regenerative force is not
enough to promote the chatter vibrations in this pro-
cess. However, the rotation speeds ωw and the ωg must
vary accordingly when one grind some hard material,
where the large contact force is needed, or the value of
the system parameter would be in the white regions,
and thus chatter happens.

Fig. 4 Linear critical
boundaries with τ1 = 11.81

Table 1 Fixed parameters
in this research Parameters Symbols Values (Units)

Mass of the grinding wheel mg 30 (kg)

Damping coefficient of the grinding wheel cg 4.5 × 103 (N·s/m)

Stiffness of the grinding wheel kg 3.0 × 106 (N/m)

Density of the workpiece ρ 8.86 × 103 (kg/m3)

Elastic modulus of the workpiece E 2.34 × 1011 (Pa)

Equivalent damping coefficient of the workpiece c1 9.8 × 103 (N·s/m)

Length of the workpiece L 2 (m)

Cross-section area of the workpiece A 6.91 × 10−3 (m2)
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Fig. 5 Bifurcation
diagrams and time domains,
where points are the stable
solutions and circles are the
unstable solutions.
(1) Supercritical Hopf
bifurcation along arrow A,
(2) Subcritical Hopf
bifurcation along arrow B,
(3) Chatter motion of the
wheel at point I, (4) Chatter
motion with large
amplitude at point II,
(5) Stable smooth grinding
process at point III

4 Nonlinear chatter motions

With the value of the system parameters leaving the
grey region for the white one, the stability of the
smooth grinding process will be lost, and then the
chatter occurs. As examples, the chatter motions are
predicted with the value of the system parameters
varying in the directions of the arrows A and B plot-
ted in Fig. 4, respectively. The numerical prediction is
obtained with the help of DDEBIFTOOL [25, 26], and
the results are plotted in Fig. 5.

It is seen from Fig. 5 that the ways from the chatter-
free to the chatter along each arrow are different.
Mathematically, they are supercritical and subcriti-
cal Hopf bifurcations respectively [27]. Figure 5(1)
shows the supercritical one through which grinding
process from chatter-free to the chatter continuously,
and Fig. 5(2) presents the subcritical one cause a jump
from the chatter-free to the chatter with a large ampli-
tude when the system parameter cross the boundary.
In Fig. 5, there are other three subfigures, Figs. 5(3),
5(4), and 5(5) illustrating the time domains of the
wheel displacement with different system parameters.

It is shown in Figs. 5(4) and 5(5) that there still exist
some chatter vibrations with large amplitudes in some
chatter-free regions, which are located through the pre-
ceding linear stability analysis. We call this zone the
conditional chatter-free region, in which the dynamic
behaviors of the system is also related to the initial
conditions of the grinding process.

5 Conditional chatter-free region

In industry, the conditional chatter-free region must be
avoided too since the chatter might be incurred by any
misoperation of the manipulator. Thus, it is important
to locate this region so that the grinding process can
evade any kind of chatter.

Mathematically, the switching point between the
supercritical Hopf bifurcation and the subcritical one
is called the Bautin bifurcation point, and it is the
start of the conditional chatter-free region. To find this
point, the method of multiple scales [28] (MMS) is
employed to compute the normal form [29] of the crit-
ical situation.
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To perform the MMS, the critical eigenvectors must
be obtained, and it is governed by

rM = sN,

sM = −rN,
(11)

and

Mp = Nq,

Mq = −Np,
(12)

where M + iN = iωI − A − D1 exp(−iωτ1) −
D2 exp(−iωτ2c) is the critical characteristic matrix,
r + is = (1, r2 + is2, r3 + is3, r4 + is4) and p + iq =
(1,p2 + iq2,p3 + iq3,p4 + iq4)

T are the critical left
and right eigenvectors respectively.

