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Abstract This paper proposes a robust adaptive back-
stepping synchronization method for a class of un-
certain chaotic systems. Unknown factors including
system uncertainties and external disturbances are es-
timated by a fuzzy disturbance observer. By use of
the fuzzy disturbance observer, any prior informa-
tion about the unknown factors is not need. The pro-
posed method using the estimated values guarantees
the global synchronization for chaotic systems with
mismatched uncertainties in the sense of uniform ul-
timate boundedness. Finally, numerical examples are
presented to show the effectiveness of the method.

D.H. Ji
Mobile Communication Division, Digital Media and
Communications, Samsung Electronics, Co. Ltd.,
Maetan-dong, Suwon, Gyeonggi-do, 416-2, Korea
e-mail: captainzone@gmail.com

S.C. Jeong · S.C. Won
Department of Electrical Engineering, Pohang University
of Science and Technology, San 31 Hyoja-Dong, Pohang
790-784, Korea

S.C. Jeong
e-mail: somunza@postech.ac.kr

S.C. Won
e-mail: won@postech.ac.kr

J.H. Park (�)
Nonlinear Dynamics Group, Department of Electrical
Engineering, Yeungnam University, 214-1 Dae-dong,
Kyongsan 712-749, Republic of Korea
e-mail: jessie@ynu.ac.kr

Keywords Robust adaptive backstepping control ·
Synchronization · Chaotic systems · Fuzzy
disturbance observer

1 Introduction

Since the pioneering work of Pecora and Carroll [1],
synchronization of chaotic systems has been one of in-
teresting topics in various research fields including se-
cure communication [2–4], neural networks [5], com-
plex networks [6], biology [7], and mechanics [8].
Many researchers have investigated various synchro-
nization methods such as state feedback control [9–
12], delayed feedback control [13], adaptive control
[14, 15], backstepping control [16–20], sliding mode
control [21–23], H∞ control [24, 25], and optimal
control [26, 27]. Among the methods, backstepping
control scheme has become one of the important and
popular approaches for synchronization for chaotic
systems. Because the scheme can guarantee global sta-
bility and good tracking performance. Moreover, it
has an ability to overcome mismatched uncertainty by
use of a recursive procedure with the choice of Lya-
punov function. In [16], a backstepping synchroniza-
tion method with parameter update laws was presented
for uncertain chaotic systems. Wu and Chen [17] stud-
ied backstepping control to suppress the chaotic mo-
tion of a modified Chua’s circuit system, guarantee-
ing the global exponential stability. Chaos synchro-
nization was achieved by backstepping method using
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single variable feedback [18]. In [19], chaotic sys-
tems with unknown bounded uncertainty were syn-
chronized by use of an adaptive law for the upper
bound of the uncertainty. In [20], dynamic fuzzy neu-
ral networks modeling was used to control uncertain
chaotic systems via adaptive backstepping method.

Although the studies mentioned above can synchro-
nize the chaotic systems, there are still some limi-
tations. It is that they often need to know informa-
tion about the unknown factors. In [16], knowledge
of the structure of parameter uncertainty was required
to synchronize the chaotic systems. The synchroniza-
tion method proposed in [20] can be applied when up-
per bound of the existing uncertainty is assumed to be
known. However, in many practical cases, the infor-
mation about the parameter uncertainty or disturbance
may not be available or can be difficult to use them. By
using fuzzy logic system (FLS), Kim [28] proposed
Fuzzy Disturbance Observer (FDO) to estimate the un-
known factors and the estimated values were used to
suppress the unknown factors without any prior infor-
mation about them. In [29], a robust tracking control
approach using a discrete-time FDO was studied for
nonlinear sampled systems. Moreover, Yoo et al. [30]
constructed a more precise FDO by modification of the
adaptation law for the parameter vector and showed
better performances, compared with the conventional
one. Therefore, the method using FDO can be one of
good schemes to synchronize uncertain chaotic sys-
tems. However, there exist few studies which use FDO
for chaotic synchronization and the existing methods
have difficulty to control mismatched uncertainty.

