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Abstract In this paper, a decentralized adaptive con-
trol scheme for multi-robot coverage is proposed.
This control method is designed based on centroidal
Voronoi configuration integrated with robust adaptive
fuzzy control techniques. We consider simple single
integrator mobile robots used for covering dynamical
environments, where an adaptive fuzzy logic system
is used to approximate the unknown parts of control
law. A robust coverage criterion is used to attenuate
the adaptive fuzzy approximation error and measure-
ment noises to a prescribed level. Therefore, the robots
motion is forced to obey solutions of a coverage op-
timization problem. The advantages of the proposed
controller can be listed as robustness to external dis-
turbances, computation uncertainties, and measure-
ment noises, while applicability on dynamical envi-
ronments. A Lyapunov-function based proof is given
of robust stability, i.e. convergence to the optimal po-
sitions with bounded error. Finally, simulation results

M. Jahangir · S. Khosravi (�)
Young Researchers Club, Sepidan Branch, Islamic Azad
University, Sepidan, Iran
e-mail: khosravi@ieee.org

M. Jahangir
e-mail: m.jahangir8@gmail.com

H. Afkhami
Department of Electronics, Sepidan Branch, Islamic Azad
University, Sepidan, Iran
e-mail: hossein.afkhami@yahoo.com

are demonstrated for a swarm coverage problem si-
multaneous with tracking mobile intruders.
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Adaptive systems · Coverage control

1 Introduction

In recent years, there has been a rapidly growing
interest in using teams of mobile robots for auto-
matically covering unknown environments. This in-
terest is mainly motivated by the broad spectrum of
potential civilian and military applications of multi-
robot surveillance systems. Triggered by this inter-
est, today automated surveillance is a well established
topic in multi-robot research which is considered to
be of particular practical relevance. Currently, avail-
able theoretical and algorithmic approaches to multi-
robot coverage are typically based on unrealistic as-
sumptions. Examples of such unrealistic assumptions
are idealized sensors/actuators or sensors with infinite
range [1], convexity and/or stationarity of the environ-
ment [2], and the availability of unlimited communi-
cation bandwidth or direct communication links [3].
For these reasons, there is a strong need for robust
coverage methods which can adapt to environmental
changes, computation limitations, and measurement
noises.

The proposed robust coverage approach in this ar-
ticle, addresses this need and wants to explore a novel
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perspective on covering dynamically changing envi-
ronments which is based on an established control
principle known as robust control technique. Accord-
ing to this principle, the coverage strategy is robust to
measurement noises and environmental disturbances.
In addition, this control technique can cover dynami-
cally changing environments as well.

Such robust control techniques has been founded
to be an effective solution to treat robust stabilization
and tracking problems, in presence of external distur-
bances and system uncertainties [4–10]. In the tradi-
tional H∞ control the exact model of the system must
be known. However in order to propose a robust con-
trol method, an integration between this robust scheme
with fuzzy logic approximators can propose effective
controllers for uncertain dynamic models [11, 12].

In this research, coverage of a dynamic environ-
ment is considered as the main goal and based on
the work of Pimenta et al. in [13] a simple cover-
age controller is defined to guide the robots through
their Voronoi centroids. After adopting unknown cov-
erage error dynamics to each 2-DOF robot, inspired by
the work of Ranjbar-Sahraei et al. in [14], an adaptive
fuzzy approximator is combined with H∞ robust con-
trol technique to propose a novel adaptive fuzzy cover-
age control methodology, with robust characteristics.
The main advantage of this control strategy is insensi-
tivity to measurement noises and no need to high com-
putational efforts, where to the best of authors’ knowl-
edge, no robust control design of this form has been
reported before to address such a problem in multi-
robot systems.

The rest of this paper is organized as follows: In
Sect. 2, we review former research related to the prob-
lem at hand, and a background on coverage control
preliminaries is presented. Problem formulation and
design of robust control technique are discussed in
Sect. 3. Stability of the robust control technique is
proved in Sect. 4. Finally, simulation results are in-
cluded in Sect. 5 and concluding remarks are provided
in Sect. 6.

