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Abstract This paper presents a novel robust decen-
tralized control of electrically driven robot manipula-
tors by adaptive fuzzy estimation and compensation
of uncertainty. The proposed control employs volt-
age control strategy, which is simpler and more ef-
ficient than the conventional strategy, the so-called
torque control strategy, due to being free from manipu-
lator dynamics. It is verified that the proposed adaptive
fuzzy system can model the uncertainty as a nonlinear
function of the joint position error and its time deriva-
tive. The adaptive fuzzy system has an advantage that
does not employ all system states to estimate the un-
certainty. The stability analysis, performance evalu-
ation, and simulation results are presented to verify
the effectiveness of the method. A comparison be-
tween the proposed Nonlinear Adaptive Fuzzy Con-
trol (NAFC) and a Robust Nonlinear Control (RNC) is
presented. Both control approaches are robust with a
very good tracking performance. The NAFC is supe-
rior to the RNC in the face of smooth uncertainty. In
contrast, the RNC is superior to the NAFC in the face
of sudden changes in uncertainty. The case study is an
articulated manipulator driven by permanent magnet
dc motors.
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1 Introduction

A great attention has been focused on the robust con-
trol of robot manipulators to overcome uncertainty
in the joint-space [1, 2] and in the task-space [3, 4].
The uncertainty may include unmodeled dynamics,
parametric uncertainty, and external disturbances. The
practical implementation of model-based control ap-
proaches requires consideration of various sources of
uncertainties such as modeling errors, unknown loads,
and computation errors. Uncertainty is a challenge
for using feedback linearization as one of the popu-
lar techniques used in the control of robot manipula-
tors for canceling nonlinearities and decoupling pur-
poses [5]. A perfect model is required to apply the
feedback linearization while a perfect model is not
available. Instead, a nominal model can be used while
it differs from the actual system. As a result, the model
inaccuracy degrades the control system. Therefore,
uncertainty should be compensated by the control laws
to enhance performance of the control system. In fact,
a considerable attention has been devoted to the ro-
bust control due to overcoming uncertainties [6, 7].
Robust control is an effective approach in the pres-
ence of a wide range of uncertainties. A proper un-
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certainty bound parameter has been proposed to sim-
plify and improve robust control of robot manipulators
[8]. Time delay control [9] and uncertainty estimation
[10] can be used to control the robot manipulator by
estimating current effects of unknown dynamics and
disturbances. In this paper, we present a novel robust
control of electrically driven robot manipulators using
an adaptive fuzzy system to estimate and compensate
uncertainties.

The majority of presented robust control ap-
proaches are based on the torque control strategy. The
practical implementation of the torque control strat-
egy is involved in some problems. The most important
problem is that the torque command cannot be applied
to the robot joints without the use of actuators whereas
the dynamics of actuators are excluded. Another issue
is the chattering problem caused by the switching con-
trol laws. We should also consider the additional sens-
ing requirements, actuator saturation, and long pro-
cessing time to implement the torque control strategy.
To solve the aforementioned problems, voltage con-
trol strategy has been devoted to the electrically driven
robot manipulators [11]. In this strategy, the electric
motors of the robot are controlled while the robot
manipulator behaves as a load on the motors. Thus,
a nominal model of the motor is required to design
the controller with an advantage that the used model
is simpler than the robot model. As a result, robust
voltage control is much faster and more efficient than
the robust torque control [12]. Voltage control strat-
egy has been successfully used to the robust control
of flexible-joint electrically driven robots [13, 14]. To
benefit from these advantages, we use voltage control
strategy in this paper.

As an alternative to the conventional robust control,
fuzzy control is a robust model-free control approach
that can be simply designed [15]. To form fuzzy rules,
an exact knowledge of model is not required. Fuzzy
controller is an intelligent controller using linguistic
fuzzy rules to include information from experts. Con-
sequently, fuzzy control of robot manipulators has at-
tracted a great deal of researches to overcome uncer-
tainty, nonlinearity, and coupling [16–22]. The direct
method of Lyapunov has been successfully used to de-
sign Adaptive Fuzzy Control (AFC) in the form of ei-
ther direct or indirect adaptive control [23–26]. In in-
direct adaptive control, the fuzzy system estimates the
robot’s model to use in the control law. In direct adap-
tive control, the parameters of fuzzy controller are up-
dated to achieve a desired tracking performance.