In this paper, a robust adaptive backstepping syn-
chronization method using FDO is proposed for chaot-
ic systems with mismatched uncertainty and distur-
bance. The FDO is used to estimate the unknown
factors including the uncertainties and disturbances.
Any knowledge about the factors such as their struc-
ture or bound is not required because the FLS is used.
The estimated value is applied in the proposed con-
troller to suppress the unknown factors. Moreover, the
proposed method overcomes the mismatched uncer-
tainty by adopting adaptive backstepping design pro-
cedure. The control and adaptation laws used in the
control input are derived in based on the Lyapunov sta-
bility theory. Eventually, the proposed method guaran-
tees that the synchronization error between the drive
and the response system converges into any arbitrar-
ily given small bound in the sense of uniform ultimate

boundedness (UUB). Numerical examples show the
effectiveness of the proposed synchronization method.

Notations Throughout this paper, R
n and R

n×m de-
note the sets of n component real vectors and n × m

real matrices, respectively. For the vector u ∈ R
n, uT

denotes its transpose. The notation | · | refers of the
absolute value of a scalar function and ‖ · ‖ stands
for the induced matrix 2-norm. L2 means the space of
square integral vector functions on [0,∞) with norm
‖ · ‖ ≡ (

∫ ∞
0 ‖ · ‖2 dt)1/2.

2 Problem statement and preliminary

The synchronization problem is described based on
the drive-response framework. Consider the following
chaotic system as the drive system:

ẋd (t) = fd

(
xd(t), t

)
, (1)

yd(t) = xd1(t), (2)

where xd(t) = [xd1, . . . , xdm] ∈ R
m is state vector

and yd(t) ∈ R is output vector, and fd(xd(t), t) =
[fd1, . . . , fdm] ∈ R

m is a known continuous nonlinear
vector function.

The response system is represented as

ẋ1(t) = (
f1

(
x̄1(t), t

) + �f1
(
x̄1(t), t

))

+ (
g1

(
x̄1(t), t

) + �g1
(
x̄1(t), t

))
x2(t) + d1(t)

ẋ2(t) = (
f2

(
x̄2(t), t

) + �f2
(
x̄2(t), t

))

+ (
g2

(
x̄2(t), t

) + �g2
(
x̄2(t), t

))
x3(t) + d2(t)

...

ẋn(t) = (
fn

(
x̄n(t), t

) + �fn

(
x̄n(t), t

))

+ (
gn

(
x̄n(t), t

) + �gn

(
x̄n(t), t

))
u(t) + dn(t),

(3)

y(t) = x1(t) (4)

where x(t) = [x1(t), . . . , xn(t)]T ∈ R
n, u(t) ∈ R,

y(t) ∈ R are, respectively, the state vector, the con-
trol input and output vector of the response sys-
tem, fi(x̄i(t), t) ∈ R and gi(x̄i(t), t) ∈ R �= 0 with
x̄i (t) = [x1(t), . . . , xi(t)]T are known nominal func-
tions, �fi(x̄i(t), t), �gi(x̄i(t), t), and di(t) are uncer-
tainty and disturbance, respectively.
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For simplicity, let us denote xi(t) = xi , u(t) = u,
fi(x̄i(t), t) = fi , �fi(x̄i(t), t) = �fi , gi(x̄i(t), t) =
gi , �gi(x̄i(t), t) = �gi , and di(t) = di for i =
1, . . . , n.

By defining the overall disturbance Ωi = �fi +
�gixi+1 + di for i = 1, . . . , n − 1 and Ωn = �fn +
�gnu + dn, (3) can be rewritten as

ẋ1 = f1 + g1x2 + Ω1

ẋ2 = f2 + g2x3 + Ω2

... (5)

ẋn−1 = fn−1 + gn−1xn + Ωn−1

ẋn = fn + gnu + Ωn.

Remark 1 The system (5) is called “strict-feedback”
form, in which the backstepping design method can be
applied. In practice, we can find many chaotic systems
which can be represented as the form, for example,
Duffing oscillator, Bonhoeffer–van der Pol oscillator,
Rössler system, Chua’s circuit, and so on.

