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Abstract Robust stability of a class of model-based
networked control systems (MB-NCSs, for short)
with nonlinear perturbation is analyzed. Based on the
model-based networked control algorithm, a linear
model of the plant is used to estimate the plant state
behavior between transmission times. The case that
the nonlinear plant and the linear plant model are con-
nected via a network channel with transmission times
that are varying within a time interval is of particular
interest. Sufficient condition on stability of MB-NCSs
with nonlinear perturbation is given. One advantage
of the proposed method is that the maximum trans-
mission interval and the robustness bound on nonlin-
ear perturbation can be computed. Finally, numerical
simulation is worked out to show our main result.

Keywords Nonlinear perturbation · Exponentially
stable · Ultimately bounded · Time-varying

1 Introduction

Recently, there has been much interest in networked
control systems (NCSs, for short, [1, 2]), that is, con-
trol systems with a feedback loop closed through a
communication network. It is clear that the reduction
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of bandwidth needed by the communication network
in a NCS is a major concern. To overcome the band-
width constraint, several approaches have been pro-
posed. Some of these include the study of NCS with
transport delays, and under noise disturbances, quan-
tization effects and algorithms, and scheduling algo-
rithms [1, 2].

A particular class of NCSs is model-based net-
worked control systems (MB-NCSs), introduced in [3].
Model-based networked control systems are used
widely, which provide a plant model in the actuator
side of the plant to approximate the plant behavior
during time periods when sensor data are not avail-
able, such that the amount of the bandwidth necessary
for feedback control to maintain certain stability and
performance is minimized. At each transmission time,
the plant model is updated with the measured plant
state. Stability results for linear systems with different
variations of transmissions times are shown in [3–6].
Different aspects of NCS such as time delay, transmis-
sion policies, multirate sampling, quantization, etc. are
further pursued based on the idea of model-based NCS
in [7–12].

A constant updating period is discussed for sys-
tems under MB-NCS control scheme in [3–5, 7–12];
few works are done for systems with time-varying up-
date times. Although stability of linear MB-NCSs with
time-varying update times is studied in [6], their ap-
proach does not work in the case with nonlinear MB-
NCSs. The reason is that its main results are based
on the representation of its response (related to ini-

mailto:gxwang_2004@163.com


1352 G. Wang et al.

tial condition), while the one for nonlinear MB-NCSs
cannot be shown directly. In addition, as we all know
that stability of systems with nonlinearity is also very
popular; see [13, 14]. Motivated by above, stability of
nonlinear MB-NCS with time-varying update times is
pursued here.

Nonlinear systems of interest are those in the pa-
per, which are composed by linear part plus nonlinear
perturbation. Here, the transmission times are assumed
to be varying within a time interval [hmin, hmax] and
a linear system is chosen as the compensated plant
model at the controller/actuator side to approximate
the plant behavior during time periods when sensor
data are not available.

Since the approach for stability of linear MB-NCSs
in [6] depends on the accurate representation of its
response, when we investigate stability of nonlinear
MB-NCSs with time-varying update times, the main
difficulty is that a new approach is needed. To over-
come this difficulty, the Lyapunov function is adopted
here. Firstly, stability of a sequence of the whole
closed-loop systems is discussed based on Lyapunov
function. Then stability of the whole closed systems
will be studied. Since a different method is adopted to
deal with the nonlinear case; a new test matrix and a
sufficient condition for stability are given in the paper.
If supposedly the condition is satisfied, it is claimed
that there exists a robust bound on nonlinear pertur-
bation such that MB networked control systems with
nonlinear perturbation within the range is stable or
uniformly ultimately bounded.

On the other hand, since MB networked control
systems with time-varying update times are time-
varying systems; sufficient condition for its stability is
required to hold uniformly for all update times within
an interval [hmin, hmax]. Therefore, another difficulty
is how to derive such an update time interval. An al-
gorithm for determining the interval is proposed in
the paper based on a new test matrix and sufficient
condition for stability, which is shown in the numeri-
cal example. It is worth pointing out that a better ap-
proximation of the actual plant, a larger stable interval
[hmin, hmax] will be obtained.