In this paper, we design an adaptive fuzzy system
to estimate and compensate the uncertainty in the non-
linear control system. The proposed fuzzy system en-
hances the feedback linearization performance. The
proposed controller has a nonlinear structure equipped
by a fuzzy uncertainty compensator and thus is called
as Nonlinear Adaptive Fuzzy Control (NAFC) that dif-
fers from AFC. The proposed NAFC uses a nominal
model of system, whereas the AFC requires the ex-
pert’s knowledge about the system model or about the
system control. The usage of fuzzy system in the pro-
posed controller is also completely different with the
AFC for example in [23–26]. We employ a fuzzy sys-
tem as an uncertainty estimator not as a controller. Un-
like the AFC, the proposed NAFC has an advantage
that does not require the all system states.

This paper is organized as follows. Section 2 ex-
plains modeling of the robotic system including the
robot manipulator and the permanent magnet dc mo-
tors. Section 3 develops the proposed control law. Sec-
tion 4 describes the adaptive fuzzy method to estimate
and compensate the uncertainties. Section 5 presents
the stability analysis. Section 6 describes performance
evaluation of the control system. Section 7 illustrates
the simulation results. Finally, Sect. 8 concludes the
paper.

2 Modeling

Consider an electrical robot driven by geared perma-
nent magnet dc motors [8]. The dynamics of robot ma-
nipulator can be expressed as

D(q)q̈ + C(q, q̇)q̇ + τ f(q̇) + g(q) = τ (1)

where q ∈ Rn is the vector of joint positions, D(q) the
n×n matrix of manipulator inertia, C(q, q̇)q̇ ∈ Rn the
vector of centrifugal and Coriolis torques, g(q) ∈ Rn

the vector of gravitational torques, τ f(q̇) ∈ Rn the vec-
tor of frictional torques, and τ ∈ Rn the vector of joint
torques. The electric motors provide the joint torques
τ by

Jθ̈m + Bθ̇m + rτ = τm (2)

where τm ∈ Rn is the torque vector of motors, θm ∈ Rn

the position vector of motors, and J, B, and r the n×n

diagonal matrices for inertia, damping, and reduction
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gear of motors, respectively. The vector of joint veloc-
ities q̇ is obtained by the vector of motor velocities θ̇m
through the gears as

rθ̇m = q̇ (3)

Note that vectors and matrices are represented in the
bold form for clarity.

In order to obtain the motor voltages as the inputs
of system, consider the electrical equation of geared
permanent magnet dc motors in the matrix form as

RIa + Lİa + Kbr−1q̇ = v (4)

where v ∈ Rn is the vector of motor voltages, and
Ia ∈ Rn the vector of motor currents. R, L, and Kb

represent the n × n diagonal matrices for the armature
resistance, inductance, and back-emf constant of the
motors, respectively. The motor torque vector τm as
the input for the dynamic equation (2) is produced by
the motor current vector

KmIa = τm (5)

where Km is the diagonal matrix of the torque con-
stants. A model for the electrically driven robot in the
state space is introduced by the use of (1)–(5) as

ż = f(z) + bv (6)

where

f(z) =
⎡
⎢⎣

z2

(Jr−1 + rD(z1))
−1(−(Br−1 + rC(z1, z2))z2 − rg(z1) − rτ f(z2) + Kmz3)

−L−1(Kbr−1z2 + Rz3)

⎤
⎥⎦ ,

b =
⎡
⎣

0
0

L−1

⎤
⎦ , z =

⎡
⎣

q
q̇
Ia

⎤
⎦

(7)

The state space equation (6) shows a highly coupled
nonlinear large multivariable system. Complexity of
the model has opened a serious challenge in the litera-
ture of robot modeling and control. Voltages of motors
denoted by v have been considered as the inputs of the
robotic system in (6).