2 Coverage control background

Distributed coverage control of networked robots have
attracted remarkable attention from the mathematics
and robotics community. Butler and Rus first devel-
oped a set of algorithms based on Voronoi diagrams of

the sensor positions that enable the sensors to main-
tain coverage of their environment [15]. In [16], de-
centralized coverage algorithms which are adaptable
to changes in the environment and provably conver-
gent are addressed carefully and in [2, 17], sensory
information is propagated from every robot through-
out the network, for driving the network to an opti-
mal sensing configuration. However, all of these de-
centralized algorithms require a group of robots with
the capability of direct communication and mathemat-
ical computations. There are also a number of other
notions for multi-robot surveillance [18, 19], which
are presented based on Graph theory and unrealistic
assumptions (e.g. ideal sensors, convex environment,
etc.).

The major goal in this study is to solve a swarm
coverage control problem (i.e. proper deployment of
robots for monitoring some quantity of interest over
an environment). One of the effective solutions for
this problem is locational optimization of a cost func-
tion designed based on the Voronoi diagrams concept.
This optimization guides the robots through continu-
ous smooth paths in order to form the desired deploy-
ment. Such a cost function design has been discussed
in various papers (e.g. [17, 20–23]).

In this section, we will explain a simple cost func-
tion design for solving the coverage control problem
of a group of N robots in a convex region Q ∈ R2,
where dynamics of the ith robot is considered as

żi = ui, (1)

in which, zi ∈ R
2 is the coordinate matrix (for a robot

with 2-DOF) and ui ∈ R
2 denotes the control inputs.

To propose the proper control law for the ith robot,
we define the Voronoi region of ith robot as

Vi = {q ∈ Q| ‖q − zi‖ ≤ ‖q − zj‖,∀j �= i},
the sensory function is defined as a scalar function
φ(.) : Q → R+, and the unreliability of the sensor
measurement is denoted by 1

2‖q − zi‖2 (‖.‖ denotes
the l2-norm). Now, the cost function can be repre-
sented by

H(Z) =
N∑

i=1

∫

Vi

1

2
‖q − zi‖2φ(q)dq, (2)

where Z = {z1, . . . , z2} denotes the set of all robot co-
ordinates.
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Minimization of the cost function defined in (2)
will conclude to an optimal deployment of robotic
swarm. This optimization is due to the minimization
of both unreliability and sensory information.

To propose a solution for optimization of this
swarm coverage control problem, based on the gra-
dient method, the steepest descent direction for the ith
robot motion [2] is chosen as

hi = ∇zi
H(Z)

= −MVi
(CVi

− zi) (3)

where MVi
, LVi

, and CVi
are the mass, first mass-

moment and centroid of Vi respectively, defined as

MVi
=

∫

Vi

φ(q) dq, (4)

LVi
=

∫

Vi

qφ(q) dq, (5)

CVi
= LVi

MVi

. (6)

Note that MVi
> 0,∀Vi �= {∅}.

Based on (3), the solution for minimization of H is
a deployment such that zi = CVi

,∀i (i.e. each robot is
deployed at the centroid of its Voronoi region).

Therefore, the control is designed to drive each
robot to what is called a centroidal Voronoi configu-
ration:

ui = −hi

= MVi
(CVi

− zi). (7)

It is intuitively clear that the simple controller (7)
can satisfy the centroidal Voronoi configuration for a
massless robot with dynamic model of (1). However,
in practice, a static coverage control strategy (7) is not
the main goal in coverage missions, rather researchers
have focused on simultaneous coverage of dynamic
environments and tracking of intruders/events. Con-
sider the event density of a dynamic environment rep-
resented by the sensory function φ(.) to be time-
dependent (i.e. φ(q, t)). This dependence is a result of
changing environments and intruder detection scenar-
ios. Therefore, our main goal is defined as simultane-
ous coverage control and tracking in dynamic environ-
ments. In the next section, a fuzzy adaptive robust con-
trol scheme will be proposed for achieving this goal.

3 Problem formulation and robust control design

In this section, a time-dependent cost function for cov-
erage control of dynamic environments is addressed.
This cost function has been previously used in the re-
search of Pimenta et al. in [13].