Considering the critical situation where the values
of the system parameters are on the boundary and in-
troducing two time scales T0 = t , T1 = εt and T2 =
ε2t , one has

dy
dt

= ∂y
∂T0

+ ε
∂y
∂T1

+ ε2 ∂y
∂T2

,

y(t) = y(T0, T1, T2) = εy0(T0, T1, T2)

+ ε2y1(T0, T1, T2)

+ ε3y2(T0, T1, T2),

y1(t − τ1)

= y1
(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
= y10

(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
+ εy11

(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
+ ε2y12

(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
,

y2(t − τ2)

= y2
(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
= y20

(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
+ εy21

(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
+ ε2y22

(
T0 − τ1, T1 − ετ1, T2 − ε2τ1

)
,

κ1 = κ1c,

(13)

where τ2c and κ1c represents the critical values of τ2

and κ1 on the boundary of the chatter-free region. The
delayed terms in Eq. (13) are expanded in terms of
Taylor’s series

y1(t − τ1)

= y10(T0 − τ1, T1, T2)

+ ε

(
−τ1

∂

∂T1
y10(T0 − τ1, T1, T2)

+ y11(T0 − τ1, T1, T2)

)

+ ε2
(

−τ1
∂

∂T2
y10(T0 − τ1, T1, T2)

+ 1

2
τ 2

1
∂2

∂T1
y10(T0 − τ1, T1, T2)

)

+ ε2
(

−τ1
∂

∂T1
y11(T0 − τ1, T1, T2)

+ y12(T0 − τ1, T1, T2)

)
,

y2(t − τ2)

= y20(T0 − τ2c, T1, T2)

+ ε

(
−τ2

∂

∂T1
y20(T0 − τ2c, T1, T2)

+ y21(T0 − τ2c, T1, T2)

)

+ ε2
(

−τ2c

∂

∂T2
y20(T0 − τ2c, T1, T2)

+ 1

2
τ 2

2c

∂2

∂T1
y20(T0 − τ2c, T1, T2)

)

+ ε2
(

−τ2c

∂

∂T1
y21(T0 − τ2c, T1, T2)

+ y22(T0 − τ1, T1, T2)

)
.

(14)

Substituting Eqs. (13) and (14) into Eq. (6), and col-
lecting the coefficients of ε1, ε2, and ε3, one has

∂y10

∂T0
(T0, T1, T2) − y30(T0, T1, T2) = 0,

∂y20

∂T0
(T0, T1, T2) − y40(T0, T1, T2) = 0,

∂y30

∂T0
(T0, T1, T2) + κ1cy20(T0 − τ2c, T1, T2)

+ ξ1y30(T0, T1, T2) − κ1y10(T0 − τ1, T1, T2)

− κ1y20(T0, T1, T2)

+ (1 + κ1)y10(T0, T1, T2) = 0,

∂y40

∂T0
(T0, T1, T2) − γ κ1cy20(T0 − τ2c, T1, T2)

+ ξ2y40(T0, T1, T2) + γ κ1cy10(T0 − τ1, T1, T2)

− γ κ1cy10(T0, T1, T2)

+ (γ κ1 + κ2c)y20(T0, T1, T2) = 0,

(15)



Nonlinear chatter with large amplitude in a cylindrical plunge grinding process 1789

∂y11

∂T0
(T0, T1, T2) − y31(T0, T1, T2)

= −∂y10

∂T1
(T0, T1, T2),

∂y21

∂T0
(T0, T1, T2) − y41(T0, T1, T2)

= −∂y20

∂T1
(T0, T1, T2),

∂y31

∂T0
(T0, T1, T2)

+ κ1cy21(T0 − τ2c, T1, T2) + ξ1y31(T0, T1, T2)

− κ1cy11(T0 − τ1, T1, T2)

− κ1cy21(T0, T1, T2)

+ (1 + κ1c)y11(T0, T1, T2)

= κ1cτ2c

∂x20

∂T1
(T0 − τ2c, T1, T2)

−∂y30

∂T1
(T0, T1, T2) − κ1cτ1

∂x10

∂T1
(T0 − τ1, T1, T2),

∂y41

∂T0
(T0, T1, T2) − γ κ1cy21(T0 − τ2c, T1, T2)

+ ξ2y41(T0, T1, T2) + γ κ1cy11(T0 − τ1, T1, T2)

−γ κ1cy11(T0, T1, T2) + (γ κ1c + κ2)y21(T0, T1, T2)

= −γ κ1cτ2c

∂y20

∂T1
(T0 − τ2c, T ,T21)

− ∂y40

∂T1
(T0, T1, T2)

+ γ κ1cτ1
∂y10

∂T1
(T0 − τ1, T1, T2)