3 Proposed control law

The voltage equation of the permanent magnet dc mo-
tor is expressed by

v = RIa + Lİa + kbθ̇m + φ (8)

where R, L, and kb denote the armature resistance,
inductance, and back emf constant, respectively. v is
the motor voltage, Ia motor current, and θm the rotor
position. φ represents the external disturbance. The re-
lation between the motor position θm and the joint po-
sition q is given by

q = rθm (9)

where r stands for the motor reduction gear. Substitut-
ing (9) into (8) yields the dynamics

v = RIa + Lİa + kbr
−1q̇ + φ (10)

The robot manipulator is expressed by the multi-
input/multi-output system (1), whereas the electric
motor is expressed by the single-input/single-output
system (10). The proposed control approach is based
on the voltage control strategy [11] using the model
of motor (10) which is much simpler than the model
of robot manipulator (1). Therefore, the control prob-
lem is taken from the control of the multi-input/multi-
output system (1) used in the torque control strategy
to the control of the n individual systems of the form
single-input/single-output system (10) used in voltage
control strategy.

In order to propose a control law, we choose a nom-
inal model of the form

v = R̂Ia + k̂br̂
−1q̇ (11)
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The nominal model is known and proposed based on
the knowledge about the system such that the nom-
inal parameters R̂, k̂b , and r̂ are the estimations of
R,kb , and r , respectively. The dynamics of the nomi-
nal model is simpler than the actual model. Compared
with the actual model (10), the terms Lİa and φ are
not used in the nominal model (11). It is easy to write
from (10)

v = R̂Ia + k̂br̂
−1q̇ + F (12)

Then, one can calculate F from (10) and (12) as

F = (R − R̂)Ia + Lİa + (
kbr

−1 − k̂br̂
−1)q̇ + φ (13)

In fact, F is referred to as the uncertainty that includes
external disturbance φ, unmodeled dynamics Lİa , and
parametric uncertainty (R−R̂)Ia +(kbr

−1 − k̂br̂
−1)q̇ .

Using (12), a control law is proposed as

v = sat(u) (14)

where sat(·) denotes the saturation function defined by

sat(u) =
⎧⎨
⎩

umax u ≥ umax

u |u| < umax

−umax u ≤ −umax

(15)

where umax is the maximum permitted voltage of mo-
tor and u is described as

u = R̂Ia + k̂br̂
−1(q̇d + kp(qd − q)

) + F̂ (16)

where F̂ is the estimate of F using an adaptive fuzzy
system presented in the next section, qd is the desired
joint position, and kp is a control design parameter. We
cannot use F in the control law since F is not known.
Instead, F̂ is employed.

4 Adaptive fuzzy estimation of the uncertainty

4.1 Estimation of uncertainty if |u| < umax

We design an adaptive fuzzy system to calculate F̂ for
the control law (14)–(16). Out of the area |u| < umax,
we propose simple rules to calculate F̂ in the end of
this section.

Control law (14)–(16) yields the closed-loop sys-
tem

R̂Ia + k̂br̂
−1q̇ + F = sat(u) (17)

It is easy to show from (15), (16), and (17) for |u| <

umax that

R̂Ia + k̂br̂
−1q̇ + F

= R̂Ia + k̂br̂
−1(q̇d + kp(qd − q)

) + F̂ (18)

In other words, (18) can be written as

ė + kpe = k̂−1
b r̂(F − F̂ ) (19)

where e is the tracking error expressed by

e = qd − q (20)

Suppose that F̂ is the output of an adaptive fuzzy
system in the normalized form with the inputs of x1

and x2. If three fuzzy sets are given to each fuzzy in-
put, the whole control space will be covered by nine
fuzzy rules. The linguistic fuzzy rules are proposed in
the Mamdani type of the form

FRl : If x1 is Al and x2 is Bl Then F̂ is Cl (21)

where FRl denotes the lth fuzzy rule for l = 1, . . . ,9.
In the lth rule, Al , Bl , and Cl are fuzzy member-
ship functions belonging to the fuzzy variables x1,
x2, and F̂ , respectively. Three Gaussian membership
functions, μAl

(x1), named as Positive (P), Zero (Z),
and Negative (N) are defined for input x1 in the oper-
ating range of manipulator as shown in Fig. 1. Three
Gaussian membership functions, μBl

(x2), named as P,
Z, and N in the same shape as Fig. 1, are used for in-
put x2. Nine symmetric Gaussian membership func-
tions, μCl

(F̂ ), named as Very Positive High (VPH),
Positive High (PH), Positive Medium (PM), Positive
Small (PS), Zero (Z), Negative Small (NS), Negative
Medium (NM), Negative High (NH), and Very Neg-
ative High (VNH) are defined for F̂ in the form of
μl(F̂ ) = exp(−((F̂ − p̂l)/σ )2) for l = 1, . . . ,9 in the
operating range of output. The symmetric Gaussian
function depends on two parameters p̂l and σ . In this
work, p̂l is adjusted by an adaptive law, whereas σ is
an arbitrary constant value.