The time-dependent form of our previous cost func-
tion (2), can be rewritten as

H(Z, t) =
N∑

i=1

∫

Vi

1

2
‖q − zi‖2φ(q, t) dq. (8)

Later in this section, the coverage error will be in-
troduced. Then, a robust controller will be designed
and a fuzzy logic system will be utilized to approx-
imate the unknown parts of our cost function. The
main feature of the proposed novel control scheme
is its decentralized characteristic, and its robust sta-
bility (i.e. robustness of results in presence of exter-
nal disturbances, calculation inaccuracy, and measure-
ment noises).

We know that if the centroids of Voronoi regions
are perfectly tracked, the cost function in (8) reaches a
local minimum. Based on this, the ith coverage error
is defined as

Ei(t) = MVi
‖CVi

− Zi‖2. (9)

Then the overall coverage error for robotic swarm
of N robots is defined as

E(t) =
N∑

i=1

Ei(t) =
N∑

i=1

MVi
‖CVi

− Zi‖2. (10)

For designing our robust controller, we need to cal-
culate the first derivative of coverage error E. It is
straightforward to write the first derivatives of (10) as

Ė(t) =
N∑

i=1

(
∂ET

∂Zi

Żi + Fi

)
, (11)

where Fi is a result of time-varying sensory informa-
tion φ(q, t):

Fi = (CVi
−Zi)

T

∫

Vi

(2q −CVi
−Zi)φ̇(q, t) dq. (12)

The first term of (11) is calculated in [13] and re-
ported as

∂E

∂Zi

= −2(LVi
+ Ri − MVi

Zi) (13)
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where

Ri =
∑

j∈Ni

[
1

2
Mij

(
CT

Vi
CVi

− CT
Vj

CVj

)

− Lij (CVi
− CVj

)

]
, (14)

with

Mij =
∫

lij

φ(q)
∂qlij

∂Zi

nlij dq, (15)

Lij =
∫

lij

φ(q)q

(
∂qlij

∂Zi

nlij

)T

dq. (16)

Our design goal is to propose a controller so that

Ėi + kEi = 0 (17)

is achieved, where k is chosen to make (17) asymptot-
ically stable (i.e. k > 0). Using the feedback lineariza-
tion method, the controller can be proposed as

ui = LVi
+ Ri − MVi

Zi

2‖LVi
+ Ri − MVi

Zi‖2

(
kMVi

‖CVi
−pi‖2 +Fi

)
.

(18)

The controller proposed in (18), results in an expo-
nentially decay of the coverage error E(t) as

E(t) = E(0)e−kt . (19)

In order to use this control law, the functions Ri and
Fi (i.e. Mij , Lij , φ̇(q, t)) must be computable. How-
ever, in practice, due to limited-processing ability of
our small real robots and measurement noises, calcu-
lation of these functions is almost impossible in a de-
centralized form. To overcome this, we make use of
two fuzzy approximators F̂i ∈ R and Ĝi ∈ R

2 for ap-
proximation of the terms Fi and Gi = −2(LVi

+ Ri −
MVi

pi), respectively.
Based on definition of Gi , let us rewrite the first

derivative of coverage error (11) as

Ė(t) =
N∑

i=1

(
Fi + GT

i ui

)
. (20)

Therefore, based on the adaptive fuzzy H∞ control
design proposed in [11, 14, 24], we propose overall

robust control law as

ui = Ĝi

‖Ĝi‖2

(−F̂i + kE(t) − uai

)
(21)

where uai is engaged to attenuate the fuzzy logic ap-
proximation error and measurement noises. Effective-
ness of this controller will be proved in next subsec-
tion.

4 Stability proof

A Fuzzy Logic System (FLS) can be employed in
adaptive control of nonlinear systems, due to its inher-
ent capabilities of nonlinear function approximation.
The basic configuration of an FLS consists of a fuzzi-
fier, rule-base, fuzzy inference engine, and defuzzifier.
Generally, the rule-base can be constructed by the fol-
lowing K fuzzy rules:

Ri :IF x1 IS F i
1 AND . . . AND xnIS F i

n

THEN yi IS Gi, i = 1,2, . . . ,K (22)

where x1, x2, . . . , xn are FLS inputs, yi is ith rule out-
put. F i

j , j = 1,2, . . . , n and Gi are fuzzy sets charac-
terized by fuzzy membership functions μFi

j
(xj ) and

μGi (yi), respectively and K is the number of rules in
the fuzzy rule base.

