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Abstract In this paper, an adaptive fuzzy backstep-
ping output feedback dynamic surface control (DSC)
approach is developed for a class of multiinput and
multioutput (MIMO) stochastic nonlinear systems
with immeasurable states. Fuzzy logic systems are
firstly utilized to approximate the unknown nonlin-
ear functions, and then a fuzzy state observer is de-
signed to estimate the immeasurable states. By com-
bining adaptive backstepping technique and dynamic
surface control (DSC) technique, an adaptive fuzzy
output feedback backstepping DSC approach is de-
veloped. The proposed control method not only over-
comes the problem of “explosion of complexity” in-
herent in the backstepping design methods, but also
the problem of the immeasurable states. It is proved
that all the signals of the closed-loop adaptive con-
trol stochastic system are semiglobally uniformly ul-
timately bounded (SUUB) in probability, and the ob-
server errors and the output of the system converge to
a small neighborhood of the origin. Simulation results
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are provided to show the effectiveness of the proposed
approach.
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1 Introduction

In the past decades, many approximation-based adap-
tive backstepping control approaches have been devel-
oped to deal with uncertain nonlinear strict-feedback
systems via fuzzy-logic-systems (FLSs) or neural-
networks (NNs) approximators; see, for example, [1—
16] and references herein. Adaptive fuzzy or Neural
network backstepping control approaches in [1-10]
are for single-input and single-output (SISO) nonlin-
ear systems, and in [11, 12] are for multiple-input
and multiple-output (MIMO) nonlinear systems, while
those in [13-16] are for SISO/MIMO nonlinear sys-
tems with immeasurable states. Adaptive fuzzy or neu-
ral network backstepping control approaches can pro-
vide a systematic methodology of solving tracking or
regulation control problems for a larger of unknown
nonlinear systems, where FLSs or NNs are used to ap-
proximate unknown nonlinear functions, and the back-
stepping design technique is applied to construct adap-
tive controllers and the adaptation adjusted laws of
the parameters. Two of the main features of these
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adaptive approaches are (i) they can be used to deal
with those nonlinear systems without satisfying the
matching conditions, and (ii) they do not require the
unknown nonlinear functions being linearly param-
eterized. Therefore, the approximator-based adaptive
fuzzy or neural network backstepping control becomes
one of the most popular design approaches to a large
class of uncertain nonlinear systems.

Despite that many developments have been
achieved for the adaptive backstepping control of un-
certain nonlinear strict-feedback systems using FLSs
or NNs, the mentioned above adaptive control ap-
proaches are only applied to the deterministic nonlin-
ear strict-feedback systems without stochastic distur-
bances. It is well known that stochastic disturbances
often exist in many practical systems. Their exis-
tence is a source of instability of the control systems,
thus, the investigations on stochastic systems model-
ing and control have received considerable attention
in recent years [17]. Authors in [18] first proposed
an adaptive backstepping control design approach for
strict-feedback stochastic systems by a risk-sensitive
cost criterion. Authors in [19] solved the output feed-
back stabilization problem of strict-feedback stochas-
tic nonlinear systems by using the quartic Lyapunov
function, while authors in [20] and [21] developed
backstepping control design approaches for nonlinear
stochastic systems with Markovian switching. Mean-
while, by using the linear reduced-order state ob-
server, several different output-feedback controllers
are developed in [22-24] for strict-feedback nonlinear
stochastic systems with unmeasured states. However,
these schemes are only suitable for those nonlinear
stochastic systems with nonlinear dynamics models
known exactly or with the unknown parameters ap-
pearing linearly with respect to known nonlinear func-
tions.

To handle the above the problems, authors in [25]
and [26] first developed adaptive output feedback con-
trol approaches for a class of uncertain nonlinear
stochastic systems by using neural networks and the
stability proofs of the control systems are given on the
stochastic stability theory [27]. Afterward, authors in
[28] extended the results of [25] and [26] to a class
of uncertain large-scale nonlinear stochastic systems
and developed adaptive NN decentralized output feed-
back control schemes. The adaptive NN backstepping
control approaches in [25, 26], and [28] can control
a class of nonlinear stochastic systems with immea-
surable states, however, the nonlinear uncertainties in
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the nonlinear stochastic systems are only the functions
of the system output, not related with the other states
variables. Moreover, the mentioned above approaches
are only limited to those SISO or large-scale nonlin-
ear stochastic systems. To our best knowledge, to date,
there are few results on MIMO stochastic nonlinear
systems with immeasurable states.

Motivated by the above observations, in this paper,
an observer-based adaptive fuzzy backstepping out-
put feedback DSC approach is proposed for a class of
MIMO stochastic nonlinear strict-feedback systems.
In the design, the FLSs are first used to approximate
the unknown functions, and a nonlinear fuzzy state ob-
server is designed to estimate the unmeasured states.
Combining the adaptive backstepping design along
with the DSC technique, an observer-based adaptive
fuzzy backstepping control approach is developed. It
is proved that this control approach can guarantee that
all the signals of the closed-loop system are semiglob-
ally uniformly ultimately bounded (SUUB) in prob-
ability, and the observer errors and the output of the
system converge to a small neighborhood of the origin
by appropriate choice of the design parameters. Com-
pared with the existing results, the main advantages of
the proposed control schemes are as follows: (i) by de-
signing a fuzzy nonlinear state observer, the proposed
adaptive control method does not require that all the
states of the system are measured directly. Meanwhile,
the designed state observer can achieve the better esti-
mation results for the unmeasured states than the linear
reduced-order state observer in [25, 26, 28]. (ii)) DSC
technique is incorporated in adaptive fuzzy backstep-
ping control design, thus the proposed adaptive con-
trol method can overcome the problem of “explosion
of complexity” inherent in the methods of [25, 26, 28].