The objective of this paper is to design a controller
which makes the output of the response system (4)
converge to the output of the drive system (2) with
an arbitrarily small error. In order to accomplish our
purpose, we need to suppress the overall disturbances
existing in the system. It can be achieved by estima-
tion of the disturbances and the estimated value can
be obtained by fuzzy logic system (FLS). Here, the
basic configuration of FLS [31] is described briefly.
FLS performs a mapping from a compact set X =
X1 × · · · × Xn ⊂ R

n to a compact set V ⊂ R. The
fuzzy rule base consists of a collection of M fuzzy IF-
THEN rules:

R(l) : IF x1 is Al
1, and · · · and, xn is Al

n,

Then y is Gl (6)

where x = [x1, . . . , xn]T ∈ X and y ∈ V are the input
and output of the FLS, respectively, and Al

i and Gl are
labels of fuzzy sets in Xi and R for l = 1,2, . . . ,M .
By use of the product inference engine, center-average
defuzzifier, and singleton fuzzifier, the output of the
fuzzy system can be expressed as

y(x) =
∑M

l=1 yl(
∏n

i=1 μAl
i
(xi))

∑M
l=1(

∏n
i=1 μAl

i
(xi))

= θT ξ(x) (7)

where μAl
i
(xi) is membership function value of the

fuzzy variable xi , M is the number of fuzzy rules,
θ = [y1, y2, . . . , yM ]T is adjustable parameter vector,
and ξ(x) = (ξ1(x), ξ2(x), . . . , ξM(x))T is a regressive
vector defined as

ξl(x) =
∏n

i=1 μAl
i
(xi)

∑M
l=1(

∏n
i=1 μAl

i
(xi))

(8)

which is named fuzzy basis functions (FBFs).
Based on the well-known “universal approxima-

tion theorem” [31], the fuzzy system (7) estimates un-
known function with a small error called fuzzy ap-
proximation error. This characteristic was extended
to estimate the disturbance, which was introduced as
FDO in [28]. In this paper, FDO is applied to es-
timate the overall disturbances including uncertain-
ties and disturbances in the response system (3). One
of the major advantages of FDO is that it can be a
good approach to obtain the estimated value when it
is not available to know the bound or structure of the
unknown factors. Eventually, the value will be used
to compensate the actual disturbance in the proposed
method in which the details will be presented in the
next section.

3 Robust adaptive backstepping synchronization
using FDO

In this section, we propose a synchronization method
using robust adaptive backstepping procedure. First,
we present a design method of FDO to construct the
overall disturbance Ωi that exists in the response sys-
tem (3). Let us consider the following observer system
as

˙̂x1 = f1 + g1x2 + Ω̂1 + p1(x1 − x̂1)

˙̂x2 = f2 + g2x3 + Ω̂2 + p2(x2 − x̂2)

...

˙̂xn = fn + gnu + Ω̂n + pn(xn − x̂n)

(9)

where x̂ = [x̂1, . . . , x̂n] ∈ R
n, pi is a positive constant,

Ω̂i = θT
i ξi(x), θi ∈ R

M is the fuzzy parameter vector,
ξi(x) ∈ R

M is the fuzzy basis function vector. From
this observer system, we can obtain a fuzzy logic sys-
tem Ω̂i which guarantees that, by the universal ap-



1128 D.H. Ji et al.

proximation theorem [31],

|Ωi − Ω̂i | < ε̄i (10)

where ε̄i ∈ R is the upper bound of the fuzzy approx-
imation error. Therefore, we can see that Ωi is esti-
mated by Ω̂i(x) with an error bound εi ≤ ε̄i ∈ R.

Define the observation error as follows:

ϕi = xi − x̂i . (11)

Then, from the response system (3) and the observer
system (9), the error dynamics is described by

ϕ̇i = ẋi − ˙̂xi = Ωi − Ω̂i − pi(xi − x̂i ) = εi − piϕi

(12)

where εi = Ωi − Ω̂i = ϕ̇i + Piϕi . This disturbance
reconstruction error εi can be rewritten as

εi = Ωi − Ω̂i = Ωi − Ω̂∗
i + Ω̂∗

i − Ω̂i ≡ li + mi (13)

where

li = Ωi − Ω̂∗
i , (14)

mi = Ω̂∗
i − Ω̂i = θ̃ T

i ξi(x), (15)

θ̃i = θ∗
i − θi, (16)

Ω̂∗
i = Ω̂i

(
x|θ∗

i

) = θ∗T
i ξi(x), (17)

θ∗
i = arg min

θi

[
sup
x

∣
∣Ω̂i(x|θi) − Ωi(x)

∣
∣
]
.

The following theorem presents an adaptation law for
θi to estimate the overall disturbance Ωi .

