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Abstract We investigate stochastic resonance in an
underdamped linear system subjected to multiplica-
tive trichotomous noise. We carry out the Shapiro–
Loginov formula to find the exact expression of out-
put amplitude gain, and the impacts of the input signal
frequency and noise parameters will be observed, such
as noise switching rate or noise correlation time, noise
amplitude and noise flatness. Then one can find the
stochastic resonance for the proposed linear system.
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1 Introduction

Effects of random noise have been considered by a
number of investigators, and it has been found that in
nonlinear systems transitions including generation or
suppression of bifurcation or chaos can be induced by
different kinds of noise [1], such as Gaussian white
noise, non-Gaussian Levy noise and colored noise
[2–4].
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Stochastic resonance (SR) is just a kind of syner-
gistic effect driven by a periodic signal which was pro-
posed by Benzi to explain the cycle changes of ancient
climates [5]. At present, SR has been used successfully
in many different fields [6–8].

It is well known that there are three requirements
to generate SR, which are nonlinear system, periodic
signal and random noise. Later SR was also found in
linear systems driven by binary noise [9–23], but few
results on SR driven by trichotomous noise, which is
a kind of three-level Markovian noise. Its probability
density function and statistical properties have been
derived [24, 25], and the steady-state distribution of
a linear process with an additive trichotomous noise
was obtained [24–27]. Both trichotomous noise and
binary noise are called as stochastic telegraph pro-
cesses, which are useful to simulate colorful wave phe-
nomenon. Noise flatness is an important characteristic
parameter for describing noise, but it is supposed as
a constant in the binary noise [28–30], and here we
study the SR of linear systems under excitation of tri-
chotomous noise with flatness not a constant.

In this paper, we will consider an underdamped
linear system excited by multiplicative trichotomous
noise and stochastic resonance will be observed ver-
sus different parameters, such as the input signal fre-
quency, noise switching rate or noise correlation time,
noise amplitude and noise flatness.

The paper is organized as follows. In Sect. 2, the
output amplitude gain of the system is calculated ana-
lytically. In Sect. 3, we discuss the influence of input
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signal frequency, noise switching rate, noise flatness
and noise amplitude on the output amplitude gain, and
SR will be found right now. Finally, we conclude this
paper in Sect. 4.

2 Model and output amplitude gain

The model of the second order weak damping linear
system disturbed by random noise can be described as
the following stochastic differential equation:

m
d2x

dt2
+ (

2r + Z(t)
)dx

dt

+ (
ω2 + Z(t)

)
x = A sin(Ωt), (1)

where x(t) and ω/
√

m represent oscillatory displace-
ment and system inner frequency, respectively. r and
2r/m denote the damping coefficient and the damping
rate of the system with r < ω. Z(t) denotes trichoto-
mous noise such that Z(t) ∈ {−a,0, a} with 〈Z(t)〉 =
0, where 〈Z(t)〉 is the mean of Z(t). The correlation
function 〈Z(t + τ)Z(t)〉 and noise flatness κ are de-
fined as

〈
Z(t + τ)Z(t)

〉 = Dυe−υτ = 2qa2e−υτ ,

κ = 〈
Z4(t)

〉
/
〈
Z2(t)

〉2 = 1/2q.

Without loss of generality, we discuss the situation
of m = 1.

Equation (1) can be represented by two one-order
equations

⎧
⎪⎨

⎪⎩

dx
dt

= y,

dy
dt

= −(
2r + Z(t)

)
y − (

ω2 + Z(t)
)
x

+ A sin(Ωt).

(2)

Next, we calculate the output of the system. The
equations about variables of 〈x〉, 〈y〉, 〈Z(t)x〉, 〈Z(t)y〉,
〈Z2(t)x〉 and 〈Z2(t)y〉 can be obtained by using the
Shapiro–Loginov formula [31].

One arrives at
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

〈x〉 = 〈y〉,
d
dt

〈y〉 = −2r〈y〉 − 〈Z(t)y〉 − ω2〈x〉
− 〈Z(t)x〉 + A sin(Ωt),

d
dt

〈Z(t)x〉 = 〈Z(t)y〉 − υ〈Z(t)x〉,
d
dt

〈Z(t)y〉 = −(2r + υ)〈Z(t)y〉 − 〈Z2(t)y〉
− ω2〈Z(t)x〉 − 〈Z2(t)x〉,

d
dt

〈Z2(t)x〉 = 〈Z2(t)y〉 − υ〈Z2(t)x〉
+ 2qa2υ〈x〉,

d
dt

〈Z2(t)y〉 = −(2r + υ)〈Z2(t)y〉
− a2〈Z(t)y〉
− ω2〈Z2(t)x〉 − a2〈Z(t)x〉 + 2qa2υ〈y〉
+ 2qa2A sin(Ωt).