2 Problem formulation and some preliminaries
2.1 Problem formulation

Consider the following MIMO uncertain strict-feed-
back stochastic nonlinear system

dxji=(xj2+ fii(xj))de +¢i1(xj ) dw
dxjo=(xj3+ fj2(x;2))dt + ¢j,2(£j,2)rdw

ey

dxj,mj—l B (xj,mj + fj,mj—l(ij,mjfl))dt
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FBjmi—1(X _pldw

dxj,mj = (uj + fj,mj (X, gj_l))dt
+ jm; (X ) dw
yi=xj1, j=L2,...,n
where  x;; = (xj,l,...,xj,,-_l.)T e Ri, ij =

1,2,...,mj is the state vector for the first i; dif-
ferential equations of the jth subsystem, u; and y;
are the input and output of the first j subsystems.
fj,,-j(~) is an unknown smooth nonlinear function.
=(xf ... xDT withxj = (xj1, ... xjm) " wis
an independent r-dimensional standard Wiener pro-
cess. In this paper, it is assumed that the only output
variable y; = x; 1 is available for measurement.

Assumption 1 ¢;;; (lj,ij) 8j.i;(yj), where
8j.i;(yj) is a smooth function satisfying locally Lip-

schitz condition.

Write (1) in the state space form

’n./
dx,, = <A1£m,~ +Kjyj+ ) Bik(fik(Xj0)

k=1
—i—bjuj)dt—i—Gj(yj)wa ()
yj=CjT§ni, Jj=12,...ni;=1,2,...,mj—1
where
-k
Aj= : I ;
L kj»mj 0 mjXmj
[ kj
Ki=1 : |
kj,m/-
Bl =101 Ol bf =100 1ixm,.
k
Gi(yj)=[g10)) gim; )],
Ci=[10Olism u=lur,uz,...un]"

Choose vector K ; such that matrix A; is a strict Hur-
witz, therefore, given Q; = QJT > 0, there exists a

positive definite matrix P; = PjT such that
AP+ PjAj=-0; 3)

Control objective: Using fuzzy logic systems to de-
termine an output feedback controller and parameters
adaptive laws such that all the signals involved in the
closed-loop system are SUUB in probability and the
observer errors and the output of the system are as
small as the desired.

2.2 Stochastic system and stability

To establish stochastic stability as preliminary, we
consider the following stochastic nonlinear system:

dx(®) = f(x®)dt +g(x(®))do(t) )

where x € R" is the state, w is an r-dimensional inde-
pendent standard Wiener process, and f(-) : R" — R"
and g(-) : R* — R™*" are locally Lipschitz and satisfy
f(0)=0,g(0) =

Define a differential operator ¢ for twice continu-
ously differentiable function V () as follows:

52

aVv 1 -V
5V(X)——f(x)+ Tr{g (X) g(X)} &)

Recall two stability notions for nonlinear stochastic
system (4).

Definition 1 [27] Consider system (4) with f(0) =
0 and g(0) = 0. The solution x(¢#) = 0 is said to be
asymptotically stable in the large if for any ¢ > 0,

lim P{su ) zs} =0
Jim [Zgllx |
And for any initial condition yx (0),
P{ lim x(f) =o} —1
—00

Definition 2 [27] The solution process {x (), > 0}
of stochastic differential system (4) is said to be
bounded in probability, if

11rn sup P{”)((t)||>c} 0

<t<o0

Lemma 1 Consider the stochastic nonlinear sys-
tem (4). If there exists a positive definite, radially un-
bounded, twice continuously differentiable Lyapunov
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V : R" — R, and constants p > 0 and p > 0, such
that

LV <=—pV(X)+n (6)

then the following conclusions are true:

(1) the system has a unique solution almost surely;,

(2) the system is bounded in probability;

(3) in addition, if f(0) =0 and g(0) =0 and pu =
0. Then the system is asymptotically stable in the
large.

Lemma 2 (Young’s inequality) For any vectors x,y €
R", there is inequality, xTy < %Hx”p + %Hy”",
wherea>0,p>1,g>1,and (p —1)(g—1)=1.

2.3 Fuzzy logic systems

A FLS consists of four parts: the knowledge base, the
fuzzifier, the fuzzy inference engine, and the defuzzi-
fier. The knowledge base is composed of a collection
of fuzzy. If-then rules of the following form:

R' If xp s Fll and x; is le and ... and x, is F,i,

thenyis G',1=1,2,...,N (7)

where x = (x1, x2,...,x,)” and y are FLS input and
output, respectively, i i (x;) and jsi(y) are the mem-

bership function of fuzzy sets F l.l and G!, N is the
number of inference rules.

Through singleton fuzzifier, center average defuzzi-
fication and product inference [29], the FLS can be ex-
pressed as

) S w iy g (X0) ®
y(x) =
ST 1y (i)

where y; = maxyeg gt (¥)-
Define the fuzzy basis functions as

H;’:l /’LFi’ (xi) )
(p =
l ZII\;I[H;Izl MF[_/ (xi)]

Denoting 67 = [§1,¥2,..., 98] = [61,62,...,0N]
and @(x) = [¢1(x), 92(x), ..., on(0)]", then fuzzy
logic system (8) can be rewritten as

y(x) =0T p(x) (10)
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Lemma 3 [29] Let f(x) be a continuous function de-
fined on a compact set 2. Then for any constant & > 0,
there exists a fuzzy logic system (10) such as
sup|f(x) 6T p(x)| <¢ (1D
xe

By Lemma 3, we can assume that the nonlinear
functions in (1) can be approximated by the following
fuzzy logic systems as

Fiiy(X5i1050) = 01 010, (X i), Fii; (X105

T N

=0j,95.i;(Xji;) (12)
where 1 < j <n,ij=1,2,...,m;. )A(j,ij is the esti-
mation of state vector X ;..