Theorem 1 Consider the system (3) and the observer
system (9). If the update law of the parameter vector
θi for Ω̂i(x|θi) is chosen as

θ̇i = γi1ξi(x)(ϕi + γi0εi) (18)

where γi0 and γi1 are positive constants, then the un-
known factor Ωi is estimated by Ω̂i(x|θi) = θT

i ξi(x)

guaranteeing the following robust performance

n∑

i=1

∫ T

0
Piϕ

2
i dt +

n∑

i=1

∫ T

0
γi0m

2
i dt

≤
n∑

i=1

ϕ2
i (0) +

n∑

j=1

1

γi1
θ̃ T
i (0)θ̃i (0)

+
n∑

i=1

∫ T

0

(

γi0 + 1

pi

)

l2
i dt (19)

where Γi0 = γi0In×n > 0 and γi1 is the positive con-
stant for i = 1, . . . , n.

Proof Choose the following Lyapunov function can-
didate:

VF = 1

2

n∑

i=1

ϕ2
i + 1

2

n∑

i=1

1

γi1
θ̃ T
i θ̃i (20)

where γi1 is a positive constant.
Differentiating VF along the error dynamics (12)

and using (17)–(18) yield

V̇F =
n∑

i=1

ϕiϕ̇i +
n∑

i=1

1

γi1
θ̃ T
i

˙̃
θi

=
n∑

i=1

ϕi(−piϕi + Ωi − Ω̂i) +
n∑

i=1

1

γi1
θ̃ T
i

˙̃
θi

=
n∑

i=1

ϕi

(−piϕi + Ωi − Ω̂∗
i + Ω̂∗

i − Ω̂i

)

+
n∑

i=1

1

γi1
θ̃ T
i

˙̃
θi

= −
n∑

i=1

piϕ
2
i +

n∑

i=1

ϕT
i li +

n∑

i=1

ϕi

(
Ω̂∗

i − Ω̂i

)

−
n∑

i=1

θ̃ T
i ξi(ϕi + γi0εi)

=
n∑

i=1

[−piϕ
2
i + ϕili + θ̃ T

i ξiϕi − θ̃ T
i ξi(ϕi + γi0εi)

]

=
n∑

i=1

[−piϕ
2
i + ϕili − γi0m

2
i − γi0mili

]
. (21)

Applying the following inequalities

ϕili ≤ 1

2
piϕ

2
i + 1

2pi

l2
i and −mili ≤ 1

2
m2

i + 1

2
l2
i ,

(22)

we have the following inequality:
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V̇F ≤
n∑

i=1

(

−piϕ
2
i − γi0m

2
i + 1

2
γi0m

2
i + 1

2
γi0l

2
i

+ 1

2
piϕ

2
i + 1

2pi

l2
i

)

=
n∑

i=1

(

−1

2
piϕ

2
i − 1

2
γi0m

2
i + 1

2

(

γi0 + 1

pi

)

l2
i

)

.

(23)

By integrating both sides of (23) from 0 to T , we can
lead to

1

2

n∑

i=1

[∫ T

0
piϕ

2
i dt +

∫ T

0
γi0m

2
i dt

]

≤ VF (0) − VF (T ) + 1

2

n∑

i=1

∫ T

0

(

γi0 + 1

pi

)

l2
i dt.

(24)

This inequality (24) is equivalent to inequality (19)
in Theorem 1, since V1(T ) > 0. This completes the
proof. �

Based on Barbalat’s lemma [32, 33], the robust
performance of inequality (19) can be explained. If
li ∈ L2, i.e.,

∫ ∞
0 l2

i dt < ∞, then ϕi ∈ L2 and mi ∈ L2.
This means that limt→∞ ‖ϕi(t)‖ = 0 and
limt→∞ ‖mi(t)‖ = 0. Moreover, even though li /∈ L2,
ϕ2

i is bounded by l2
i . Hence, we can make the obser-

vation error arbitrarily small by setting the predeter-
mined positive weighting constant γi0 + 1

pi
. Hence,

we can conclude that Ω̂i can estimate Ωi with arbi-
trarily small error.

Remark 2 Yoo et al. in [30] improved the performance
of the conventional FDO proposed by Kim [28] by
modifying the adaptive law for the parameter vector.
However, the control methods considered the situation
where the matched uncertainty only exists in the sys-
tem. In this paper, we enable to overcome the mis-
matched uncertainty by using backstepping scheme
with the FDO.

We can obtain the estimated value of the overall
disturbance Ωi in (5) by Theorem 1. This means that
the value can be used to compensate the overall dis-
turbance Ωi . Now, using the estimated value, we pro-
pose a robust adaptive backstepping controller design

method to achieve the synchronization between the
outputs of the drive system and response system. The
design method is presented in the following theorem.