The fuzzy rules should be defined such that the
tracking control system goes to the equilibrium point.
We may use an expert’s knowledge, the trial and error
method, or an optimization algorithm such as PSO to
design the fuzzy controller. The obtained fuzzy rules
are given in Table 1. In this paper, the centers of Gaus-
sian membership functions for F̂ are adapted to opti-
mize performance of the control system.
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Fig. 1 Membership
functions of the input e

Table 1 Fuzzy rules

F̂ x2

N Z P

x1 P Z PM VPH

Z NS Z PS

N VNH NM Z

If we use the product inference engine, single-
ton fuzzifier, center average defuzzifier, and Gaussian
membership functions, the fuzzy system [15] is of the
form

F̂ (x1, x2) =
∑9

l=1 μAl
(x1)μBl

(x2)p̂l∑9
l=1 μAl

(x1)μBl
(x2)

(22)

where μAl
(x1) ∈ [0,1] and μBl

(x2) ∈ [0,1] are the
membership functions for the fuzzy sets Al and Bl ,
respectively, and p̂l is the center of fuzzy set Cl . An
important contribution of fuzzy systems theory is to
provide a systematic procedure for transforming a set
of linguistic rules into a nonlinear mapping as stated
by (22). One can easily manipulate this transformation
by regulating p̂l in (22).

One can easily obtain from (22) that

F̂ (x1, x2) =
9∑

l=1

p̂lζl = p̂T ζ (23)

where ζ = [ζ1 · · · ζ9]T , ζl is a positive value ex-
pressed as

ζl = μAl
(x1)μBl

(x2)∑9
l=1 μAl

(x1)μBl
(x2)

(24)

and

p̂T = [
p̂1 · · · p̂9

]
(25)

Using the input scaling factors k1 and k2 to scale x1

and x2, we have

x1 = k1e, (26)

x2 = k2ė (27)

Substituting (26) and (27) into (22) describes F̂ as a
function of e and ė of the form

F̂ (e, ė) =
∑9

l=1 μAl
(k1e)μBl

(k2ė)p̂l∑9
l=1 μAl

(k1e)μBl
(k2ė)

(28)

Substituting F̂ (e, ė) into the closed-loop system (19)
yields

F = r̂−1k̂b(ė + kpe) + F̂ (e, ė) (29)

Thus, F is a function of e and ė as described by (29).
The fuzzy system F̂ (e, ė) in (28) can approximate F

in (29) based on the universal approximation theorem
[15], which states that the fuzzy systems with prod-
uct inference engine, singleton fuzzifier, center aver-
age defuzzifier, and Gaussian membership functions
are universal approximators. Thus,

∣∣F(e, ė) − F̂ (e, ė)
∣∣ ≤ ρ (30)

where ρ is a positive scalar. In the adaptive fuzzy sys-
tem, we regulate p̂ in (23) so that F̂ (e, ė) → F(e, ė).
Suppose that F(e, ė) can be modeled by an adaptive
fuzzy system as

F(e, ė) = pT ζ + ε (31)
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where ε is the modeling error, and pT ζ is the goal of
adaptive fuzzy estimation such that p̂T ζ → pT ζ . Note
that the vector p is constant, and p̂ moves toward p.
Thus, based on the universal approximation theorem,

∣∣F(e, ė) − pT ζ
∣∣ ≤ β (32)

where ε is bounded as |ε| ≤ β and β is the upper
bound of modeling error. We have F̂ (e, ė) = p̂T ζ , and
pT ζ is the best value for p̂T ζ such that

∣∣F(e, ė) − pT ζ
∣∣ ≤ ∣∣F(e, ė) − p̂T ζ

∣∣ (33)

It follows that β ≤ ρ.
Substituting (23) and (31) into (19) yields

ė + kpe = k̂−1
b r̂

(
pT − p̂T

)
ζ + k̂−1

b r̂ε (34)

Consider the closed-loop system expressed by (19).
The estimation error F − F̂ is proportional with
ė + kpe. Also, the estimation error depends on the dif-
ference in parameters given by pT − p̂T in the closed-
loop system (34). Regulating p̂T reduces ė + kpe.
Therefore, we use (34) to suggest a positive definite
function V of the form