The optimal parameter vector 9;‘ i is defined as

k
911,
= argmin |: sup |fj7,~j(Xj,,-j|0j,,-j)
ej‘l'j EQj,ij T
XJ,eUJ, J,eUJ,]
— fii (Xj,i_,-)|i| (13)

where .Qj,,‘j s Uj,,‘j , and 0j,,~j are compact regions for
Oj,i;, Xj,i;, and X j.ij» respectively. The fuzzy mini-
mum approximation errors ¢ ;; and approximation er-
rors 4 ;; are defined as

ejij = Jii;(Xji;) = fj»ij( Jiij |9] l/) i
= fii, (X)) = fii,(Xji,107.0) (14)

Assumption 2 [9, 15, 30] There are unknown positive

constants &% . and 8%, such that |g;;.| < &%, and
Jij Jij by Jij
Sii. | <8%. .
18,61 =85,
Denote wji; =¢;i; — 4, i by Assumption 2, one
k — k 3
has |wj ;| < ] i +8] lj a)]l , Where @y, 1 also
. and »®* . can be estimated

an unknown constant. £*% i
by the parameters adaptatlon laws o be designed in
the next section.

3 Nonlinear fuzzy adaptive observer design

Note that the states (x; 2, ..., xj,mj)T in system (1) are
not available for measurement, thus a state observer
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should be designed to estimate the unmeasured states.
A fuzzy adaptive observer is designed for (1) as

;‘j,l =Rj2+ Fin (X110, — kG — ;)

Fiiy =%+ FiRi1070) — kjo(Ej — yj%s
j=120m =2 m;—1 (

;CJ"’"_/ =uj+ J?Jm, (Xj,mj|9j,m,~) —kjm;(Xj1—yj)

Rewrite (15) in state space form

X, =AjL,, +Kjyj
m/-
+ ) B fix(Xjxl0j 1) +bju; (16)
k=1
yj :ijmj, j=12,...,n

Letej=x,, — imj be state estimation error vector.

From (1) and (16), one has a composite error dynamic
equation

m;
dej = (Afej + Y Bik(fix (X0

k=1
- ﬂ,ko%,-,kw,-,k)))dt +G, ()l dw

= (Aje; +8,)dt +G;(y;)) dw a7)
where 8; = (81,82, ... 8jm;)".
Consider the following Lyapunov candidate V; g as

1
S(ef Pie)’ (18)

Using (6) and (17), one has

Vio=
tVio=e] Pjejle] (AT Pj+ PjAj)e; +2e] P;s;}
+2Tr{Gj(yj) (2P eje; P

Pj)G;(y)

< —)»j||€j||4+26TPJ'€/€TP'5'

Tp.,.
+eije]

+2Tr{Gj(y]) (ZP eje; P
Pj)Gj(yj} (19)

where )hj = )\min(Pj) : )&min(Qj)a Amin(Pj), and
Amin(Q ) are the smallest eigenvalues of the matrices
P; and Q, respectively.

Tp.,.
+ej Pje;

Choosing an appropriate constant 1;0 > 0 such
that

—3m,-,/—mj;ﬁyonpjn4 >0

By using the well-known mean value theorem
in [26], gj,i;(yj) can be expressed as gji;(yj) =
Yi¥j.i;(yj), thus

34 8
Pjo=Aj— Enj’0||Pj||3

Giy)=yi[ViaGp) - Yjm,OD] = yi¥i ()
(20)

By Lemma 2, one can obtain the following inequali-
ties:

2e Pe]e Pjd;

3 4 8
<20ej MNP 181 < 507 ol Pyl lle 1

x 2Tr{G ; (y})
)G}
<2m;|G;(y))" (2Pjeje] Pj+e] Pje; P;)
x G ()] o
<2m;m;|G;(y)T (2P; eje; T'Pp;
Pj)G(y))]
< 6m; iy ;) 21 P11 e 112
<

77]()

+3m i ol Pill*lle;1* @1

(2P eje; P

T

+e] Pje;
() ”

where 6% = (871,87 ,.....8%,, )"
Substltutmg (20) and (21) into (19) results in

tVio < —pjolle;l* + &;
3m.,~ /m.,' 4
>V

J,0

+ onl* (22)

where &; =

1 * 14
—— 187%™
s 1571

Remark Note that if the stochastic disturbance
dw = 0 (the third term is zero) and fuzzy logic systems
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f,i;(Xj,i;16,i;) can well approximate fj; (X;;) in
system (1), then Z; will be small, and by (22), it is
concluded that the design state observer (15) is asymp-
totically stable. It should be pointed that the linear
reduced-order state observer used in [22-26], even if
dw = 0, it cannot be concluded that the state observer
is asymptotically stable.

4 Control design and stability analysis

In this section, a fuzzy controller and parameter adap-
tive laws are to be developed by using the backstep-
ping design and DSC technique so that all the signals
in the closed-loop systems are SUUB, the observer er-
rors and the system outputs are as small as the desired.

The m j-steps adaptive fuzzy output-feedback back-
stepping design is based on the following changes of
coordinates:

Xj1=DYjs (23)
Xjij =Xji; = Zjijs (24)
Ejij =Zji; —®ji;—1 (25)

where x Jij is called the error surface, z i (Jj =
I,...,n;ij =2,...,m;) is called the output error of
the first-order filter.

Step j.1 (j=1,2,...,
(25), one has

n) Using (1), (15), (24), and

dyji=(xj2+oj1+&2+ej2 +9]Z:1§0j,l()2j,1)

+ éjT,lfpj,l(f(j,l) +ej1)dt + g1y dw
(26)

Consider the following Lyapunov function candidate:

1
Vii=Vjo+—

1 —60] 16,1+ —

X+ &1 @7

1
2V 1 2y Vil
\ivhere vj,1 > 0 and y; 1 > 0 are design parameters.
0j1=07,—0j1and £; =€} — & are the param-
eter errors. ;1 and g j,1 are the estimates of 9;"1 and
8; |» respectively.