− μ2y20(T0, T1, T2)
3,

(16)

and

∂y12

∂T0
(T0, T1, T2) − y32(T0, T1, T2)

= −∂y10

∂T2
(T0, T1, T2) − ∂y11

∂T1
(T0, T1, T2),

∂y22

∂T0
(T0, T1, T2) − y42(T0, T1, T2)

= −∂y20

∂T2
(T0, T1, T2) − ∂y21

∂T1
(T0, T1, T2),

∂y32

∂T0
(T0, T1, T2) + κ1cy22(T0 − τ2c, T1, T2)

+ ξ1y32(T0, T1, T2) − κ1cy12(T0 − τ1, T1, T2)

− κ1cy22(T0, T1, T2) + (1 + κ1c)y12(T0, T1, T2)

= 1

2
τ 2

1 κ1c

∂2y10

∂T 2
1

(T0 − τ1, T1, T2)

− τ1κ1c

∂y10

∂T2
(T0 − τ1, T1, T2)

− τ1κ1c

∂y11

∂T1
(T0 − τ1, T1, T2)

+ κ1cτ2c

∂y20

∂T2
(T0 − τ2c, T1, T2)

+ κ1cτ2c

∂y21

∂T1
(T0 − τ2c, T1, T2)

− 1

2
κ1cτ

2
2c

∂2y20

∂T 2
1

(T0 − τ2c, T1, T2)

− ∂y30

∂T2
(T0, T1, T2)

− ∂y31

∂T1
(T0, T1, T2), (17)

∂y42

∂T0
(T0, T1, T2) − γ κ1cy22(T0 − τ2c, T1, T2)

+ ξ2y42(T0, T1, T2) + γ κ1cy12(T0 − τ1, T1, T2)

− γ κ1cy12(T0, T1, T2)

+ (γ κ1c + κ2)y22(T0, T1, T2)

= −γ κ1cτ2c

∂y20

∂T2
(T0 − τ2c, T ,T21)

− ∂y40

∂T2
(T0, T1, T2)

+ γ κ1cτ1
∂y10

∂T1
(T0 − τ1, T1, T2)

− 2μ2y21(T0, T1, T2)y20(T0, T1, T2)

+ γ τ1κc

∂y11

∂T1
(T0 − τ1, T1, T2)

− γ κcτ2c

∂y21

∂T1
(T0 − τ2c, T1, T2)

− ∂y41

∂T1
(T0, T1, T2)

− 1

2
γ τ 2

1 κc

∂2y10

∂T 2
1

(T0 − τ1, T1, T2)

+ 1

2
γ κcτ

2
2c

∂2y20

∂T 2
1

(T0 − τ2c, T1, T2)

− μ3y2,0(T0, T1, T2)
3.

When the values of the system parameters are on
the boundary, the nontrivial solution corresponding to
the chatter motion is given by
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y0(T0, T1, T2) =

⎛
⎜⎜⎜⎝

y10(T0, T1, T2)

y20(T0, T1, T2)

y30(T0, T1, T2)

y40(T0, T1, T2)

⎞
⎟⎟⎟⎠

= B(T1, T2) exp(iωT0)(p + iq)

+ cc, (18)

where cc is the complex conjugation of the preced-
ing terms and ω, which is also the imaginary part of

the critical eigenvalues, is the frequency of the chatter
motion.

Substituting Eq. (18) into Eq. (16) yields

∂y1

∂T0
− (

A + D1 exp(−τ1iω) + D2 exp(−τ2ciω)
)
y1

= ST1 + NST1, (19)

where ST1 is the so-called resonance terms which pro-
duce the secular terms and given by

ST1 =

⎛
⎜⎜⎜⎜⎝

−1

−p2 − iq2

−p3 − iq3 − κ1cτ1 exp(−iωτ1) + (p2 + iq2)τ2cκ1c exp(−iωτ2c)

−p4 − iq4 + γ κ1cτ1 exp(−iωτ1) − (p2 + iq2)γ r2τ2cκ1c exp(−iωτ2c)

⎞
⎟⎟⎟⎟⎠ exp(iωT0)

∂B(T1, T2)

∂T1
. (20)

A particular solution of Eq. (19) is given

y∗
1 = φ(T1, T2) exp(iωT0)