Theorem 2 Consider the drive system (1) and the re-
sponse system (3). Let us apply the coordinate trans-
formation

z1 = x1 − xd1,

zi = xi − xdi − αi−1 for i = 2, . . . , n
(25)

with

α1 = 1

g1
(−c1z1 − f1 + fd1 − g1xd2 − β1 − Ω̂1),

(26)

αi = 1

gi

(−cizi − fi + fdi − gixd(i+1) − gi−1zi−1

+ α̇i−1 − βi − Ω̂i), i = 2, . . . , n − 1. (27)

If the following control law is chosen as

u = 1

gn

(−cnzn − fn + fdn − gn−1zn−1 + α̇n−1

− βn − Ω̂n) (28)

where ci is the positive constant,

βi = kiwi(zi), (29)

k̇i = ρi

[
ziwi(zi) − σi

(
ki − k0

i

)]
, (30)

wi(zi) = tanh

(
zi

δi

)

, (31)

Ω̂i = θT
i ξi(x), (32)

σi , k0
i , and δi are positive constants for i = 1, . . . , n,

then the error z1 between the outputs of the drive sys-
tem (1) and the response system (3) converges to a
small neighborhood of the origin.

Proof The backstepping design procedure consists of
n steps. At each step (1 ≤ i ≤ n − 1), a stabilizing
function αi with Ω̂i is developed with respect to Lya-
punov function Vi and the control law u is obtained in
the last step.

Step 1: From (1) and (3), the derivative of z1 = x1 −
xd1 is given by
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ż1 = f1 + g1x2 + Ω1 − fd1

= f1 − fd1 + g1(z2 + xd2 + α1) + Ω1. (33)

In order to design the stabilizing function α1, choose
the Lyapunov function candidate

V1 = 1

2
z2

1 + 1

2ρ1
k̃2

1 (34)

where k̃1 = k1 − k∗
1 .

Differentiating (34) lead to

V̇1 = z1
[
f1 − fd1 + g1(z2 + xd2 + α1) + Ω1

]

+ 1

ρ1
k̃1k̇1. (35)

By applying the stabilizing function (26) and (29)–
(31), we can have

V̇1 = z1(−c1z1 + g1z2 − β1 − Ω̂1 + Ω1) + 1

ρ1
k̃1k̇1

= −c1z
2
1 + g1z1z2 − z1k1w1(z1) + z1ε1

+ k̃1
[
z1w1(z1) − σ1

(
k1 − k0

1

)]

= −c1z
2
1 + g1z1z2 − z1k1w1(z1) + z1ε1

+ k̃1z1w1(z1) − σ1k̃1
(
k1 − k0

1

)

= −c1z
2
1 + g1z1z2 − k∗

1z1w1(z1) + z1ε1

− σ1k̃1
(
k1 − k0

1

)
. (36)

Using the following equation

−σ1
(
k1 − k∗

1

)(
k1 − k0

1

)

= −1

2
σ1

(
k1 − k∗

1

)2 − 1

2
σ1

(
k1 − k0

1

)2

+ 1

2
σ1

(
k∗

1 − k0
1

)2
, (37)

(36) can be represented as

V̇1 = −c1z
2
1 + g1z1z2 − k∗

1z1w1(z1) + z1ε1 − 1

2
σ1k̃

2
1

− 1

2
σ1

(
k1 − k0

1

)2 + 1

2
σ1

(
k∗

1 − k0
1

)2

≤ −c1z
2
1 + g1z1z2 − k∗

1z1 tanh

(
z1

δ1

)

+ z1ε1

− 1

2
σ1k̃

2
1 + 1

2
σ1

(
k∗

1 − k0
1

)2
. (38)

Based on the universal approximation theorem [31],
choose k∗

1 such that ε̄1 ≤ k∗
1 where ε̄1 is the upper

bound of ε1 = Ω1 − Ω̂1. Then we obtain

V̇1 ≤ −c1z
2
1 + g1z1z2 + k∗

1

[

|z1| − z1 tanh

(
z1

δ1

)]

− 1

2
σ1k̃

2
1 + 1

2
σ1

(
k∗

1 − k0
1

)2
. (39)

Now, we introduce the following claim to progress this
proof.