From (22) and (26), one has

EVj,l = EVJ',O +£(1X41> + Lérléj’l
47 vin "
| B
+ﬂ8j,15j,1
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<{tVjo+ X;,I(Xj,z +aj1+§2
+ejo +9;1¢j,1()2j,1)
+6~jT,1(pj,l(Xj,l)+8j,l)

3 -
+ x5 185000 g () — ;6’;19;,1
J»

2
1.
— —¢&j 18,1
)/j,l J J
— ]\/
s—pj,o||ej||4+aj+ 4||wj(y,>||
j,O

+X]3,1(Xj,z+otj,1 +&j2+ejn

+071050(X;0)) + %3 1le%

3.2 T
+§Xj,1gj,1(yj) gj1(yj)

~T s 3 _L.‘
+9j,1 (p],l(X],l)Xj’] 0.1
’ Vil
.
———&j18j1 (28)

Vil

By Lemma 2, the following inequalities can be ob-
tained:

3 4
3 . 2 3 4 4
Xj1€j2 = 4n,~,1xj,1+4—né}l llejll™, (29)
3 4 T (v,
2Xj,1wj,l(yj) WJ,I()’])
(30)

3, -
EXj,lgj,l(yj) gji1(yj) =

where ;1 > 0 is a design parameter. Substituting
(29)—(30) into (28), one has

1
eV < —<Pj,0 - —4>||e,»||4
4771.’1

+ &+ X?J(Xj,l +E&i2+aj

3 T (v 3 |
+ AV 0D YO )+ 3G
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1
- —&; 18 1+9
Vil 1<,

~ 1 .
x (wj,mxj,])x,%l — iej,l) 31
Js

Design the intermediate control function ¢ 1 and the
adaptation functions 6; 1 and & 1 as

4 ”
aj1=—Cj1Xi,1 — 471;1)(,1 jT,le,l(Xj,l)
—éj,ltanh(xj)l/k)
3m] /m
XJ 1” vj (yj)||
]0
SXVi O Vi 0)), (32)
bj1=vj10,1(X; 0}, — 01051 33)
3
A _ 3 Xj1 A
5j)1=)/j,1)(j’1tanh = —0j18j,1 (34)

where 01 > 0 and 61 > 0 are design parameters,
and 91‘,1(0) = §j’1 (0) =0

Substituting (32)—(34) into (31) and utilizing the in-
equalities

X34 = %}, tanh(x3 /&) < 0.2785k; =k
(Vkj > 0).

(31) becomes

. 4 x 7/
—Cji1Xj +£j,1k<

4
LVi1 < —pjillejl j

+5j+xf,1xj',z
+X §2+ 9 10; 1+ 8 181 (35)
J.157 Vil 7, 1Y )/],1 J-1<J,

1
where pj,l =pj’0 — e
nj_l
Introduce a new state variable z; > and let 1 pass
through a first-order filter with the constant ;> to ob-
tain Zj2

Tj22j2+zj2=aj1, 2,20 =a;(0) (36)

Step j.ij (j=1,2,....n5i;=2,...m; — 1)

From (24) and (25), the time derivative of y; is

Xjij =Xjij+1 —kji;Xj1+kji;yj

T <> .
+0ji,05i;(Xji;) = 2j.;

= Xjij+1 T Ej it i =k X ki,

+60] 074 (Xji) = 2. 37

To avoid repeatedly differentiating o ;; in the tra-
ditional backstepping design, which leads to the so-
called “explosion of complexity,” we can incorporate
the DSC technique proposed by [30-32] into the fol-
lowing backstepping design.

Introduce a new state variable z; ;41 and let o Jij
pass through a first-order filter with the constant
Tji;+1 toobtain zj;; 41

=i 2j,i;+10) =i (0)

(38)

Tjij+12j,ij+1 + Zj,i;+1

(37) can be rewritten as
Xjiij = Xjij+ &1 + iy = Kjip Xy +kjiy v

A 1
+0jT,i_/‘Pj,ij (Xjip) = ——(=2ji; + ;=)

Jiij
(39
By the definition of 5,/,i,—+1 =Zji41 — Ui it yields
Ejii+1
. — J
L+l = Tiij+l and
1
dgjijrr =\ ————&jij+
Jij+l
+B]t]+l(X 8/1 w]Z""’é\)j,ijv
9]',1, ""Gj’i./"é-j,ij+l)>dt
+lej+1(X ‘E‘jlsa)]29'--7d\)j,ijs

91‘,1, ey Qj’ij’éj,ijJrl)dw (40)

where Xji = Do xji 170 & = [§j2---

- T
é:j,zJ-Jrl] and

Joij+1

datj i
8yj

Bjij+1()=— (Xjio+ei2+ £ii(y))

i'

- Xj: 20 dX
A J

k=1 90Xk
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3 iy, 00 3i§52 Tr{Cian1 () Cias1 ()
- k— €j1 + = "Cikt1( j k10
aei’k l 88] 1 J 2 pot k+1 Jok+ Jok+
i ;. - Ao +aT. X3 - 19‘..
—Z A]”é)j, —Z & ’zjk Joij ¥ A Xjij Vii; Jtj
o ik = ?
1 .
| 8205 — @, ,Jw] i; (44)
-3 ayz LoD giayy)., (@D Vi)
’ Choose intermediate control function e ;; and adap-
tation functions 6; ;. and @; ;; as:
3 ) oLy oLy
Cjij+1() = “Lgj1(y)) (42) .
”’ ay; oji; = =Cji;Xji; ki A
. . . S T A
Consider the following Lyapunov function candidate: —kji;yj— gj’ij i (Xji)
V. 1 1
Bij = /lj—1+4Xj l]+ 5} i B Tji; @iy — i)
U 51 5 ) 5 3
+ mgjsijej’if + m i (43) —Wji; tanh(Xj,ij/k)s (45)
_ . Oji; =Vji;Pji; (Xj,i,-)xi,»j —0ji;0i; (46)
where y;;; >0 and y;;; > 0 are design parameters.
~ ~ ~ 3
9]-,-,.=0’.‘._—9ji.andwjivzw*-,—wj,-.arethe . _ in- _
oL Joij L A Joij o &i: =i v3. tanh A I T 47
parameters errors. ;. and @; ;; are the estimates of Jiiy = Vi X k P “7)
9;.* and w* i respectively.

