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Abstract This paper studies the problem of the ro-
bustly exponential stabilization for uncertain Marko-
vian jump systems with mode-dependent time-varying
state delays. The contribution of this paper is two-fold.
Firstly, by constructing a modified Lyapunov func-
tional and using free-weighting matrices technique,
some delay-dependent robustly exponential stability
criteria of such systems are obtained in terms of lin-
ear matrix inequalities (LMIs), which are less conser-
vative than some existing ones. Secondly, a state feed-
back controller is designed, which can guarantee the
robustly exponential stability of the uncertain closed-
loop systems. Some illustrative numerical examples
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are given to demonstrate the reduced conservatism and
applicability of the obtained results.

Keywords Uncertain Markovian jump systems ·
Exponential stability · Stabilization · Linear matrix
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1 Introduction

Markovian jump systems can model different types
of dynamic ones subject to abrupt changes occurred
in their structures, such as failure prone manufac-
turing systems, power systems and economics sys-
tems, and so on. This class of systems can be re-
garded as a special case of hybrid systems, since the
state takes continuous values and the jumping pa-
rameters take discrete values in a system simultane-
ously. Since Markovian jump systems were firstly in-
troduced by Krasovskii and Lidskii in [19], a great
deal of attentions have been devoted to them in
[10, 20, 27, 30, 31, 33] and the references therein.

Besides, the existence of time delays in systems
can usually cause instability, oscillation and poor per-
formance, and thus the study for the Markovian jump
systems with time delay is of both theoretical and prac-
tical importance. The theory of stability analysis, feed-
back control and H∞-control, as well as some other
important applications for Markovian jump systems
with time delay has been discussed in the past sev-
eral decades. For example, the problems of stability
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analysis and H∞ control of such systems via design-
ing a state feedback controller have been addressed
in [2, 6–8, 31]. The results about the stability anal-
ysis and H∞ filtering for stochastic delayed Marko-
vian jump systems have been obtained in [24, 32].
Lian et al. in [16, 17] and Wang et al. [28] have dis-
cussed the robust H∞ sliding mode control, the adap-
tive variable structure control and the stabilization for
a class of uncertain switched delay systems, respec-
tively. The research on the controller design of Marko-
vian jump systems with time delay has been con-
ducted by Cao and Lam [6], and Wang et al. [26], but
the results proposed in [6, 26] are delay-independent,
which means that they are much more conservative
than delay-dependent ones owing to failing to use
of the information on the length of delays. Recently,
Boukas et al. [2] have obtained some delay-dependent
stability conditions for Markovian jump systems with
time delay by employing the bounding technique and
using the mode transformation. Chen et al. [5] have
acquired some delay-dependent sufficient criteria for
Markovian jump systems with time delay by using
free-weighting matrices (see Refs. [14, 15, 25]). In
[8], some less conservative criteria for Markovian
jump systems with time delay were derived by con-
structing an appropriate Lyapunov–Krasovskii func-
tional (LKF) and using Moon’s inequality. Chen et al.
[9] have also obtained some delay-dependent stabil-
ity conditions for Markovian jump systems with time
delay by exploiting a descriptor model transforma-
tion and employing the bounding technique. To ob-
tain much less conservative criteria, Fei et al. [11]
have achieved some delay-dependent conditions for
Markovian jump systems with time delay by using
the delay-partitioning approach (see Ref. [13]). But
the results given in [2, 5, 8, 9, 11] are only suitable
for the constant delay which is mode-independent. In
[29], Xu et al. have obtained some delay-dependent
sufficient conditions ensuring the stochastic stability
for Markovian jump systems with time-varying delay
by employing the free-weighting matrices (see Refs.
[14, 15, 25]) and the time-varying delay is also mode-
independent. As we know, in real systems, the trans-
mission delays may occur randomly, which can be also
modeled as a Markov process [21], and thus the mode-
dependent time-varying delays are more natural and
general than the mode-independent ones in Markovian
jumping systems (see Refs. [19, 22, 27, 30, 31]).

On the other hand, typical stability analysis of
Markovian jump systems with time delay mentioned

above is involved with stochastic stability. But from
the point of practical application, the exponential sta-
bility is of much significance, since the exponential
stability can provide fast convergence and the desir-
able accuracy once the decay rate is determined. Al-
though the exponential stability analysis and exponen-
tial stabilization of Markovian jump systems with time
delay have been discussed in Shu et al. [23] and Wang
et al. [26], the results are only suitable for constant de-
lay which is mode-independent.

Inspired by the statements above, it is very neces-
sary to discuss the exponential stability and exponen-
tial stabilization of the uncertain Markovian jump sys-
tems with mode-dependent time-varying state delays.
In this paper, to reduce the conservatism of the stabil-
ity conditions, a modified Lyapunov–Krasovskii func-
tional combined with the Leibniz–Newton formula
are introduced. The distributed delay free-weighting
matrix functional coupled with the Leibniz–Newton
formula can avoid the use of the mode transforma-
tion and the bounding technique. Moreover, the con-
ditions obtained in this paper are formulated in terms
of linear matrix inequalities (LMIs), which are effec-
tive methods to treat the problems and can be eas-
ily checked by resorting to available software pack-
ages. Compared with some existing reports, the use
of this modified Lyapunov–Krasovskii functional cou-
pled with the Leibniz–Newton formula in our paper
can reduce the conservatism in searching for the upper
bound of the time-varying delays such that our con-
sidered systems are robustly exponentially stable. And
then based on the derived stability conditions, a mem-
ory state feedback controller is designed such that the
closed-loop systems is also robustly exponentially sta-
ble. Finally, some illustrative examples are provided to
demonstrate the effectiveness and applicability of our
results, and also give a convincing comparison with
some existing results.