V = 0.5(ė + kpe)2 + 1

2γ

(
pT − p̂T

)
(p − p̂) (35)

where γ is a positive scalar. We differentiate V with
respect to time to get

V̇ = (ė + kpe)(ë + kpė) − 1

γ

(
pT − p̂T

) ˙̂p (36)

From (34) we have

ė = k̂−1
b r̂

(
pT − p̂T

)
ζ + k̂−1

b r̂ε − kpe (37)

Substituting (37) into (36) yields

V̇ = ((
pT − p̂T

)
kpk̂−1

b r̂ζ
)
(ė + kpe)

+ (ė + kpe)
(
ë + kpk̂−1

b r̂ε − k2
pe

)

− 1

γ

(
pT − p̂T

) ˙̂p (38)

It is easy to show that

V̇ = (
pT − p̂T

)(
(ė + kpe)kpk̂−1

b r̂ζ − 1

γ
˙̂p
)

+ (ė + kpe)
(
ë + kpk̂−1

b r̂ε − k2
pe

)
(39)

V̇ in (39) includes two terms, where the first and sec-
ond terms are (pT − p̂T )((ė + kpe)kpk̂−1

b r̂ζ − 1
γ

˙̂p)

and (ė + kpe)(ë + kpk̂−1
b r̂ε − k2

pe), respectively. We

can control V̇ by regulating p̂ which is in the first
term of V̇ . This leads to propose an adaptive law which
should be evaluated afterward as follows:

(
pT − p̂T

)(
(ė + kpe)kpk̂−1

b r̂ζ − 1

γ
˙̂p
)

= 0 (40)

Therefore, the adaptation law is given by

˙̂p = αζ(ė + kpe) (41)

in which α is given by

α = γ kpk̂−1
b r̂ (42)

Thus, the parameters of the fuzzy system are calcu-
lated by

p̂(t) = p̂(0) +
∫ t

0
α(ė + kpe)ζ dτ (43)

where p̂(0) is the initial value.
In order to evaluate the adaptive law (43), we sub-

stitute (40) into (39) to obtain

V̇ = (ė + kpe)
(
ë + kpk̂−1

b r̂ε − k2
pe

)
(44)

We should consider (44) to evaluate performance of
the uncertainty estimation method. Taking the deriva-
tive of ė in (37) with respect to time gives

ë = k̂−1
b r̂ϑ − kpė (45)

where ϑ is

ϑ = d((pT − p̂T )ζ + ε)

dt
(46)

Substituting (45) into (44), to satisfy V̇ < 0 in (44), it
is required that

(ė + kpe)k̂−1
b r̂(ϑ + kpε) < kp(ė + kpe)2 (47)

According to the Cauchy–Schwartz inequality, we can
write

(ė + kpe)k̂−1
b r̂(ϑ + kpε) ≤ |ė + kpe| · |ϑ + kpε| · k̂−1

b r̂

(48)
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Suppose that

|ϑ + kpε| < Ψ (49)

where Ψ is a positive scalar. Thus, to satisfy inequal-
ity (47), it is sufficient that

|ė + kpe|k̂−1
b r̂Ψ < kp(ė + kpe)2 (50)

Then (50) results in

k̂−1
b r̂Ψ/kp < |ė + kpe| (51)

As a result of reasoning above, as long as k̂−1
b r̂Ψ/kp <

|ė+kpe|, we have V̇ < 0. Then, |ė+kpe| reduces until

k̂−1
b r̂Ψ/kp = |ė + kpe| (52)

Note that |ė + kpe| cannot reduce further to be
k̂−1
b r̂Ψ/kp > |ė + kpe|. If k̂−1

b r̂Ψ/kp > |ė + kpe|,
we have V̇ > 0, which contradicts to the reduction
of |ė + kpe|. Considering (52) verifies that the min-
imum value of error will be small if we use a large
gain value kp . The error does not approach zero but
is bounded to a small limit as described in (52). The
tracking error is affected by the upper bound of uncer-
tainty Ψ as stated by (52), as well.