In a word, stability of nonlinear MB-NCS with
time-varying update times is discussed here. The case
that the nonlinear plant and the linear plant model
are connected via a network channel with transmis-
sion times that are varying within a time interval is of
particular interest. Sufficient condition for stability of

Fig. 1 State feedback of model-based networked systems

MB-NCSs with nonlinear perturbation is proposed. If
supposedly the condition is satisfied, it is claimed that
there exists a robust bound on nonlinear perturbation
such that MB networked control systems with nonlin-
ear perturbation within the range is stable or uniformly
ultimately bounded. An algorithm for determining the
interval is proposed. Meanwhile, stability robustness
bound can be obtained via Lyapunov function, which
is illustrated in the numerical simulation.

The rest of the paper is organized as follows. In
Sect. 2, the problem formulation for nonlinear MB-
NCS under time-varying updating times is given. In
Sect. 3, stability results are presented. Next, an algo-
rithm to derive a stable interval is proposed. Finally,
two numerical examples are shown to verify our re-
sults.

2 Problem formulation

The control system is shown in Fig. 1. The actual plant
labeled by “Plant” in Fig. 1 is described by

ẋ = Ax + Bu + f (x,u) (1)

where x ∈ Rn, u ∈ Rm are the state and input of the
plant (1), respectively.

Nonlinear perturbation f satisfies

‖f ‖ ≤ α‖x‖ + β‖u‖ + δ (2)

where α,β, δ are nonnegative real numbers.
The plant model is chosen as follows:

�̇
x = �

A
�
x + �

B u (3)

where
�
x∈ Rn is the state of the plant model.

We chose the controller as u = K
�
x where matrix

K will be designed later.
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As shown in Fig. 1, the plant model (3) will receive
the state x(tk) of the plant (1) at times tk , periodically,
where tk+1 − tk = h(k) (k = 0,1,2, . . .) is a time-
varying period. For simplicity, no transmission delay
is considered here, that is, the plant model (3) will re-
ceive the state x(tk) at the instance when it is transmit-
ted. Moreover, the state

�
x(tk) of the plant model (3)

will be updated by x(tk) as soon as it receives x(tk).

Remark 1 The plant model (3) is an approximating
model of the actual plant (1) and is connected with
the actual plant (1) by networks with a time-varying
period h(k) ∈ [hmin, hmax]. Our main goal is to study
whether the plant (1) can be stabilized by the con-
troller based on the state feedback of its approximating
model (3).

Assume that the property of time-varying update
times h(k) is unknown, but h(k) is contained within
some interval [hmin, hmax].

Let e = x− �
x and z = (xT , eT )T . Then, based on

the model-based control architecture, the dynamic of
the system (1)–(3) shown in Fig. 1 with time-varying
update times h(k) are given by

ż = Λz + F, z(tk) =
(

x(tk)

e(tk)

)
=

(
x(t−k )

0

)
,

tk − tk−1 = h(k), k = 0,1,2, . . .

(4)

where

Λ =
[

A + BK −BK

ΔA + ΔBK
�

A −ΔBK

]
, F =

[
f

f

]
,

ΔA = A− �

A,ΔB = B− �

B, z
(
t−k

) = lim
t→t−k

z(t)

It is easy to get

‖F‖ ≤ α0‖x‖ + β0‖e‖ + δ0 ≤
√

α2
0 + β2

0‖z‖ + δ0 (5)

where α0 = √
2(α + β‖K‖), β0 = √

2β‖K‖, and
δ0 = √

2δ.
Here, the vector norm ‖.‖ is chosen as 2-norm.

3 Main results

Define

M0(h) = exp(Λh)

[
I O

O O

]
(6)

where h ∈ [hmin, hmax].

Remark 2 The previous matrix M0(h) is called “the
test matrix,” which is very important for stability of
dynamic (4).

The following are the main results of the paper.

Theorem 1 Suppose that there exist positive-definite

matrices X > 0 and
�

Q > 0 such that

X − M0(h)T XM0(h) − �

Q ≥ 0 (7)

holds for all h ∈ [hmin, hmax].