Lemma 1 By using the singleton fuzzifier, product in-
ference, and weighted average defuzzifier, the output
of the FLS can be expressed as

y(x) =
∑K

i=1 ȳi (
∏n

j=1 μFi
j (xj ))

∑K
i=1

∏n
j=1 μFi

j (xj )

(23)

where ȳi is the point at which μGi (yi) = 1 (for more
information refer to [25]).

By defining μFi
j
(xj ) as a fixed membership func-

tion and considering ȳi as an adjustable parameter,
(23) can be rewritten as

y(x) = θT ζ (x), (24)

where θ = [ȳ1, ȳ2, . . . , ȳK ]T is a vector grouping
all adjustable parameters, and ζ (x) = [ζ1(x), ζ2(x),
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. . . , ζK(x)]T is a set of fuzzy basis functions defined
as

ζi(x) =
∏n

j=1 μFi
j (xj )

∑K
i=1

∏n
j=1 μFi

j (xj )

. (25)

It has been proved in [25] that fuzzy systems in
the form of (24) can approximate continuous functions
over a compact set to an arbitrary degree of accuracy
provided that enough number of rules are considered.

This section presents the stability proof of the pro-
posed adaptive fuzzy controller (21). A Lyapunov can-
didate will be proposed and then an adaptation law and
a robust compensator control input will be derived to
satisfy the robust coverage performance.

To derive the adaptive laws for adjusting θF i and
θGi , we first define the optimal parameter vector θ∗

Fi

and θ∗
Gi as

θ∗
Fi = arg min

θF i∈ΩFi

[
sup

∥∥F̂i(zi ,MVi
,LVi

|θF i) − Fi

∥∥]
, (26)

θ∗
Gi = arg min

θGi∈ΩGi

[
sup

∥∥Ĝi(zi,MVi
,LVi

|θGi) − Gi)
∥∥]

,

(27)

where ΩFi and ΩGi are proper compact sets defined
as

ΩFi = {
θF i ∈ R|‖θF i‖ ≤ DFi

}
, (28)

ΩGi = {
θGi ∈ R

2|‖θGi‖ ≤ DGi

}
. (29)

The minimum approximation error is defined as

wi = (
Fi − F̂i

(
zi,MVi

,LVi
|θ∗

Fi

))

+ (
GT

i − Ĝi

(
zi,MVi

,LVi
|θ∗

Gi

)T )
ui (30)

where wi ∈ L∞ [25].
It should be mentioned that, ΩFi and ΩGi in (28)–

(29) do not need to be known in advance. If the robust
controller is designed well, then the robots position zi

will follow the Voronoi centroids CVi
well. In addi-

tion, based on the universal approximation theorem,
wi remains bounded. Therefore, the robots position zi

remains bounded, also.
By choosing the control input as (21) after simple

manipulations, the coverage error dynamic can be ex-
pressed as

Ė = kE +
N∑

i=1

[(
Fi − F̂i

) + (
GT

i − ĜT
i

)
ui

]
. (31)

By replacing F̂i = θT
F iζ and Ĝi = θT

Giζ , the first
derivative of coverage error (31) can be rewritten as

Ė = kE +
N∑

i=1

[
uai + wi − θ̃ T

F iζ − ζ T θ̃Giui

]
(32)

where θ̃F i = θF i − θ∗
Fi and θ̃Gi = θGi − θ∗

Gi .
In the following theorem, it will be proved that the

proposed control law (21) guarantees the robust stabil-
ity of our coverage problem.