From (39), (40), and (43), one has

ij—1

4 x 7/
Y cikx i+ €K
k=1

ev/l, = —Pj, 1”6/”

+Zx,k(x]k+1 +Ej )+ X)) ij
k=1

X (“j.,ij —kjijXj1+kji;yj

+ 9,-T,,-_/.<Pj,ij ()A(j,ij)

(= Z]t]+a]tj—l)>+|xj lj} i

rJ i J
ij (,;;4
J-k 3
- Z(T - j,ka'vk('))
k=2 Nk

@ Springer

with 91',,']. 0)=0, C?)j,ij 0)=0
Substituting (45)—(47) into (44) and utilizing the in-
equalities

| X}J.f| — xj'-‘,,-_,. tanh ( xf,ij /k) <0.2785k;
=k} (Yk; >0)
one can obtain

Lj

. v4 * 7/
Yok ek,
k=1

4
tVji, = —pjlell” -

+ijk(xj k1 + &) k+1)
k=1

_Z( ijrl

Tj,k+1

Jk+1B/ k+l()>
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ij—1
+3 2 Ciant (0 € 0]

(48)

Step j.m; (j =1,2,...,n) Inthe final step, the actual

control input u ; appears. From (15) and (24), one has

dxjom; = uj+kjm;%j1 = Kjm;¥;

+ OJ'T-,mjgof’m./ ()A(f’m./) + éjT,mjszmj ()A(j,mj)

+@jm; = Zjm; (49)

Choose the following Lyapunov function candidate:

1 1,
Vimj = Vjm;—1+ ZXj»mj + Zéjymj
1 = 1
+—0" O+ ——> (50)
Zyj,m_,' Jomj I ZVj,m_, @i "

where 0 m; = 0}‘me —Ojm; and @jp; = 0%, = —

J.mj
j, m; are the parameter errors, 6 ,; and D, m; are the
* %
estlmates of 6 s O > respectlvely
Design controiler uj and adaptation functions 6

and @j ; as

wj = —Cjm;Xjm; +kjm;&j1—j)
- N
_ej’mjgoj,mj(xj,mj)
1
- (Z] mj Olj,mj—l)
'L'] mj
— @jm, tanh(ximj/k), (51)

éj,mj = Vj,m_,- ‘Pj,mj (vam_/')x;,mj - Uj,m_/ ej,m_,' P (52)

3
X - 3 Xj,mj - ~
(,()j,mj = Vj,m_,' vamj tanh T - Uj,mjwj,mj (53)

with Ojm;(0) = @,/,m,- 0)=0
Similar to the derivations in step j.i;, one has

mj

4 * 7/
=D kX TSk
k=1

Zijj = p]l”ej”

m;

+Za)]kk +HJ+Z 9ikg 67,0k

Uk~
+—8j 18/1+Z—w1kwjk
Vil —, Vik

mj—1
3
+ Z Xk k1 + &) k+1)
k=1
gl
J.k+1 3
- Z ( sj,kHBj,kHc))
1 Tjk+1
mj—l

+3 Zs,kHTr{ 1O Ciaa1 ()

(54)
Applying Young’s inequality, one has
OjksT
9 k9 k——9 —0; k
1030 = AT, (054~ 010
0 . 2
Collfikl? | oikllOF (55)
2Yjk 2yjk
- "
o; 1. n Gj,lg',l aj 13 1
—PEj 181 S = L (56)
Vil 2y.1 2y
Ojk ~ A 6,-,kcb§ k 6jvkw72k
S0 kOjk S — —= (57)
Vik 2y k 27k
mj—1
3
Z Xk Xjk+1
k=1
3 m; 1 4 1 m; 1 1
3 4 4
SZ ZU;,kX/k+Z Z 7 Xjk+1
k=1 k=1 "j.k
3" 1
&, .
< I U;’ka,k + 1 Z T Xjko (58)
k= k=2 " j.k—1
m,fl
Z X, k‘sj k+1
mj_l 4 m]—l
—42'0% X1k+ Z /k+1’ (59
mj—l
> E 1B ()
k=1
m/_l m/—l |
<— Y (pjxM;, )3 £ it g Z , (60)
k=1 k=1 pjk
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m]—l
PR N; 3
Z T Cian1 O Ciani ) (p, eNjike) )51 1
m; ~ ~2
-1 1 2’: Uj,k||9j,k||2 0j.185 |
3 1 - 2y v
<- Z (0jkNjk+1)3 S, ka1 T Z (61) k=1 Vik Vit
k=1 /k _
0j, kw] k m’ !
where - Z +Ej+ 5 Z T
Jk k=1 Pjk
IBji+1(O = Mji410), "
T + 87’1 + ijka k;
ITrH{Cja+1()" Cijkr1(H = Njrg1()- =
m; . * 12 = 2
Assumption 3 [33] For a given pj;; > 0, for all ini- n Z’ 0,/,k||9j,k|| N Gj,ls?jl
tial conditions satisfying Vi (t) < pji;, where Py 2Yjk 2yi1
nj 5. w2
J kD k
: 62
Vj,,-j(t)z—(e Pe] ZX“] +Z (62)