Then there exists d∗ > 0 such that for all√
α2

0 + β2
0 ≤ d∗ the following holds:

(1) When δ = 0, the system (4) is exponentially stable
around the solution z(t) = (OT ,OT )T with time-
varying update times h(k) ∈ [hmin, hmax].

(2) When δ 	= 0, the system (4) is ultimately bounded
with time-varying update times h(k) ∈
[hmin, hmax].

Remark 3 Theorem 1 tells us that exponentially sta-
bility or ultimately bounded hold for small perturba-

tion if there are positive-definite matrices X and
�

Q

such that inequality (7) holds for all time-varying up-
date times h ∈ [hmin, hmax]. Here, (7) is called as “the
Lyapunov inequality,” which is a sufficient condi-
tion for stability of (4) with time-varying update times
h ∈ [hmin, hmax].

Remark 4 In order to guarantee stability of system (4),
the Lyapunov inequality (7) is requested to hold for all
update times h ∈ [hmin, hmax] uniformly. The transfer
interval [hmin, hmax] is called “stable interval” for sys-
tem (4). Next, we will continue to find such a stable in-
terval for system (4) and the corresponding Lyapunov
inequality (7).

Remark 5 Here, two positive matrices X > 0 and
�

Q > 0 independent of time-varying update times
h(k) ∈ [hmin, hmax] are required to ensure stability
of the whole system (4). It is worth pointing out that
only one positive matrix is required for linear systems
in [6]. Since the condition (7) is improved, a better
result can be obtained, that is, the system (4) is uni-
formly exponentially stable and supposedly (7) holds.

To get Theorem 1, we need the following lemma.
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Lemma 1 There exist positive constants c and γ for
the solution of (4) with time-varying update times
h(k) ∈ [hmin, hmax] such that∥∥z(t)

∥∥ ≤ c
∥∥z

(
t−k

)∥∥ + γ (8)

for t ∈ [tk, tk+1), where z(t−k ) = limt→t−k
z(t).

Proof For t ∈ [tk, tk+1), the response of dynamic (4)
has the following response:

z(t) = exp
(
Λ(t − tk)

)[
I O

O O

]
z
(
t−k

)

+
∫ t

tk

exp
(
Λ(t − s)

)
F(s)ds

= M0(t − tk)z
(
t−k

) +
∫ t

tk

exp
(
Λ(t − s)

)
F(s)ds

(9)

Thus,
∥∥z(t)

∥∥ ≤ ∥∥M0(t − tk)
∥∥z

(
t−k

)∥∥
+

∫ t

tk

∥∥exp
(
Λ(t − s)

)∥∥∥∥F(s)
∥∥ds

Let

Γ = max
t∈[0,hmax]

∥∥M0(t)
∥∥ and η = max

t∈[0,hmax]
∥∥eΛt

∥∥
Combine the previous inequality with (5), one has that
∥∥z(t)

∥∥ ≤ (
Γ

∥∥z
(
t−k

)∥∥ + ηδ0hmax
)

+ η

√
α2

0 + β2
0

∫ t

tk

∥∥z(s)
∥∥ds (10)

By the Grownwall–Bell inequality, we know that∥∥z(t)
∥∥ ≤ c

∥∥z
(
t−k

)∥∥ + γ (11)

where c = Γ e
ηhmax

√
α2

0+β2
0 , γ = ηδ0hmaxe

ηhmax

√
α2

0+β2
0 .

Therefore, (8) holds. �

Remark 6 Lemma 1 tells us a relation between the
state of the system (4) and its sequence at instants {t−k }.
Here, c and γ are independent of the time-varying up-
date times h(k).

Next, we will prove Theorem 1.