=

⎛
⎜⎜⎜⎝

ϕ1

ϕ2

ϕ3

ϕ4

⎞
⎟⎟⎟⎠ exp(iωT0),

which satisfies

(M + iN)y∗
1 = ST1, (21)

to eliminate the resonance terms. Based on Fredholm
alternative, φ(T1) is the solution of Eq. (21) only when
the solvability condition

(r + is) · ST1 = 0, (22)

is satisfied [28]. Equation (19) can be solved directly
after the secular terms ST1 is eliminated, and the so-
lution is

y1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− κ1μ2(p2+iq2)
2(−1+exp(i2ωτ2c)) exp(−2iωτ2c)

�2

μ2(p2+iq2)
2(−κ1+κ1 exp(−2iωτ1)−2iξ1ω+4ω2−1)

�2

− i2ωκ1μ2(p2+iq2)
2(−1+exp(i2ωτ2c)) exp(−2iωτ2c)

�2

i2ωμ2(p2+iq2)
2(−κ1+κ1 exp(−2iωτ1)−2iξ1ω+4ω2−1)

�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

× B(T1, T2)
2 exp(i2ωT0)

+

⎛
⎜⎜⎜⎜⎝

0

− 2μ2(p
2
2+q2

2 )

κ2

0
0

⎞
⎟⎟⎟⎟⎠B(T1, T2)B̄(T1, T2), (23)

where

�2 = −2iγ κ1ξ1ωe−2iωτ2c + 4γ κ1ω
2e−2iωτ2c

− γ κ1e
−2iωτ2c + 2iγ κ1ξ1ω − 4γ κ1ω

2 + γ κ1

− 2iκ1ξ2ωe−2iτ1ω + 2iκ2ξ1ω + 2iκ1ξ2ω

+ 4κ1ω
2e−2iτ1ω − κ1κ2e

−2iτ1ω − 4κ1ω
2

− 4κ2ω
2 + κ1κ2 + κ2 − 8iξ1ω

3 − 8iξ2ω
3

− 4ξ1ξ2ω
2 + 2iξ2ω + 16ω4 − 4ω2.

To solve Eq. (17), the above process is repeated in the
following analysis. Substituting Eqs. (18) and (23) into
Eq. (17) yields

∂y2

∂T0
− (

A + D1 exp(−τ1iω) + D2 exp(−τ2ciω)
)
y1

= ST2 + NST2, (24)

where
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ST2 =

⎛
⎜⎜⎜⎜⎝

−1

−p2 − iq2

−p3 − iq3 − κ1cτ1 exp(−iωτ1) + (p2 + iq2)τ2cκ1c exp(−iωτ2c)

−p4 − iq4 + γ κ1cτ1 exp(−iωτ1) − (p2 + iq2)γ r2τ2cκ1c exp(−iωτ2c)

⎞
⎟⎟⎟⎟⎠ exp(iωT0)

∂B(T1, T2)

∂T2

+

⎛
⎜⎜⎝

0
0
0

�3

⎞
⎟⎟⎠ exp(iωT0)B(T1, T2)

2B̄(T1, T2), (25)

where

�3 = (p2 − iq2)(p2 + iq2)
2(�2(4μ2

2 − 3κ2μ3) − 2κ2μ
2
2((−2iξ1ω + 4ω2 − 1) − κ1(1 − e−i2ωτ1)))

�2κ2
.

As Eq. (19), there is also a solvability condition for
Eq. (25) as:

(r + is) · ST2 = 0. (26)

Solving ∂B(T1,T2)
∂T1

and ∂B(T1,T2)
∂T2

from Eqs. (22) and
(26), one can obtain the amplitude equation

dB

dt
= ε

∂B(T1, T2)

∂T1
+ ε2 ∂B(T1, T2)

∂T2

= �1 + i�2

�3 + i�4
B(T1, T2)

2B̄(T1, T2), (27)

where

�1 = Re
(−(r4 + is4)�3

)
,

�2 = Im
(−(r4 + is4)�3

)
,

�3 = sin(ωτ2c)κ1cτ2c(−γp2s4 + p2s3 − γ q2r4

+ q2r3) + cos(ωτ2c)κ1cτ2c(−γp2r4 + p2r3

+ γ q2s4 − q2s3) + cos(τ1ω)τ1κ1c(γ r4 − r3)