1171

+7 ZE] l]-‘rl

k

1
Z Vii 9./ 1791 l!

.

g?,l 1 ‘ (D?,ij
iyl

+ == =
Zijl 2,']_:2 )/.ivij

Since for any pj’,'j > 0, the sets Hj,k ={Vji; =<
2pjiy G=1,....n,k=2,...,ij) is a compact set
in RZ’ = N here N, is the dimension of
6ii;. Since Bji y1(-) and TF{Cj,i_,-+1(-)TCj,i,-+1(-)}
are continuous functions, there exists the positive con-
stants Mji;+1(-), Nji;+1(-) such that |Bj41())| <
M1 O N THCj a1 OT Ciart O} < Njgga ()
on Hj,k'

Substituting (55)—(61) into (54) results in

mj—1
( 3 4 1
— Cjk— 7V — 3
k=2 4 Vjk—1
33 . 1 4
4:0]k Xjk Cjm; 1 ijj
j,mj—l
m_,' 1
Z( 1 L2 My
- —— — = (pjxMji+1)3
= \Tikr ol 4

@ Springer

o ik

Choose the design parameters 17,05 Mj,15Cji;s Vjii;

and,oj,ij (=1,...,n;ij=1,...,m;) such that
3 g
pia=4 nJOHP I3
—3mj/m 77/0||P|| ——A. 0>0,
j,l
(63)
3 4 3 4 0
CJ'J_ZU;,I_Z'O;,I:CLI>0’ (64)
3 4 1 3 ¢
Cik— 7Vix— 3 —Pi =€ >0, (65)
4 vl 4" Js
1 0
Cj,m_,‘ -3 = Cj,mj > O, (66)
v~
J.mj—1
1 1 ( M )3
— — 7 — 7P kMj k41
. 4 SR
Tjk+1 IOJk
3 4
— Z(pj,kNj,k+1)3 =ljr+1>0 (67)
Substituting (63)—(67) into (62), one has
mj
eVim; < =hjollel* =% xis
k=1
mj—1 m;j ~ 2
oj k0l
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582 Mg a?
_9itEi _Z%k“’j,k
V0 o 2k
1mj—l 1 m;
g S * * .
+u]+2Zp4 + 8],1+ij,k kj
k=1 Fjk k=2
m; 2 - 2
N Z’ 0 k107 I Gj,lEjf,l
o ik 271
mj — *2
Y
2_.
k= “Vik
<—=pjVim; + 1 (68)

Denote Ayax(P}) is the largest eigenvalue of P;, and
let

pj =min{(21;.0)/Amax (P, 4¢Y 1 414,01, 5k}

J=12,....nk=1,....m;;i=2,...,mj.

1mjfl 1 mj
wi=8i+5 2 4+ (57,1 +Z“’7J<)k}
k=1 Pjk k=2

SR Sy Sl
o ik vin o ik
then (68) becomes
Vim; <—=pjVim; +1; (69)

Finally, choose the whole Lyapunov function candi-
date as

n
V= Vi (70)
j=1
Combining (69) and (70), one has

n n n
tv = ZEV/*’"./' =- Z(pj Vim;) + Z“/
=1 =1 =1

<—pV+u (71)

where p = min{py, o2+ pn}, =1+ p2+- -+ itn.

By Lemma 1 and inequality (74), and using the
same arguments as [23, 26, 28], one can obtain that
all the signals of the closed-loop system are bounded
by u/p, that is, e; and x;;; are SUUB in probabil-
ity. éj,i./,éj,l, and @; ; are also SUUB in probability

(G = 1,2,...,n,ij = 1,2,...,mj,k = 2,...,mj).
Moreover, choosing appropriate design parameters,
the states observer errors and the outputs of the control
system can be made as small as the desired [25, 26].

The above design procedures and stable analysis
are summarized in the following theorem.

Theorem 1 For stochastic nonlinear system (1), un-
der Assumptions 1-3, the state observer (15) and
the controller (51), with the intermediate control
(32), (45) and parameter laws (33)—(34), (46)—(47),
and (52)—(53) guarantee that all the signals in the
closed-loop system is semiglobally uniformly ulti-
mately bounded in probability. Moreover, the states
observer errors and the outputs of the control system
can be made as small as the desired by choosing ap-
propriate design parameters.

5 Simulation example

In this section, the proposed adaptive fuzzy control ap-
proach is applied to the following example to verify its
effectiveness.

Example Consider a two-continuous stirred tank reac-
tor process with stochastic disturbances, which is de-
scribed by the following differential equation [16, 34]:

X110 =buxi +yidw

X120 =biouy + 1yldw

Y1 =X1,1

X2,1 = bo1xa + o1 (x1,1, x2,1) + Px21 + y3dw
X2, = bouty + ¢ (x2,1, X2,2) + y3 cos(y3)dw
Y2 =2x2,1

X3,1 =b31x32 + @31(x1,1, X2,1, X2,2, X3,1)

+ Yo+ 2y3dw
X3 = bxouz + ¢p3(x3,1, X32) + y3dw
y3=X31

(72)

as the described [34], cooling water is added to the
cooling jackets around both reactors at flow rates Fj
and Fj>, temperatures 7 1 and 7} 2, respectively. De-
note x1,1 = Caz — Cf;z, xX12="F,x1="T — Tzd,
x22="Tjr — leZ’ x31=T1 — T;il, with Vj1 =V =
Vi,Vi=V,=V,Fy=F, = F. w is an independent
r-dimensional standard Wiener process, and the pa-
rameters in (72) are
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Table 1 The values of the process parameters

a=7.08x100h"!