Proof of Theorem 1
By (9), we have that

z
(
t−k+1

) = M0
(
h(k)

)
z
(
t−k

) + Ωk (12)

where

M0(h(k)) = exp(Λh(k))

[
I O

O O

]
,

Ωk =
∫ tk+1

tk

exp
(
Λ(t − s)

)
F(s)ds

Construct a Lyapunov function V (z(t−k )) =
(z(t−k ))T Xz(t−k ) and the difference ΔV along (12) is

ΔV = (
z
(
t−k

))T (
M0

(
h(k)

)T
XM0

(
h(k)

) − X
)
z
(
t−k

)
+ 2ΩT

k XM0
(
h(k)

)
z
(
t−k

) + ΩT
k XΩk

By (7), we have that

M0(h)T XM0(h) − X ≤ −�

Q < 0,

for all h ∈ [hmin, hmax]
Therefore, one has

ΔV ≤ −(
z
(
t−k

))T �

Qz
(
t−k

)
+ 2ΩT

k XM0
(
h(k)

)
z
(
t−k

) + ΩT
k XΩk (13)

By (5), we have

‖Ωk‖ ≤ η

∫ tk+1

tk

∥∥F(s)
∥∥ds

≤ η

∫ tk+1

tk

(
d0

∥∥z(s)
∥∥ + δ0

)
ds (14)

where d0 =
√

α2
0 + β2

0 . Due to Lemma 1, one can get

‖Ωk‖ ≤ η

∫ tk+1

tk

(
d0

[
c
∥∥z

(
t−k

)∥∥ + γ
] + δ0

)
ds

≤ N1
∥∥z

(
t−k

)∥∥ + N2 (15)

where N1 = ηchmaxd0,N2 = ηhmax(δ0 + γ d0).
After the calculation, we have

ΔV ≤ −ρ
∥∥z

(
t−k

)∥∥2 + κ
∥∥z

(
t−k

)∥∥ + ω (16)

where λmax(X) and λmin(X) are the maximum and
minimum eigenvalue of X,

ρ = λmin(
�

Q) − λmax(X)(2Γ + N1)N1,

κ = 2(Γ + N1)λmax(X)N2, ω = λmax(X)N2
2

(17)

Note that N1 → 0 as d0 → 0 and ρ → λmin(
�

Q) > 0 as
N1 → 0.

By continuous property, we know that there exists
d∗ > 0 such that

ρ > 0 holds for all d0 =
√

α2
0 + β2

0 ≤ d∗
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(1) for the special case with δ = 0.
When δ = 0,N2 = 0, κ = 0, and ω = 0 hold.

Therefore, (16) turns to be

ΔV ≤ −ρ
∥∥z

(
t−k

)∥∥2

Moreover,

ΔV ≤ −ρ
∥∥z(t−k )

∥∥2 ≤ 0 holds for all

d0 =
√

α2
0 + β2

0 ≤ d∗

Therefore, {z(t−k )} is exponentially stable.
On the other hand, the inequality (8) in Lemma 1

with δ = 0 turns out to be∥∥z(t)
∥∥ ≤ c

∥∥z
(
t−k

)∥∥
Hence, when δ = 0, the system described by (4)
is exponentially stable around the solution z(t) =
(OT ,OT )T for all d0 =

√
α2

0 + β2
0 ≤ d∗ with

time-varying update times h(k) ∈ [hmin, hmax].
(2) If δ 	= 0, (16) can be written as

ΔV ≤ −(1 − θ)ρ
∥∥z

(
t−k

)∥∥2 + κ
∥∥z

(
t−k

)∥∥
− θρ

∥∥z
(
t−k

)∥∥2 + ω 0 < θ < 1 (18)

Then

ΔV < 0 if
∥∥z(t−k )

∥∥ > max{ κ

(1 − θ)ρ

√
ω/θρ}

for all d0 =
√

α2
0 + β2

0 ≤ d∗

Hence, {z(t−k )} is ultimately bounded.
Combined with Lemma 1, we can get the sys-

tem described by (4) with time-varying update
times h(k) ∈ [hmin, hmax] is ultimately bounded if

δ 	= 0 for all d0 =
√

α2
0 + β2

0 ≤ d∗. �

Remark 7 Nonlinear bound d0 can be derived from
(16), that is, to ensure ρ > 0. From the representation
of ρ in (17), we know that different choice of positive

matrices X and
�

Q will affect the size of robustness
bound d∗.