+ sin(τ1ω)τ1κ1c(γ s4 − s3) − p2r2

− p3r3 − p4r4 + q2s2 + q3s3 + q4s4 − 1

and

�4 = sin(ωτ2c)κ1cτ2c(γp2r4 − p2r3 − γ q2s4 + q2s3)

+ cos(ωτ2c)κ1cτ2c(−γp2s4 + p2s3 − γ q2r4

+ q2r3) + sin(τ1ω)τ1κ1c(r3 − γ r4)

+ cos(τ1ω)τ1κ1c(γ s4 − s3)

− p2s2 − p3s3 − p4s4 − q2r2 − q3r3 − q4r4.

Using the nonlinear transform

B(T1, T2) = 1

2
α(T1, T2) exp

(
iβ(T1, T2)

)
. (28)

Fig. 6 Bautin bifurcation diagram

We transform Eq. (27) into

α′(T1, T2) = 1

4

�1�3 + �2�4

�2
3 + �2

4

α(T1, T2)
3,

α(T1, T2)β
′(T1, T2) = 1

4

�2�3 − �1�4

�2
3 + �2

4

α(T1, T2)
3.

(29)

It is known that the Bautin bifurcation point needs the
first Lyapunov coefficient of the normal form to be
zero [30], and this condition is given by

�1�3 + �2�4

�2
3 + �2

4

= 0. (30)

Numerically solving Eqs. (9), (10), (11), (12), and (30)
simultaneously, the Bautin point is found, and the re-
sult is stated in Table 2.

From the Bautin point to a larger value of τ2 (smal-
ler value of ωw), we successively carry out the numer-
ical Hopf bifurcation analysis for each given τ2 and
record the ranges of κ1 which is in the conditional
chatter-free zone. Finally, all the results are plotted in
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Table 2 Parameters,
eigenvalues and
eigenvectors at Bautin point

Parameters Values Parameters Values Parameters Values

τ2 19.707 r4 −0.653 p3 0

κ1 0.578 s2 −0.671 p4 0.018

ω 1.459 s3 −0.620 q2 −0.012

r2 −1.145 s4 0.560 q3 1.459

r3 0.201 p2 −0.478 q4 −0.698

Fig. 6. It is seen that the regions over the solid curve
and below the dashed one are still chatter and chatter-
free, respectively, but there is a conditional chatter-free
zone between the two curves, where coexist the sta-
ble smooth grinding process and the chatter vibrations
with large amplitudes.

It should be declared that the situation of losing
contact between the workpiece and the wheel is not
considered in this model, but large amplitude does not
have a direct connection with that situation. As dis-
cussed by Chung and Liu [19], it can be seen that the
loss of contact will happen when the dynamic penetra-
tion εw + εg exceeds the initial feed f , namely,

εw + εg + f = (
x1(t) − x1(t − τ1)

)
− (

x2(t) − x2(t − τ2)
) + f < 0. (31)

The occurrence of losing contact and the piecewise
nonlinearity from this will be discussed in further
works.

6 Conclusion

The dynamic behaviors of a cylindrical plunge grind-
ing process are investigated in this study. The mech-
anism that the regenerative force induces the chatter
vibration is clarified by stability analysis involving the
combination of the eigenvalues analysis and the con-
tinuation algorithm. Finally, the dynamic motions of
the chatter are predicted in DDEBIFTOOL [25, 26],
and the conditional chatter-free region is found. The
conclusions are summarized as follows:

(1) The regenerative chatter vibration can be incurred
by the contact force between the workpiece and
the wheel only when the regenerative interaction
is strong enough, namely the grinding stiffness is
large. To avoid the chatter vibration, one can de-
crease the regenerative force by choosing a soft
grinding wheel, decreasing the wheel width or
slowing down the feed speed.

(2) The chatter vibration may arise in the ways of
supercritical and subcritical Hopf bifurcations, in
which the changes of the dynamic behaviors are
continuous and dramatic, respectively.

(3) There is a conditional chatter-free region in which
there coexist stable smooth grinding process and
chatter vibrations with large amplitudes. This phe-
nomenon shows that the design of grinding pro-
cess must be based on the results from not only
the linear analysis but also the nonlinear analysis.
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