The estimation error in the area of |u| < umax can
be calculated from (19) as

F − F̂ = r̂−1k̂b(ė + kpe) (53)

From (52) and (53) we can write

|F − F̂ | ≤ r̂−1k̂b|ė + kpe| �= Ψ/kp (54)

The size of estimation error of the proposed adap-
tive fuzzy system, ρ, can be given by considering (30)
and (54) as

ρ = Ψ/kp (55)

4.2 Estimation of uncertainty out of the area
|u| < umax

In order to estimate F out of the area |u| < umax, we
use another rule. From (15) and (17) it follows that

F = umax − R̂Ia + k̂br̂
−1q̇ (56)

Thus, we estimate F :

F̂ = umax − R̂Ia + k̂br̂
−1q̇ (57)

Similarly, we estimate F in the area of u ≤ −umax by

F̂ = −umax − R̂Ia + k̂br̂
−1q̇ (58)

The estimation error in the areas of
u > umax and u ≤ −umax is zero since F̂ = F .

5 Stability analysis

Stability analysis of the control system is presented to
verify the proposed control law (14)–(16). Since the
proposed control law is a decentralized control, stabil-
ity analysis is presented for every individual joint to
verify stability of the robotic system.

It follows from (12) that the lumped uncertainty
F enters the system the same channel as the control
input v. Thus, the uncertainty is said to satisfy the
matching condition [27] or equivalently is said to be
matched.

To make the dynamics of the tracking error well
defined such that the robot can track the desired tra-
jectory, we make the following assumption.

Assumption 1 The desired trajectory qd must be
smooth in the sense that qd and its derivatives up
to a necessary order are available and all uniformly
bounded.

As a necessary condition to design a robust control,
the external disturbance must be bounded.

Assumption 2 The external disturbance φ is bounded
as

|φ| ≤ φmax (59)

where φmax is a positive constant.

Since the proposed control law (14)–(16) obtains a
bounded input for every motor as

|v| ≤ umax (60)

It is verified in [14] that the electrically driven robot
under the bounded voltage input v and the bounded
external disturbance φ provides, for each motor, the
bounded joint velocity q̇ , the motor current Ia , and its
derivative İa .

Consider the closed-loop system (19). The term
k̂−1
b r̂(F − F̂ ) can be seen as the input. We verified
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in (30) that |F(e, ė) − F̂ (e, ė)| ≤ ρ. Thus, the input
k̂−1
b r̂(F −F̂ ) is bounded in the linear system (19). As a

result, e is bounded. It follows that q is bounded since
q = qd − e.

For each motor, the joint position q , the joint ve-
locity q̇ , and the motor current Ia are bounded. Thus,
in the robotic system, the joint position vector q, the
joint velocity vector q̇, and the motor current vector
Ia are bounded. Therefore, the state vector z in (7) is
bounded.

6 Performance evaluation

We have evaluated performance of the control system
in the area of |u| < umax in Sects. 4 and 5. |ė + kpe| is
reduced until it satisfies |ė+kpe| = k̂−1

b r̂Ψ/kp in (50).
We evaluate the performance of the control system out
of the area |u| < umax as follows: A positive definite
function V is proposed as

V = 0.5kbr
−1e2 (61)

where V (0) = 0 and V (e) > 0 for e �= 0. The time
derivative of V is calculated as

V̇ = kbr
−1eė (62)

Substituting control law (14) into (12) forms the
closed-loop system

RIa + kbr
−1q̇ + Lİa + φ = sat(u) (63)

Considering (15) for u < −umax and u > umax implies
that

sat(u) = umax sgn(u) (64)

where sgn(u) is the signum function defined as
sgn(u) = 1 if u > 1 and sgn(u) = −1 if u < −1. Thus,
the closed-loop system is described by

RIa + kbr
−1q̇ + Lİa + φ = umax sgn(u) (65)

From (65) we have

kbr
−1q̇ = umax sgn(u) − RIa − Lİa − φ (66)

Then we can write

kbr
−1q̇d − kbr

−1q̇

= RIa + Lİa + φ + kbr
−1q̇d − umax sgn(u) (67)

Substituting for ė = q̇d − q̇ into (67), we obtain

k̂br̂
−1ė = RIa + Lİa + φ + kbr

−1q̇d − umax sgn(u)

(68)

Substituting (68) into (62) yields

V̇ = e
(
RIa +Lİa +φ + kbr

−1q̇d −umax sgn(u)
)

(69)