Theorem 1 Consider a group of N fully autonomous
robots with the integrator dynamic represented in (1),
and with the control law in (21). The robust compen-
sator of ith robot uai and the fuzzy adaptation laws
are chosen as

uai = −β

r
Ei, (33)

θ̇F i = −γ1βEiζ, (34)

θ̇Gi = −γ2βEiζuT
i , (35)

where r , γ1, and γ2 are positive constants and β is the
positive solution of the following quadratic equation:

(
1

ρ2
− 2

r

)
β2 + 2βk + α = 0, (36)

where ρ is an attenuation level denoted by the de-
signer, and α is a positive scalar.

Therefore, the robust coverage performance can be
achieved for a prescribed attenuation level ρ:

∫ T

0
E2 dt ≤ β

α
E2(0) + 1

α

N∑

i=1

[
1

γ1
Θ̃2

Fi(0)

+ 1

γ2
trace

(
Θ̃T

Gi(0)Θ̃Gi(0)
)]

+ ρ2

α

∫ T

0
w2 dt (37)

where w = ∑N
i=1 w2

i .

Proof In order to derive the adaptive law for adjusting
θF i , and θGi the Lyapunov candidate is chosen as
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V = 1

2
βE2 +

N∑

i=1

[
1

2γ1
θ̃2
Fi + 1

2γ2
trace

(
θ̃ T
Gi θ̃Gi

)]
.

(38)

Time derivative of V is written as

V̇ = βEĖ +
N∑

i=1

[
1

γ1
θ̃F i

˙̃
θF i + 1

γ2
trace

(
θ̃ T
Gi

˙̃
θGi

)]
.

(39)

Using (32), the time derivative of V can be rewrit-
ten as

V̇ = βE

[
kE +

N∑

i=1

[
uai + wi − θ̃ T

F iζ − ζ T θ̃Giui

]
]

+
N∑

i=1

[
1

γ1
θ̃F i

˙̃
θF i + 1

γ2
trace

(
θ̃ T
Gi

˙̃
θGi

)]
. (40)

Substituting (33) in (40) and using the fact that
˙̃
θF i = θ̇F i and ˙̃

θGi = θ̇Gi , after some algebraic effort,
we get

V̇ = kβE2 − 1

r
β2E2 + βEw

−
N∑

i=1

[
θ̃ T
F iζ − ζ T θ̃Giui + 1

γ1
θ̃F i

˙̃
θF i

+ 1

γ2
trace

(
θ̃ T
Gi

˙̃
θGi

)]

= kβE2 − 1

r
β2E2 + βEw

−
N∑

i=1

[
θ̃ T
F iζ − trace

(
ζ T θ̃Giui

) + 1

γ1
θ̃F i

˙̃
θF i

+ 1

γ2
trace

(
θ̃ T
Gi

˙̃
θGi

)]

= kβE2 − 1

r
β2E2 + βEw

−
N∑

i=1

[
θ̃ T
F iζ − trace

(
θ̃ T
GiζuT

i

) + 1

γ1
θ̃F i

˙̃
θF i

+ 1

γ2
trace

(
θ̃ T
Gi

˙̃
θGi

)]
. (41)

Using adaptation laws (34)–(35) and the quadratic
equation (36), the above equation becomes

V̇ = −1

2
αE2 − 1

2ρ2
β2E2 + βEw

= −1

2
αE2 − 1

2

(
1

ρ
βE − ρw

)2

+ 1

2
ρ2w2

≤ −1

2
αE2 + 1

2
ρ2w2. (42)

Integrating the above inequality from t = 0 to T

yields to

V (T ) − V (0) ≤ −1

2
α

∫ T

0
E2 dt + 1

2
ρ2

∫ T

0
w2 dt.

(43)

Using the fact that V (T ) ≥ 0, the following in-
equality is implied:

1

2
α

∫ T

0
E2 dt ≤ V (0) + 1

2
ρ2

∫ T

0
w2 dt (44)

and from (38), (44) can be rewritten in the following
form:

1

2
α

∫ T

0
E2 dt ≤ 1

2
βE2(0) (45)

+ 1

2α

N∑

i=1

[
1

γ1
Θ̃2

Fi(0)

+ 1

γ2
trace

(
Θ̃T

Gi(0)Θ̃Gi(0)
)]

+ 1

2α
ρ2

∫ T

0
w2 dt. (46)

This is (37). �

The proposed control methodology for the ith robot
is summarized in Algorithm 1.