Two corollaries concerning nonlinear MB-NCSs
with constant update time and linear MB-NCSs with
time-varying update times can be obtained from The-
orem 1 directly.

When the update times h(k) are equal, then the fol-
lowing corollary is deduced from Theorem 1 directly
for constant update time.

Corollary 1 If the eigenvalues of M0(h) are strictly
inside the unit circle, then there is d∗ > 0 such that for

all
√

α2
0 + β2

0 ≤ d∗ the following holds:

(1) When δ = 0, the system (4) is exponentially stable
around the solution z(t) = (OT ,OT )T with con-
stant update time h(k) = h.

(2) When δ 	= 0, the system (4) is ultimately bounded
with constant update time h(k) = h.

Proof Since M0 is Schur stable, there exist positive
matrices P > 0 and Q > 0 such that MT

0 PM0 − P =
−Q. Therefore, (7) is satisfied. The rest is omitted.

When nonlinear perturbation disappears, that is,
f ≡ 0, then the following corollary can be deduced
from Theorem 1 directly for linear MB networked
control systems. �

Corollary 2 When f ≡ 0, the dynamic system (4)
is exponentially stable around the solution z(t) =
(OT ,OT )T with time-varying update times h(k) ∈
[hmin, hmax], if there exist positive-definite matrices

X > 0 and
�

Q> 0 such that

X − M0(h)T XM0(h)− �

Q≥ 0

holds for all h ∈ [hmin, hmax].

4 Some comments concerning stable intervals

Theorem 1 can be used to derive an interval
[hmin, hmax] for h for which stability is guaranteed.
In fact, the Lyapunov inequality (7) is required to hold
for all update times h within the interval [hmin, hmax].
Moreover, it is clear that the range [hmin, hmax] will

vary with the choice of positive matrices X and
�

Q.
In the following, we will pursue how to find such an
interval h ∈ [hmin, hmax] and corresponding positive

matrices X and
�

Q.
An approach for linear MB-NCSs is given in [6],

which is based on the observation that the stable inter-
val obtained this way will always be contained in the
set of constant update times for which the system is
stable. That is, an update time contained in the stable
interval [hmin, hmax] will always be a stable constant
update time.

With that in mind, the way to obtain the values
for hmin and hmax for nonlinear MB-NCSs with time-
varying update times h(k) ∈ [hmin, hmax] can be de-
scribed as follows:
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Step 1. Find a constant update time h0 which is stable.
This stable constant update time h0 can be found based
on Corollary 1. For such an update time h0, find the

corresponding positive matrices X and
�

Q such that the
Lyapunov inequality (7) holds for this constant update
time h0.

Step 2. Use the previous value of X and
�

Q. Let the
update time h vary near h0. Next, consider the posi-
tiveness of the expression

X − M0(h)T XM0(h)− �

Q

which will vary with the update time h. Then find the
largest interval [hmin, hmax] such that (7) holds for all
h ∈ [hmin, hmax].
Step 3. This can be repeated for all the values of
h known to be stable to find the widest interval
[hmin, hmax].

5 Example

We take the same system with [6]: the double integra-
tor with nonlinear perturbation in the following exam-
ple to illustrate our proposed approach.

Example 1 The actual plant is now chosen as
(

ẋ1

ẋ2

)
=

(
0 1
0 0

)(
x1

x2

)
+

(
0
1

)
u + f (19)

where nonlinear perturbation f satisfies (2).
The plant model is chosen as

(
ẋ1

ẋ2

)
=

(
0 0
0 0

)(
x1

x2

)
+

(
0
0

)
u (20)

which behaves as a zero-order hold device as the one
in [6].

The controller is taken as u = K
�
x with K =

(−1,−2).
After calculation, we can get that

Λ =

⎡
⎢⎢⎣

0 1 0 0
−1 −2 1 2
0 1 0 0

−1 −2 1 2

⎤
⎥⎥⎦

and

M0(h) = exp(Λh)

[
I2 O

O O

]

=

⎡
⎢⎢⎣

1 − 0.5h2 h − h2 0 0
−h 1 − 2h 0 0

−0.5h2 h − h2 0 0
−h −2h 0 0

⎤
⎥⎥⎦

Next, we will find a stable interval for nonlinear
system (19)–(20) based on Theorem 1.