E =3.1644 x 107 J/mol

R =1679.2 J/mol°C

A =—3.1644 x 107 J/mol
U =1.3625 x 10° J/hm?°C
C4, = 18.3728 mol/m*
€4, =12.3061 mol/m?
€4, =10.4178 mol/m*
Tf=629.2°C

o = 800.9189 kg/m?> 1§ =703.7°C
pj =997.9450 kg/m3 Td =750°C

¢, = 13953 J/kg°C T{ =737.5°C
cj =1860.3 J/kg°C T{ =740.8°C
F =238317m%/h T{, =727.6°C
Fj1 = 14130 m*/h V; =0.1090 m?
Fj» =1.4130 m*/h V =1.3592 m?
Fr=14158m3/h A=232m3

d o
T4, =608.2°C

UA
bn=1, bp=1, by=
pcoV
UA F; F
by = ——, bp=-1 w=22
pc,V V; %
& — F+ Fg
V 9
F+ Fg F + Fr
¢ = v Tld — (xz,l + Tzd)
aA d 7#0[
_ =" -xl,l+C e R(xp 1+75)
o1+ o)
UA
— ¢ —T4),
pCpV(xz'l + 2 j2)
Fy F+ Fr
P31 = VTOd - T(}B,l + T]d)
F
+ —R(xz,l + Tzd)
\%
___E
— ﬂcAle R<X3,1+Tf1)
PCp
A d d
- +718—T1%),
pcpv(x?’sl 1 jl)
Fj2 o a d
¢ = 7(7}20 —Xx22— sz)
J
UA d d
X1+ Ty —x22—T35),
ijjVj( 2 12)
o = e " gin(r),
Fjt a d
¢ = T(leo —X32 — Tj )
J
+ x3,1+Td—x3,2—T-d ,
PjCjVj( 1 )

@ Springer

Fip
. bp =L,
22 Vj

V F + Fp d
Car = 7L Fa Fr <x1,2 + 7‘/ (Xl,l + CAZ)

E
d\ T Read
+a(xi1 +Chy)e R(mrz))

where «, E, and A denote the reaction rate constant,
activation energy, and heat generation rate; p and p;
are the densities of liquid in the reactors and in the
jackets; ¢, and c; stand for heat capacities. The values
of the process parameters are provided in Table 1.

The objective is to control C 42, T1, and 7> by ma-
nipulating C 9, T}j10, and T)j20. The deviation Ty — T(;i
of the inlet temperature 7j from the steady-state value
T(;i is assumed to be an unmeasurable disturbance.

Define the following coordinate changes: x1 1 =
X1,1,X12 =b11x12,X2,1 =X2,1, %22 =b21x22, X3,1 =
x3,1 and X3 2 = b31x3 2, then the system (72) is of the
same form as in system (1)

X110 =%12+yidw

)LCLQ =u;+ %ylzdw

Yy =X1,1

Xo1 =320+ ¢21(F1,1, %2,1) + Pia1 + yidw
X0 =ity + ¢ (¥2,1, %22) + y3 cos(y)dw
Y2 =X2,1

X3, =X32+ ¢31(52,1, %3,1) + Yo + 2ydw
X3 = i3+ ¢32(¥3,1, ¥32) + yidw

y3=1X31

(73)

where iy = biibiauy, iz = barbnuz, 21(x2,1, %2,1)
= ¢21(x1,1, x2,1), $22(X2,1, X2,2) = baraa(x2,1, X2,2),
u3 = b3rbzpuz and ¢32(x3,1,%32) = b31¢32(x3,1,
b31x3,2).
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In the simulation study, eleven fuzzy set are de-
fined over interval [—10, 10] for all x1 1, X122, %21,
X22,%3,1, and x32, and by choosing partitioning
points as —10, —8, —6, —4,0,2,4,6, 8, and 10, their
fuzzy membership functions are given as follows:

—0.5(x;, j+10)?
Hpy(xij) =e Ci 10,

— . 2
MFiZj(xi,j) = ¢ 0-5(xi; +8)%
— P 2
mp3 (x;,j) = e 0307
— P 2
Hpp (x;,j) = e 03097
— .. 2
s (i) =e 0.5(xi,j42)%
,uFi(} (xi,j) — e—O.S(x,-_j)2’
Mpiz_ (xi,j) = 6—0-5(xi_j—2)2’
M8 (xi,j) = ¢ =056 —H?
K9 (xi,j) = ¢ =056 =6)?
'“F,.‘].O(xi,j) = e*O.S(x,;jfg)Z’
HEL (xi,5) = o~ 0-5(xi =10y
Let
ok = IIMF{‘I (Jfl,l_wpzk1 (iz,l_)MFgl (i3,1_) |
Zk:l(l/vFlk, (Xl,l)/vLFé‘] (Xz,l)lLFécl (¥3.1))
ko Hizzl H;:l MF[]; (ii*f)V“F;‘l (%3.1)
e Y Tl T Mgk (i )k (X3.1) ’
ko 1_[?:1 AW TN CE RV RCERY,
Y31 = Z/lc1:1(l_[§=1 /’LF{‘J. ()?1,,-)MF2k1 (22’1)“@, (373,1))’
ko _ H?zl 1_[?:1 MF{._’;. (Xi,j)
3= S (T 1_[321 Mk G
Then

kK .1 2

902,1—[€02,1v‘/72,1"'
_r. 2 1
= [‘Pz,z’ 22 P22

Kk _r.1 2 117k
‘P3,1—[€03,1v‘/’3,1""/’31] »¥32

=[¢ls 02, oih]"

The fuzzy controllers and parameters of adaptive law
are constructed as

uy = —craxia+kia(x —y1)
1
——(z12—ai1,1),
712
Uy = —caax22 +kao(xa 1 — y2)
—92T,2<P2,2(?A(2,2)
1