Claim The following inequality holds for any δ > 0
and y ∈ R:

0 ≤ |y| − y tanh

(
y

δ

)

≤ ηδ (40)

where η is a constant that satisfies η = e−(η+1), i.e.,
η = 0.2785.

The proof of this claim follows after straightfor-
ward algebraic manipulation, and is therefore omitted.
Then, by application of the claim, we have

V̇1 ≤ −c1z
2
1 + g1z1z2 + 1

2
k∗

1δ1

− 1

2
σ1k̃

2
1 + 1

2
σ1

(
k∗

1 − k0
1

)2

≤ −r1V1 + λ1 + g1z1z2 (41)

where r1 = min{2c1, σ1ρ1} > 0 and λ1 = 1
2k∗

1δ1 +
1
2σ1(k

∗
1 − k0

1)2. It should be noted that the coupling
term g1z1z2 is cancelled in the next step.

Step i (2 ≤ i ≤ n − 1): The derivative of zi = xi −
xdi − αi−1 is written by

żi = fi − fri + gi(zi+1 + xd(i+1) + αi) + Ωi − α̇i−1.

(42)

Let us choose the Lyapunov function candidate to ob-
tain the stabilizing function αi

Vi = Vi−1 + 1

2
z2
i + 1

2ρi

k̃2
i (43)

where k̃i = ki − k∗
i .

By using the stabilizing function (27) and (29)–
(31), we obtain the derivative of Vi as follows:
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V̇i = V̇i−1 + zi żi + 1

ρi

k̃i k̇i

≤ −ri−1Vi−1 + λi−1 + gi−1zi−1zi

+ zi

[
fi − fri + gi(zi+1 + xd(i+1) + αi)

+ Ωi − α̇i−1
] + 1

ρi

k̃i k̇i

= −ri−1Vi−1 + λi−1 − ciz
2
i + gizizi+1

− k∗
i ziwi(zi) + ziεi − σi k̃i

(
ki − k0

i

)
. (44)

Using the following equation

−σi

(
ki − k∗

i

)(
ki − k0

i

)

= −1

2
σi

(
ki − k∗

i

)2 − 1

2
σi

(
ki − k0

i

)2

+ 1

2
σi

(
k∗
i − k0

i

)2 (45)

and choosing k∗
i such that ε̄i ≤ k∗

i where |εi | =
|Ωi − Ω̂i | ≤ ε̄i , the inequality (44) can be represented
as

V̇i ≤ −ri−1Vi−1 + λi−1 − ciz
2
i + gizizi+1

+ k∗
i

[

|zi | − zi tanh

(
zi

δi

)]

− 1

2
σi k̃

2
i

+ 1

2
σi

(
k∗
i − k0

i

)2
. (46)

Then, with the claim mentioned above, we have

V̇i ≤ −ri−1Vi−1 + λi−1 − ciz
2
i + gizizi+1

+ 1

2
k∗
i δi − 1

2
σi k̃

2
i + 1

2
σi

(
k∗
i − k0

i

)2

≤ −riVi + λi + gizizi+1 (47)

where ri = min{2ci, σiρi for i = 1, . . . , i} > 0 and
λi = ∑i

j=1[ 1
2k∗

j δj + 1
2σj (k

∗
j − k0

j )
2].

Step n: In this final step, we derive the control law
u(t) to achieve the synchronization. The derivative of
zn = xn − xdn − αn−1 is written by

żn = fn − fdn + gnu + Ωn − α̇n−1. (48)

In the similar way with the previous steps, the Lya-
punov function candidate is chosen as

Vn = Vn−1 + 1

2
z2
n + 1

2ρn

k̃2
n (49)

where k̃n = kn − k∗
n and its derivative is obtained with

the control input (28) and (28)–(31) as follows:

V̇n = V̇n−1 + znżn + 1

ρn

k̃nk̇n

≤ −rn−1Vn−1 + λn−1 + gn−1zn−1zn

+ zn[fn − fdn + gnu + Ωn − α̇n−1] + 1

ρi

k̃i k̇i

= −rn−1Vn−1 + λn−1 − cnz
2
n − k∗

nznwn(zn)

+ znεn − σnk̃n

(
kn − k0

n

)
. (50)

Using the following equation

−σn

(
kn − k∗

n

)(
kn − k0

n

)

= −1

2
σn

(
kn − k∗

n

)2 − 1

2
σn

(
kn − k0

n

)2

+ 1

2
σn

(
k∗
n − k0

n

)2
, (51)

choosing k∗
n such that |εn| = |Ωn−Ω̂n| ≤ ε̄n ≤ k∗

n , and
applying the claim yield

V̇n ≤ −rn−1Vn−1 + λn−1 − cnz
2
n + 1

2
k∗
nδn

− 1

2
σnk̃

2
n + 1

2
σn

(
k∗
n − k0

n

)2

≤ −rnVn + λn (52)

where rn = min{2cn, σnρn for i = 1, . . . , n} > 0 and
λn = ∑n

j=1[ 1
2k∗

j δj + 1
2σj (k

∗
j − k0

j )
2].