Step 1. First, find one constant update time such that
inequality (7) holds at this point.

Fix the update time h0 = 0.5, and after calculation,
we know that

M0(0.5) =
[
W O

Y O

]
, W =

[
0.875 0.25
−0.5 0

]
,

Y =
[−0.125 0.25

−0.5 −1

]

It is easy to check that the matrix M0(0.5) is Schur
stable. Hence, by Corollary 1, we know that the update
time h0 = 0.5 is a stable constant update time.

Correspondingly, we can choose the positive-defi-

nite matrices X and
�

Q by the Matlab tool box as fol-
lows:

X =

⎡
⎢⎢⎣

7.7529 2.3953 −0.0001 0.0003
4.8766 0.0001 0.0001

∗ 2.1276 −0.0006
∗ ∗ 2.1289

⎤
⎥⎥⎦ ,

�

Q = 1.5I4

(21)

such that

X − MT
0 (0.5)XM0(0.5) − 1.5I4 > 0 (22)

holds, that is, (7) with the previous positive matrix X

and
�

Q = 1.5I4 holds for h0 = 0.5. Moreover,

λmax(X) = 9.1086, λmin(
�

Q) = 1.5 (23)

Step 2. Expand near the fixed point h0 = 0.5.
When matrix M0(h) = exp(Λh)

[
I2 O
O O

]
takes the

place of M0(0.5) in the left equation of (22), the min-
imum eigenvalue magnitude for the matrix

X − MT
0 (h)XM0(h) − 1.5I4

is shown in Fig. 2.
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Fig. 2 Minimum
eigenvalue for
X−MT

0 (h)XM0(h)−1.5I4

Fig. 3 The curve of
function ρ(d0)

From Fig. 2, we have that matrix

X − MT
0 (h)XM0(h) − 1.5I4 ≥ 0

holds for the interval h ∈ [hmin, hmax] = [0.34,0.57].
Therefore, choose the stable interval as h ∈

[hmin, hmax] = [0.34,0.57]. That is, (7) with previous

positive matrix X defined in (21) and
�

Q = 1.5I4 holds
for all h ∈ [0.34,0.57].

Therefore, by Theorem 1, there exists a stability ro-
bustness bound for nonlinear MB networked control
system (19)–(20) with time-varying update times h(k)

within the interval [0.34,0.57].
Next, we will compute the robust bound for system

(19)–(20) with time-varying update time h(k) within
the interval [0.34,0.57].

Step 3. Calculate the stable bound for nonlinear per-
turbation.

Here, hmax = 0.57,Γ = 1.5179, η = 2.9255.

Since N1 = ηchmaxd0 and c = Γ e
ηhmax

√
α2

0+β2
0 , it

is easy to get the relationship between ρ and nonlinear
bound d0 by (17):

ρ(d0) = λmin(1.5I4) − λmax(X)N1(2Γ + N1)

= 1.5 − 9.1086N1(2Γ + N1)

Figure 3 plots the curve of the function ρ(d0), which
shows that

ρ > 0 holds for all d0 ∈ [
0, d∗] = [0,0.02]

Hence, the robustness bound d∗ = 0.02.
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Fig. 4 The response of the MB networked control systems (19)–(20) (23)

Fig. 5 Time varying
update times h(k)

Step 4. Numerical response
For the purpose of simulation, we choose the non-

linear perturbation f as

f =
(

0.1αx1 sin(x1)

0

)
(24)

It is easy to get that ‖f ‖ ≤ α‖x‖.
By previous analysis and (5), we can compute the

nonlinear stable bound α∗ = 0.1414, that is, systems
(19)–(20) with nonlinear perturbation (24) under the
MB-networked control algorithm is exponentially sta-
ble if the nonlinear perturbation bound α ≤ 0.1414 for
time-varying update times h(k) ∈ [0.34,0.57].