— — (222 — @21) — G tanh(x3 ,/ k),

)

uz = —c32x32+k32(x3,1 — y3)

— 07 ,932(X32)

1
——(z32—a3,1)
73,2
— @32 tanh(xg”z/k),
6r1 = J/2,1§02,1(?A(2,1)X§,1

— 07,1021

3
A - 3 X2,1 — A
2,1 =¥2,1X5, tanh ) ~ou1E2

o 3
02,20 =12202,2(X22) X5, — 02,2022,

3
X2,

X _ 3 - A
w0 = V2,2X2)2tanh< k ) — 02272,

; o 3
03,1 =y3,193,1(X3,1)x31 — 03,1031,
3
A _ 3 X3,1 .
€3,1 =¥3,1X3, tanh ) ~osaEs

5 3
03,20 =v3203,2(X32) X3, — 03,2032,
3

% . 2\ - .
w32 = V3,2X§’,2tanh<7> — 03,2032,
a1l = —CLIXi
3 4
- Z’? X1
3m/m 4
-— x|
M0

3 T
—§X1,11ﬂ1,1(y1) Yi,1(v1)
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4
3
2,1 = —C21X2,1 — 715,

M 1X2,1

4
. R
— 05 192.1(X2,1)
— &, tanh(x3 ,/k)

3mJ—

20

——x2.1[[¥2(2) H

3 T
- §X2,1W2,1(y2) ¥2,1(2),

3 4

31 = —C3,1X3,1 — ZU?ZJJXS,I

- 93Tl§03,1(f(3,1) — &3, tanh(xg’,l/k)
3m\/_

)

x3.1[¥3(3) ||

3
- §X3,11ﬂ3,1(y3)T1ﬂ3,1(y3)

The design parameters are chosen as
c11=10, c12=4, c21=10,

c22=10, ¢31 =10, ¢c32=10,
kii1=5, ki2=5, k1 =10,

kr2=10, k31=5, k3p=5, mr1=1,

rp2=1, ri1=1, k=1, rn;=1,
=1, ri1=1, =1,

71,2 20.5, 7,2 20.1, 73,2 20.1,

mo=10, n11=05 no=10, n1 =04,
n3.0=10, m=2,

021 =001, 032,=001, o3;=00l,
032=0.01, o&21=0.01,

522=001, &35 =001,

032=0.01, k£=0.01

The initial conditions are chosen as

x1,1(0)=135, Xx120)=0, Xx21(0)=0.5
X220)=1, X310 =

time (hours)

Fig. 2 The trajectories of x1 “solid line” and X1 5 “dash-dot-
ted”

06

05 |
04H .
03 J
02p 4

01t

01k

tirne (hours)

Fig. 1 The trajectories of x1,1 “solid line” and X 1 “dash-dot-

ted”

@ Springer

o2lv 1 I 1 1 ! L L 1
0

tirne (hours)

Fig. 3 The trajectories of x3,1 “solid line” and X 1 “dash-dot-
ted”
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%32(0) =x1,1(0) =0,

%12000=0.5, %2.1(0)=0.5, X2(0)=0,
%31(0)=0, ¥32(0)=0,

02,1(0) =0, 022(0)=0,

631(0)=0, 03200)=0, &,1(0)=0, &,(0) =0,
@220)=0, @32(0)=0

The simulation results are shown in Figs. 1-9.

From the above simulation results, it is clear that
even though the exact information on the nonlinear
functions in the system is not available and the state

03F T T T T T T T T =

0z2r i

01

-02¢

03t . | | 1 1 ) 1 | L ]
0 1 2 3 4 5 B 7 8 9 10
time (hours)

Fig. 4 The trajectories of x3 2 “solid line” and x; 5 “dash-dot-
ted”

05

0.4 i

03F 4

02+ 1

(IR

o
T

024

03 L L ) L L L L L 1
0 1 2 3 4 5 B 7 8 9 10

tirne (hours)

Fig. 5 The trajectories of x3,1 “solid line” and 3,1 “dash-dot-
ted”

variables are immeasurable, the proposed adaptive
fuzzy output feedback control approaches guarantee
the stability of the closed-loop adaptive control system
and achieve good control performance.

6 Conclusions

In this paper, an observer-based adaptive fuzzy out-
put feedback control approach has been proposed for
a class of uncertain MIMO stochastic nonlinear sys-
tem with immeasurable states. Fuzzy logic systems
are used to approximate the unknown nonlinear func-
tions and a fuzzy state observer is designed to estimate

0.1 T T T T T T T

005+ (\

0.05 E

0.1H i

—_
LS
wl
S
[5)]
o
4
[=1]
w
=]

time (hours)

Fig. 6 The trajectories of x3 2 “solid line” and X3 5 “dash-dot-
ted”

25

20—[\ |

-20

1 1 1 L
0 1 2 3 4 5 6
time (hours)

-25

~
[=1]
w
=

Fig. 7 The trajectory of u;
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3.112 T T T T T T T

3.108
3.106 H

3.104 ‘ E

3.102

i
|
L

time (hours)

Fig. 8 The trajectory of u»

0z T T T T

|\
015t H .

01F] 1

.02 L L L . . L L L L
0

time (hours)

Fig. 9 The trajectory of u3

those immeasurable states. By combining the adaptive
backstepping design with the DSC technique, a novel
adaptive fuzzy output feedback backstepping control
approach is developed. It is proved that all the sig-
nals of the closed-loop control system are semiglob-
ally uniformly ultimately bounded (SUUB) in proba-
bility; the observer errors and the system outputs can
be made as small as the desired by appropriate choice
of the design parameters. Simulation results are pro-
vided to show the effectiveness of the proposed ap-
proach.

@ Springer
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