Remark 1 The solvability of robust coverage perfor-
mance (37) by the adaptive fuzzy controller (21), and
adaptation laws (34)–(35) depends on the existence
of a positive solution β of (36). Based on elementary
mathematics, for guaranteed existence of such solution
we should have

(2k)2 − 4

(
1

ρ2
− 2

r

)
(α) ≥ 0.
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Algorithm 1 Simultaneous Coverage and Tracking
Control for the ith robot

Initialize θF i and θGi

loop
Measure zi , and compute CVi

, and MVi

Compute the coverage error (9)
Update θF i and θGi according to (34)–(35)
Make the approximations of F̂i and Ĝi

Compute the robust controller uai according to
(33)

Apply controller ui = Ĝi

‖Ĝi‖2 (−F̂i + kE(t) − uai)

end loop

Therefore, our quadratic equation has a positive so-
lution if and only if

(
1

ρ2
− 2

r

)
≤ 0 or r ≤ 2ρ2.

As a conclusion for a prescribed ρ in our robust
coverage performance, the coefficient r in (33) should
satisfy the above inequality.

5 Simulation results

This section presents three simulation examples to il-
lustrate the effectiveness and robustness of the pro-
posed control scheme. The first example presents the
coverage of an unknown environment with 5 Robots
and 1 Intruder (5R1I). In this example, a mobile in-
truder circles in the environment and one robot track
it while maintaining the optimal coverage simultane-
ously. In the second example, the same robotic swarm
is covering the environment while 2 mobile intrud-
ers roam in the environment (5R2I). Finally, the third
complex coverage problem consists of 9 Robots and 3
Intruders (9R3I) with different motion trajectories.

All the simulation results are implemented in
MATLAB® with 0.01s as the stepsize.

In order to make the results comparable with exist-
ing works, authors have tried to make all simulation
conditions (e.g. initial positions, intruding trajectories,
etc.) similar to the simulation results presented in [13].

In all simulations, robots compute the function φ in
(4), (5) locally by considering the tracking distance:

φ(q, t) =
l∑

i=1

(
A exp

(
− (x − xi(t))

2

2σ 2

− (y − yi(t))
2

2σ 2

))
+ 1 (47)

where [x, y]T is the position of robot, [xi, yi]T is the
position of the ith detected intruder, A = 0.64 and
σ = 0.5. This radial basis function is centered at the
intruder position and can be a good representation for
the sensory function used in (8).

Each robot is simulated with the simple kinematic
single integrator model represented in (1), and the ro-
bust controller of (21) is used to force robots to si-
multaneously cover the environment and track the in-
truders. Each controller needs two fuzzy approxima-
tors for approximating Fi , and Gi . Gaussian member-
ship functions are defined as the following:

μF 1
1
(x) = 1

1 + exp(3(x + 1))
,

μF 2
1
(y) = 1

1 + exp(3(y + 1))
,

μF 3
1
(x) = 1

1 + exp(−3(x − 1))
,

μF 4
1
(y) = 1

1 + exp(−3(y − 1))
,

μF 1
2
(MVi

) = 1

1 + exp(30(MVi
+ 0.15))

,

μF 4
2
(LVi

) = 1

1 + exp(30(LVi
+ 0.15))

,

μF 2
2
(MVi

) = exp
(−30 × M2

Vi

)
,

μF 5
2
(LVi

) = exp
(−30 × L2

Vi

)
,

μF 3
2
(MVi

) = 1

1 + exp(−30(MVi
− 0.15))

,

μF 6
2
(LVi

) = 1

1 + exp(−30(LVi
− 0.15))

,

where x and y are the position coordinate of an indi-
vidual robot.