When the initial condition x(0) = [8,8]T and α =
0.14, the response of the controlled plant (19) and the

plant model (20) with nonlinear perturbation (24) un-
der MB-networked control algorithm for time-varying
update time h(k) ∈ [0.34,0.57] are shown in the left
and right side of Fig. 4, respectively, which verify
the rightness of Theorem 1. Meanwhile, the corre-
sponding time-varying update times h(k) are shown
in Fig. 5.

When the nonlinear perturbation f is chosen as

f =
(

0.1αx1 sin(x1)

0

)
+

⎛
⎝

2x1x2
x2

1+x2
2

2x1x2
x2

1+x2
2

⎞
⎠ (25)

It is easy to get that ‖f ‖ ≤ α‖x‖ + 1. By previ-
ous analysis and Theorem 1, we know that when the
nonlinear stable bound α ≤ 0.1414, systems (19)–(20)
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Fig. 6 The response of the MB networked control systems (19)–(20) (25)

Fig. 7 Time varying
update times h(k)

with nonlinear perturbation (25) under MB-networked
control algorithm is uniformly ultimately bounded for
time-varying update time h(k) ∈ [0.34,0.57].

When the initial condition x(0) = [8,8]T and α =
0.1414, the state trajectories of the system (19)–(20)
with nonlinear perturbation (25) under MB-networked
control algorithm are shown in Fig. 6 for time-varying
update time h(k) ∈ [0.34,0.57]. Meanwhile, the cor-
responding time-varying update times h(k) are shown
in Fig. 7.

Remark 8 When the perturbation disappears, that is,
f = 0, according to the Lyapunov equation repre-
sented in [6], the stable interval for the double inte-
grator without nonlinear perturbation is [hmin, hmax] =

[0,0.85], which is larger than ours result h ∈
[0.34,0.57]. However, the Lyapunov equation repre-
sented in [6] cannot solve the nonlinear case.

In fact, two reasons lead our approach more conser-
vative: one is that the existence of nonlinear perturba-
tion; another is that a zero holder (20) is chosen as the
plant model of (19), which is a crude approximation
of the actual plant. The nearer approximation of the
actual plant will lead to less conservative result. Next,
we will take the nearer approximation of the plant (19)
in the following example to enlarge the stable interval.

Example 2 The actual plant is also chosen as (19) with
the nonlinear perturbation f satisfies (2).
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Here, we choose a plant model that better resembles
the plant as the one in [6]:(

ẋ1

ẋ2

)
=

(
0.0844 0.9353
0.0476 −0.0189

)(
x1

x2

)
+

(
0.0871
1.0834

)
u

(26)

The controller is also taken as u = K
�
x with K =

(−1,−2).

Remark 9 Compare the plant model (26) with the
plant model (20) in Example 1, one can find that the
plant model (26) is a better approximation of the actual
plant (19).

After calculation, we can get that

Λ =

⎡
⎢⎢⎣

0 1 0 0
−1 −2 1 2

0.0027 0.2389 −0.0027 0.7611
0.0358 0.1857 −0.0358 −0.1857

⎤
⎥⎥⎦

and the test matrix M0(h) = exp(Λh)
[

I2 O
O O

]
defined in

(6) is a function of the update times h, for simplicity,
it is omitted here.

Next, we will find a stable interval for nonlinear
system (19) (26) based on Theorem 1.

Step 1. First, find one constant update time such that
inequality (7) holds at this point.

Fix the update time h0 = 0.5, and after the calcula-
tion, we know that

M0(0.5) =
[
W O

Y O

]
, W =

[
0.9099 0.3113

−0.3043 0.3440

]
,

Y =
[−0.0192 0.0873

0.0005 0.0571

]

and the matrix M0(0.5) is also Schur stable. Hence, by
Corollary 1, we know that the update time h0 = 0.5 is
a stable constant update time.