(3)

The stationary form of first moment of system (1)
is obtained by solving (3), and

〈x〉st = A
f1 sin(Ωt) + f2Ω cos(Ωt)

f3
, (4)

where f1, f2 and f3 can be derived by the Maple.
Another form of (4) is

〈x〉st = B sin(Ωt + ϕ), (5)

where

B2 = A2 f 2
1 + f 2

2 Ω2

f 2
3

, (6)

tan(ϕ) = f2Ω

f1
. (7)

Then we obtain the output amplitude gain G, which
is

G =
∣
∣∣∣
B

A

∣
∣∣∣ =

[
f 2

1 + f 2
2 Ω2

f 2
3

] 1
2

. (8)

3 The SR of systems

According to the formula (8), we can find the relation-
ship of the output amplitude gain G with the system
input signal frequency and the noise parameters (in-
cluding noise switching rate, noise flatness and noise
amplitude).

Figure 1 shows the nonmonotonic relationship be-
tween output amplitude gain G and input signal fre-
quency Ω clearly. However, this relation has not been
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Fig. 1 Nonmonotonic
relationship between
system output amplitude
gain and input signal
frequency with a = 1,
υ = 0.2, ω = 1, q = 0.3

Fig. 2 Nonmonotonic
relationship between
system output amplitude
gain and noise switching
rate with a = 1, r = 0.05,
ω = 1, Ω = 0.8

found in the previous literature. Figure 1 also shows
the following facts.

(1) The system input signal frequency cannot only in-
duce the reverse-resonance, but also induce the
SR, if the parameters are selected properly.

(2) The damping coefficient enhances the optimized
depressing effect of the reverse-resonance, but
weakens the SR.

Figure 2 shows the relationship between the system
output amplitude gain G and the noise switching rate

υ (or the noise correlation time τcor = 1/υ). Figure 2
shows the following facts clearly.

(1) With the increasing of noise switching rate, the
maximum value occurs, namely the SR occurs in
the system.

(2) With the increasing of the stationary probability
q, the peak value of the curve is nonmonotonic
and moves towards the right side. When q = 0.5,
the trichotomous noise degenerates into the bi-
nary noise, and then the curve in Fig. 2 represents
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Fig. 3 Nonmonotonic
relationship between
system output amplitude
gain and noise stationary
probability with a = 2,
r = 0.05, ω = 1, Ω = 0.8

Fig. 4 Nonmonotonic
relationship between
system output amplitude
gain and the noise
amplitude with r = 0.05,
υ = 0.2, ω = 1, q = 0.3

stochastic resonance induced by binary noise. The
peak value of the curve can be increased by ad-
justing the stationary probability.

Next, we discuss the relationship between the sys-
tem amplitude gain G and the noise flatness κ . Since
the relationship between the noise flatness and the sta-
tionary probability is κ = 1/2q , we discuss the re-
lationship between the system output amplitude gain
G and the stationary probability q. The results are
shown in Fig. 3. Figure 3 shows that the system am-
plitude gain and the stationary probability have non-

monotonic relationship with the minimum value, and
it also demonstrates that stationary probability can in-
duce reverse-resonance. In other words, the noise flat-
ness has optimized depressing influence on output am-
plitude gain.

Figure 4 shows the relationship between the system
output gain G and the noise amplitude a. It is obvious
that the nonmonotonic relationship in Fig. 4 is oppo-
site of that in Fig. 1. In Fig. 4, the maximum occurs
firstly, and then the minimum value occurs. In other
words, the noise amplitude firstly induces the SR and
induces the reverse-resonance later. With the increase
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of the input signal frequency, the peak value shifts to-
ward the left side.

4 Conclusions

We mainly consider the phenomenon of SR in an
underdamped linear system with trichotomous noise.
Firstly, we calculate the system output amplitude gain
by the Shapiro–Loginov formula, and then discuss the
influences of the system parameters and the noise pa-
rameters on the system output amplitude by numerical
calculation. Experimental results show that both the
system input signal frequency and the noise parame-
ters (including the noise switching rate, the noise flat-
ness, and the noise amplitude) can induce SR, and we
can also get the following conclusions.

(1) Input signal frequency first induces reverse-reso-
nance, and then induces SR.

(2) Noise switching rate induces SR.
(3) Noise flatness induces reverse-resonance.
(4) Noise amplitude first induces SR, and then in-

duces reverse-resonance.
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