It is obvious that the inequality (52) is equivalent to

0 ≤ Vn(t) ≤ λn

rn
+

[

Vn(0) − λn

rn

]

e−rnt . (53)

This means that zi and ki are globally uniformly ulti-
mately bounded (UUB). Therefore, we can conclude
that the output of the response system (3) converges
to one of the drive system (1) with a small error, that
is, the synchronization is achieved by the proposed
control law. Moreover, if the design constants δi , σi ,
and ρi , are appropriately chosen, then it is possible to
make the error as small as desired. This completes the
proof. �

Remark 3 It is clear that the stabilizing function αi

for i = 1, . . . , n − 1 are differentiable because all of
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terms of αi are differentiable. Therefore, the differen-
tial terms included in αi for i = 2, . . . , n−1 and u can
be implemented.

Remark 4 The hyperbolic function tanh(·) is often
used as an approximation of the discontinuous func-
tion sgn(·). In fact, as δi approaches zero, wi(zi) ap-
proaches the sign function. This replacement makes
the control law continuous without the loss of the ro-
bustness.

4 Numerical examples

In order to verify the effectiveness of the proposed
method, two examples are presented in this section.
In the first example, the drive system and the response
system are selected as Bonhoeffer–van der Pol (BVP)
oscillator and Duffing oscillator, respectively. The sec-
ond example presents the chaos synchronization be-
tween Lorenz system and Duffing oscillator. Namely,
the drive and response systems in each example have
different dynamics [21, 30]. Because, in many prac-
tical cases, we cannot easily guarantee that response
system works by the same dynamics with drive sys-
tem. Moreover, by replacing the known function fi

with fdi , we can easily extend our proposed method to
the situation where the systems are identical. The sim-
ulations are conducted in Simulink (MATLAB) using
a fixed step fourth- order Runge–Kutta solver with a
sample period of Ts = 0.005 s.

Example 1 Consider Bonhoeffer–van der Pol (BVP)
oscillator as the drive system

ẋd1(t) = xd2(t)

ẋd2(t) = h
(
xd1(t)

) − 0.5xd2(t) − 0.05x3
d2(t) (54)

+ sin
(
xd1(t)

) + 35.5 sin(2t + 6) sin
(
xd1(t)

)

where

h
(
xd1(t)

) = −102 (1 − cosxd1)
2

sin3 xd1

and Duffing oscillator as the response system

ẋ1(t) = f1 + �f1 + (g1 + �g1)x2(t) + d1(t)

ẋ2(t) = f2 + �f2 + (g2 + �g2)u(t) + d2(t)
(55)

where the nominal system, uncertainty, and distur-
bance are f1 = 0, g1 = 1, f2 = −0.4x2(t)+1.1x1(t)−
x3

1(t) + 1.8 cos(1.8t), g2 = 1, �f1 = 0, �g1 = 0.1,
�f2 = −0.05x3

1(t) + 0.2x1(t), �g2 = 0, d1(t) =
0.1 cos(t), d2(t) = 0.2 sin(t).

Then the overall disturbance is defined as Ω1 =
�f1 + �g1 + d1(t) = 0.1x2(t) + 0.1 cos(t) and Ω2 =
�f2 + �g2 + d2(t) = −0.05x3

1(t) + 0.2x1(t) +
0.2 sin(t).