Correspondingly, we can choose the positive-defi-

nite matrices X and
�

Q by the Matlab tool box as fol-
lows:

X =

⎡
⎢⎢⎣

4.0626 1.1923 0.0001 0
∗ 2.0746 −0.0003 −0.0002
∗ ∗ 1.1708 −0.0001
∗ ∗ ∗ 1.1709

⎤
⎥⎥⎦ ,

�

Q = I4

(27)

such that

X − MT
0 (0.5)XM0(0.5) − I4 > 0 (28)

holds, that is, (7) with previous positive matrix X and
�

Q = I4 holds for h0 = 0.5. Moreover,

λmax(X) = 4.6209, λmin(
�

Q) = 1 (29)

Step 2. Expand near the fixed point h0 = 0.5.
When matrix M0(h) = exp(Λh)

[
I2 O
O O

]
takes the

place of M0(0.5) in the left equation of (28), the min-
imum eigenvalue magnitude for the matrix

X − MT
0 (h)XM0(h) − I4

is shown in Fig. 8.
From Fig. 8, we have that matrix

X − MT
0 (h)XM0(h) − I4 ≥ 0

holds for the interval h ∈ [hmin, hmax] = [0.5,2.3].
Therefore, choose the stable interval as h ∈

[hmin, hmax] = [0.5,2.3]. That is, (7) with the previous

positive matrix X defined in (26) and
�

Q = I4 holds for
all h ∈ [0.5,2.3].
Step 3. Calculate the stable bound for the nonlinear
perturbation.

Here, hmax = 2.3,Γ = 0.9815, η = 3.5. By (17), it
is easy to get the relationship ρ(d0), for simplicity, it
is omitted, whose figure is shown in Fig. 9.

From the curve of the function ρ(d0) in Fig. 9, one
has that

ρ > 0 holds for all d0 ∈ [
0, d∗] = [0,0.015]

Hence, the robustness bound d∗ = 0.015.

Step 4. Numerical response
For the purpose of simulation, we also choose the

nonlinear perturbation f as (24).
By previous analysis and (5), we can get the non-

linear stable bound α∗ = 0.1061, that is, systems
(19) (26) with nonlinear perturbation (24) under MB-
networked control algorithm is exponentially stable
if the nonlinear perturbation α ≤ 0.1061 for time-
varying update times h(k) ∈ [0.5,2.3].

When the initial condition x(0) = [8,8]T and α =
0.1, the state trajectory of the system (19) (26) with
nonlinear perturbation (24) under MB-networked con-
trol algorithm is shown in Fig. 10 for time-varying up-
date time h(k) ∈ [0.5,2.3], which verify the rightness
of Theorem 1. Meanwhile, the corresponding time-
varying update times h(k) are shown in Fig. 11.

Remark 10 When we choose a better approximation
(26) of the actual plant (19) in Example 2, based on
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Fig. 8 Minimum
eigenvalue for
X − MT

0 (h)XM0(h) − I4

Fig. 9 The curve of
function ρ(d0)

Fig. 10 The response of the MB networked control systems (19) (24) (26)
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Fig. 11 Time varying
update times h(k)

our method, we get the stable interval [hmin, hmax] =
[0.5,2.3], which is larger than the one [0.34,0.57] in
Example 1. Two examples shows that better approxi-
mation of the actual plant will lead to less conservative
result.

Remark 11 The robustness bound for systems (19)
(24) (26) with a stable interval [0.5,2.3] in Example 2
is 0.015, which is smaller than the one 0.02 for systems
(19) (20) (24) with a stable interval [0.34,0.57] in Ex-
ample 1. Two examples show that larger stable interval
leads to smaller robustness bound even if a better ap-
proximation cannot avoid. How to balance between a
larger stable interval and smaller robustness bound is
something needed to be further considered.

6 Conclusions

The stability of nonlinear MB-NCSs with time-varying
update times is discussed here. The nonlinear plant and
the linear plant model are assumed to be connected via
a network channel with transmission times which are
varying within a time interval. Sufficient condition for
stability of MB-NCSs with nonlinear perturbation is
derived. It is claimed that there exists robust bound on
nonlinear perturbation for stability of the systems. An
algorithm to determine a stable interval [hmin, hmax]
for the update times during which the system is sta-
ble is given explicitly. Moreover, stability robustness
bound can be obtained via the Lyapunov function. Nu-
merical examples are given to illustrate the main result
of the paper.
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