Using the aforementioned 10 membership func-
tions, 13 fuzzy rules are designed as

Rl : IF x IS F i
1 AND y IS F

j

1 THEN y′ IS G
ij

1 ,

i = 1,2 j = 3,4
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Rl : IF MVi
IS F i

2 AND LVi
IS F

j

2 THEN y′ IS G
ij

2 ,

i = 1,2,3 j = 4,5,6

where y′ is the output of each rule.
The output of the fuzzy system is achieved by

choosing singleton fuzzification, center average de-
fuzzification, Mamdani implication in the rule base,
and product inference engine [25] as

F̂i(zi ,MVi
,LVI

|θF i) = θT
F iζ(zi,MVi

,LVI
),

Ĝi(zi,MVi
,LVI

|θGi)

= [
θT

1Giζ(zi,MVi
,LVi

) θT
2Giζ(zi,MVi

,LVI
)
]T

where

θF i = [θF i1, θF i2, . . . , θF i13]T ,

θ1Gi = [θ1Gi1, θ1Gi2, . . . , θ1Gi13]T ,

θ2Gi = [θ2Gi1, θ2Gi2, . . . , θ2Gi13]T

are adjustable parameters.

All θs are initialized from zero vectors and the
learning rate in (34)–(35) are set to γ1 = γ2 = 15.

The prescribed attenuation level (ρ), r and α in
(36), are chosen to be 0.1, 0.015, and 100, respec-
tively.

In the first and second simulation examples (i.e.
5R1I and 5R2I), k = 40 and the initial positions for
robots and intruders are presented in Table 1. Initial
positions for the third example 9R3I are presented in
Table 2 with k = 20.

Figures 1, 2 and 3, clearly demonstrate the effec-
tiveness and robustness of our designed controller. In
each scenario, intruders are tracked by their nearest
robot (i.e. the robot in the same Voronoi region) and

Table 1 Initial positions for 5R1I and 5R2I

R1 R2 R3 R4 R5 I1 (I2)

x −2.2 −2.0 −2.0 1.0 1.1 −0.9 0

y 0.8 −0.4 −1.2 0.8 0.0 0.0 −1.0

Fig. 1 (Color online) Simultaneous coverage and tracking of five robots and one intruder (The positions of the robots are given by the
blue circles. The positions of the intruders are given by red circles. The margins denote the Voronoi regions.)
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Fig. 2 (Color online) Simultaneous coverage and tracking of five robots and two intruder. (The positions of the robots are given by
the blue circles. The positions of the intruders are given by red circles. The margins denote the Voronoi regions.)

Table 2 Initial positions for 9R3I

R1 R2 R3 R4 R5 R6 R7

x −2.2 −2.0 −2.0 −0.9 0.0 1.1 1.1

y 0.8 −0.4 −1.2 0.1 1.0 0.9 0.1

R8 R9 I1 I2 I3

x 1.0 1.0 1.1 −1.0 0 2.0

y −0.5 −1.0 0 0.0 1.0 1.0

still the optimal coverage in maintained regarding to
(8).

In order to compare our results with the existing
method of Pimenta et al. in [13], the overall coverage
error of third example (9R3I), is computed for both
methods and results are illustrated in Fig. 4. In this
figure, E(t) = 40e−20t is the theoretical lower bound
of coverage error (based on (19)).

Error comparisons depict the fact that the perfor-
mance of our method is very similar to the method
proposed in [13]. Instead, in our method, due to us-
ing fuzzy approximator, there is no need to directly
compute (16) and its components. Therefore, the com-
putation complexity of our method is much lower than
the method proposed in [13], while performance re-
sults are comparable.

6 Conclusion

In this paper, the coverage control problem of a class
of multi-robot systems with limited computation abil-
ity was investigated, in which centroidal Voronoi con-
figuration was achieved in presence of mobile intrud-
ers. On the basis of the Lyapunov stability theory, a
novel decentralized adaptive fuzzy controller with cor-
responding parameter update laws was developed and
the stability of the system was proved. All the the-
oretical results were verified by simulation examples
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Fig. 3 (Color online) Simultaneous coverage and tracking of nine robots and three intruder. (The positions of the robots are given by
the blue circles. The positions of the intruders are given by red circles. The margins denote the Voronoi regions.)

Fig. 4 Coverage error E(t). Method I is proposed by Pimenta
et al. in [13]; Method II is the proposed method of this article

and good performance of the proposed controller was
shown even in the case of multiple intruders.
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