Assume that there exits a positive scalar denoted by μ

such that

∣∣RIa + Lİa + φ + kbr
−1q̇d

∣∣ < μ (70)

We can ensure (70) since Ia, İa, φ, and q̇d are bounded.
To establish the convergence, the condition V̇ < 0
should be satisfied. For this purpose, it is sufficient
that

umax sgn(u) = μ sgn(e) (71)

Proof Substituting (71) into (69) yields

V̇ = e
(
RIa + Lİa + φ + kbr

−1q̇d

) − μe sgn(e) (72)

By the triangle inequality and (70),

e
(
RIa + Lİa + φ + kbr

−1q̇d

)

≤ |e|.∣∣RIa + Lİa + φ + kbr
−1q̇d

∣∣ < |e|μ (73)

Hence,

e
(
RIa + Lİa + φ + kbr

−1q̇d

) − μ|e| < 0 (74)

Using e.sgn(e) = |e| in (72) yields

V̇ = e
(
kbθ̇md + RIa + Lİa + ϕ(t)

) − μ|e| (75)

Substituting (74) into (75) proves that V̇ < 0. Thus,
the tracking error is converged until the control system
comes into the area |u| < umax. Equation (71) implies
that

umax = μ (76)

Therefore, the maximum voltage of motor should sat-
isfy (76) for the convergence of the tracking error e.
In other words, motor should be sufficiently strong to
track q̇d when driving the robot.
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Starting from an arbitrary e(0) under the condition
umax = μ, the value of |e| is reduced. Then, motor
moves to the area of umax > |u|. �

7 Simulation results

The proposed control law is applied to control an artic-
ulated robot manipulator with a symbolic representa-
tion in Fig. 2. The Denavit–Hartenberg (DH) parame-
ters of the articulated robot are given in Table 2, where
the parameters θi, di, ai , and αi are called the joint an-
gle, link offset, link length, and link twist, respectively.
Parameters of manipulator are given in Table 3, where
for the ith link, mi is the mass, and rci = [xci yci zci]T
is the center of mass in the ith frame. The inertia ten-

Table 2 The Denavit–Hartenberg parameters

Link θ d a α

1 θ1 d1 0 π/2

2 θ2 0 a2 0

3 θ3 0 a3 0

sor in the center of mass frame is expressed as

Ii =
⎡
⎣

Ixxi Ixyi Ixzi

Ixyi Iyyi Iyzi

Ixzi Iyzi Izzi

⎤
⎦ (77)

Motor parameters are given in Table 4. To consider the
parametric uncertainties, k̂b , r̂ , and R̂ are assumed to
be 80% of their real values. The maximum voltage of
each motor is set to umax = 40 V. The desired joint
trajectory for the joints is shown in Fig. 3. The desired
trajectory should be sufficiently smooth such that all
its derivatives up to the required order are bounded.
The desired trajectory starts from zero and goes to
2 rad in 5 sec. The control laws for all three motors
are the same with kp = 100.

Simulation 1 We set the adaptation law (43) with
p̂l(0) = 0 and γ = 2000 in (42). The performance of
the NAFC is shown in Fig. 4, while the external distur-
bance is zero by given φ = 0 in system (8). The max-
imum error of 2.6 × 10−5 rad occurs in joint 2 when

Table 4 The electric motor parameters

Motors v R Kb L J B r k

1, 2, 3 40 1.6 0.26 0.001 0.0002 0.001 0.02 500

Table 3 The dynamical
parameters Link DH xi yi zi mi Ixxi Iyyi Izzi Ixyi Ixzi Iyzi

1 d1 = 0.280 0 −0.22 0 19 0.34 0.36 0.31 0 0 0

2 a2 = 0.760 −0.51 0 0 18.18 0.18 1.32 1.31 0 0 0

3 a3 = 0.930 −0.67 0 0 10.99 0.07 0.92 0.93 0 0 0

Fig. 2 Symbolic
representation of the
articulated robot
manipulator



1474 M.M. Fateh, S. Khorashadizadeh

Fig. 3 The desired
trajectory

Fig. 4 Performance of the
NAFC

Fig. 5 Adaptation of
parameters

starting, and then the error goes under 6.5 × 10−6 rad.
The mean value of absolute error for joint 2 is about
3.4×10−6 rad. The tracking errors confirm that the pa-
rameters are well adapted. The adaptation of parame-
ters is shown in Fig. 5. Actually, three curves in Fig. 5
represent the adaptation of nine parameters. It seems
that the output of fuzzy system can be set into three
fuzzy sets in place of nine fuzzy sets. The uncertainty
described by (13) is shown in Fig. 6. The performance
of the estimation of uncertainty for joint 2 is shown in
Fig. 7 with a maximum estimation error of 0.1 V when
starting, then the estimation error goes under 0.03 V.