To construct the FDO, we use the input vector of the
FLS as X = [x1, x2]T where xl ∈ [−2,2], l = 1,2. We
choose 3 centers of the Gaussian membership function
μl = exp[−(xl − cml)

2/σ 2
μ] where σμ = 1.2 for each

Fig. 1 The drive system (a) and response system (b) in Example 1
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Fig. 2 (Color online) The
output trajectories of the
drive and response
system (a) and the
synchronization error (b) in
Example 1

Fig. 3 (Color online) The
actual overall disturbance
Ω(x(t)) and FDO Ω̂(x(t))

in Example 1

FLS input, i.e. Cm = [cm1, cm2] for m = 1,2, . . . ,9
with uniform distance. The used parameters are c1 =
c2 = 1, γ0 = γ1 = 10, pi = 10, δi = 0.01, ρi = 3,
σi = 1, k0

i = 1 for i = 1,2. Initial values are chosen
as xd0 = [−0.5;−2], x0 = [−1.5;1.5], x̂0 = [0;0],
θi0 = 0, ki0 = 0.

The drive system (54) and response system (55)
are depicted in Fig. 1(a) and (b), respectively. Fig-
ure 2(a) shows the output trajectories of the drive sys-
tem and response system and the synchronization error

is shown in Fig. 2(b). From the figure, we can easily
see that the synchronization is achieved by the pro-
posed method. In Fig. 3, the actual overall disturbance
existing in the response system and the estimated val-
ues obtained by FDO are presented. It is shown that the
FDO can estimate the overall disturbance well and the
proposed method synchronizes the chaotic systems.

Example 2 In this example, to show the effectiveness
of FDO, we compare the simulation results of two sit-



1134 D.H. Ji et al.

uations; when the FDO is used and not. The proposed
method can be applied for the synchronization, even
though the dimension of the drive system and response
system is different. Let us choose Lorenz system as the
drive system, which is a three-dimensional system

ẋd1(t) = 10
(
xd2(t) − xd1(t)

)

ẋd2(t) = xd1(t)
(
28 − xd3(t)

) − xd2(t) (56)

ẋd3(t) = xd1(t)xd2(t) − 8

3
xd3(t)

and the response system is chosen as the same system,
Duffing oscillator, with Example 1.

Fig. 4 Lorenz system as the drive system in Example 2

We use the input vector of the FLS as X = [x1, x2]T
where x1 ∈ [−20,20] and x2 ∈ [−50,50]. We choose

5 centers of the Gaussian membership function μl =
exp[−(xl − cml)

2/σ 2
μl] where σμ1 = 6 and σμ2 = 15

for each FLS input, i.e., Cm = [cm1, cm2] for m =
1,2, . . . ,25 with uniform distance. The used param-

eters are ci = 1, γ0 = γ1 = 20, pi = 20, δi = 0.01,

ρi = 1, σi = 1, k0
i = 1 for i = 1,2. Initial values

are chosen as xd0 = [−10;−5;1], x0 = [−1.2;1.2],
x̂0 = [0;0], θi0 = 0, ki0 = 0.

The Lorenz system (56) is depicted in Fig. 4. The

effectiveness of the FDO is shown by comparing two

cases: (1) when the FDO is not applied (Fig. 5) and

(2) when the proposed method including the FDO is

applied (Fig. 6). Both figures show the output trajecto-

ries and the synchronization error for each case. From

these figures, we can easily see that the synchroniza-

tion performance is better when the FDO is used. This

is why the proposed method effectively suppress the

overall disturbance by using the estimated value ob-

tained by the FDO. The estimated values are shown

with the actual overall disturbance existing in the re-

sponse system in Fig. 7. From these results, we con-

clude that the proposed method successfully synchro-

nizes although uncertainty and disturbance exist in the

system.

Fig. 5 (Color online) The
output trajectories of the
drive and response
system (a) and the
synchronization error (b)
when the FDO is not
applied, Ω̂i = 0
(Example 2)
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Fig. 6 (Color online) The
output trajectories of the
drive and response
system (a) and the
synchronization error (b) by
the proposed method in
Example 2

Fig. 7 (Color online) The
actual overall disturbance
Ω(x(t)) and FDO Ω̂(x(t))

in Example 2

5 Conclusions

We proposed a robust adaptive backstepping synchro-
nization method using FDO for chaotic systems with
mismatched uncertainties and disturbances. The un-
known factors were estimated by the FDO without re-
quiring any prior information about them. The mis-
matched uncertainties in the response system were
overcome by the proposed adaptive backstepping de-
sign procedure with the estimated values. The adap-

tive laws used in the procedure were obtained based
on Lyapunov stability theorem. Finally, the proposed
method guaranteed the global chaotic synchronization
in the sense of UUB. Numerical examples showed the
effectiveness of the proposed method.
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