Motors behave well under the permitted voltages as
shown in Fig. 8. The simulation results confirm the ef-
fectiveness of the proposed NAFC.

Simulation 2 A comparison between the NAFC and
a Robust Nonlinear Control (RNC) [14] is provided,
while the external disturbance is zero by given φ = 0
in system (8). The proposed RNC is given by

v = sat(u), (78)

u = R̂Ia + k̂br̂
−1(q̇d + kp(qd − q)

) + u(t − δ) (79)
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Fig. 6 Uncertainty without
sudden changes

Fig. 7 Performance of
uncertainty estimation for
joint 2 expressed by F − F̂

Fig. 8 Control efforts in
the NAFC

Fig. 9 Performance of the
RNC
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Fig. 10 A comparison
between NAFC and RNC
on joint 2 subject to sudden
changes in uncertainty

Fig. 11 The uncertainty
with sudden changes

where sat(·) is the saturation function stated by (15),
and δ is a small positive constant called as time de-
lay. In this simulation, we use the RNC, while the
control design parameters R̂, k̂b, r̂ , and kp are the
same as ones used in the NAFC. We set the time de-
lay δ = 0.001. The RNC shows a very good perfor-
mance shown in Fig. 9, and the maximum tracking er-
ror is about 2.25 × 10−5 rad occurred for the joint 2.
The mean value of absolute error for the joint 2 in the
RNC is calculated about 1.6 × 10−5 rad, whereas this
value was calculated about 3.4 × 10−6 rad for NAFC.
Although the RNC control shows a very good perfor-
mance, the NAFC control is superior to RNC control
by comparing their performances in Fig. 7 and Fig. 9.

Simulation 3 We compare the NAFC and the RNC in
Fig. 10 subject to sudden changes in uncertainty by
inserting the external disturbance given by

φ = 2s(t − 2) (80)

where s(t) is the unit step function. The function φ

in (80) is an example for considering a bounded dis-
turbance with sudden changes. The uncertainty F de-

scribed in (13) is shown in Fig. 11. The RNC is supe-
rior to the NAFC in the face of uncertainty with sudden
changes. The maximum tracking error in the RNC is
about 1.2 × 10−4 rad, whereas the maximum tracking
error in the NAFC is about 6.5 × 10−4 rad in Fig. 10.
In contrast, the NAFC is superior to RNC subject to
smooth changes in uncertainty.

According to the stability analysis, performance
evaluation and simulation results for the RNC in [14]
and for the NAFC in this paper, both control ap-
proaches are robust with a very good tracking perfor-
mance. The reason is that both approaches are based
on the voltage control strategy which obtains impor-
tant advantages over the torque control strategy due
to being free from manipulator dynamics. As a re-
sult, they are computationally simple, decoupled, and
well behaved with fast response. The NAFC is su-
perior to RNC subject to smooth changes in uncer-
tainty, whereas the RNC is superior to NAFC subject
to sudden changes in uncertainty. The reason is that the
adaptive fuzzy system can approximate an uncertainty
that is continuous and smooth or differentiable, while
the RNC presented in [14] is free from this condition.
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8 Conclusion

This paper has developed a novel robust decentral-
ized NAFC control of electrically driven robot ma-
nipulators using the voltage control strategy. We have
used a fuzzy system to estimate and compensate un-
certainty. The uncertainty has been modeled as a non-
linear function of the joint position error and its time
derivative in replace of employing all system states.
The stability analysis verifies that the system states are
bounded. The proposed NAFC has shown a very good
performance such that the value of |ė + kpe| is ulti-
mately bounded to a small value. Simulation results
have shown the effectiveness of the method. We have
compared the NAFC with the RNC. Both control ap-
proaches are robust with a very good tracking perfor-
mance. The RNC is superior to the NAFC in the face
of sudden changes in uncertainty, whereas the NAFC
is superior to the RNC in the face of an uncertainty
without sudden changes.
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