Notations Unless otherwise specified, for a real
square matrix A, the notation A > 0 (A ≥ 0,

A < 0,A ≤ 0) means that A is a real symmetric and
positive definite (positive semi-definite, negative def-
inite, negative semi-definite, respectively); λmax(A)

and λmin(A) denote the maximum and minimum
eigenvalues of the square matrix A, respectively. If A

is a vector or matrix, its transpose is denoted by AT ;
|B| = √

trace(BT B) denotes the Euclidean norm of a
vector B or its induced norm of a matrix B . Unless
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explicitly stated, matrices in this paper are assumed
to have real entries and compatible dimensions. Let
τ > 0 and C([−τ,0];Rn) be the family of all continu-
ous Rn-valued functions φ on the interval [−τ,0] with
the norm ‖φ‖ = sup{|φ(θ)| : −τ ≤ θ ≤ 0}.

2 Problem formulation

Consider the following linear state-delay systems with
Markovian jumping parameters:

ẋ(t) = A
(
t, r(t)

)
x(t) + Ad

(
t, r(t)

)
x
(
t − h

(
t, r(t)

))

+ B
(
t, r(t)

)
u(t), t ≥ 0, (2.1)

x0(θ) = ϕ(θ), θ ∈ [−h,0], r(0) = r0, (2.2)

where x(t) ∈ Rn is the system state, u(t) ∈ Rp is
the control input. A(t, r(t)),Ad(t, r(t)),B(t, r(t)) are
the system matrices of the stochastic jumping process
{r(t), t > 0}. Here, {r(t), t > 0} is a continuous-time
Markov process taking values in the finite discrete set
S = {1,2, . . . ,N}. Π = {γij : i, j ∈ S} be the den-
sity matrix of Markov chain {r(t)}t≥0. Thus, γij ≥ 0
for i �= j and γii = −∑N

j=1,j �=i γij . Furthermore, the
transition probability of Markov chain {r(t)}t≥0 can
be described as

P
{
r(t + 	) = j |r(t) = i

}

=
{

γij	 + o(	), i �= j,

1 + γii	 + o(	), i = j,

where 	 > 0 and lim	→0
o(	)
	

= 0. h(t, r(t)) de-
notes the mode-dependent time-varying delay when
the model is in r(t). When r(t) = i, i ∈ S, h(t, r(t))

is denoted by hi(t), which is satisfied 0 ≤ hi(t) ≤ hi

and ḣi (t) ≤ μi . The initial condition of the systems
is specified as (r0, ϕ(·)) with r0 ∈ S being the initial
mode and ϕ being the initial function such that ϕ ∈
C([−h,0];Rn), where h = max{hi, i ∈ S}. For sim-
plicity of notation, when the systems operate in the ith
mode (r(t) = i), A(t, r(t)),Ad(t, r(t)) and B(t, r(t))

are denoted as Ai(t), Aid(t) and Bi(t), which are ma-
trix functions, and for each i ∈ S,

Ai(t) = Ai + 	Ai(t),

Aid(t) = Aid + 	Aid(t),

Bi(t) = Bi + 	Bi(t),

(2.3)

where Ai,Aid and Bi are known real constant ma-
trices representing the nominal systems for all i ∈ S,
and 	Ai(t),	Aid(t) and 	Bi(t) (i ∈ S) are unknown
matrices representing time-varying parameter uncer-
tainties, which can be described as
[
	Ai(t) 	Aid(t) 	Bi(t)

]

= EiFi(t)[H1i H2i H3i], i ∈ S, (2.4)

where Ei,H1i ,H2i ,H3i are known constant matri-
ces with compatible dimensions for each i ∈ S, and
Fi(t) (i ∈ S) are unknown Lebesgue measurable ma-
trix functions satisfying

FT
i (t)Fi(t) ≤ I, ∀i ∈ S. (2.5)

In particular, when Fi(t) ≡ 0 (i ∈ S), systems (2.1)
are referred to as their nominal systems:

ẋ(t) = Aix(t) + Aid(t)x
(
t − hi(t)

) + Biu(t). (2.6)

The main purpose of this paper is to obtain suffi-
cient conditions such that the following two require-
ments are satisfied:

(1) The uncertain Markovian jump systems (2.1) are
robustly exponentially stable in mean square when
u(t) = 0.

(2) Design a robust state feedback controller

u(t) = Kix(t) + Kidx
(
t − hi(t)

)
, (2.7)

which can exponentially stabilize systems (2.1),
where Ki ∈ Rp×n,Kid ∈ Rp×n (i ∈ S) are the
gain matrices of the state feedback controller.
Thus, by applying this controller to the systems
(2.1) for each i ∈ S, we obtain the following
closed-loop systems of (2.1) with (2.7) which can
be described as

ẋ(t) = (
Ai(t) + Bi(t)Ki

)
x(t)

+ (
Aid(t) + Bi(t)Kid

)
x
(
t − hi(t)

)
. (2.8)

Definition 2.1 The nominal Markovian jump systems
(2.6) (with u(t) = 0) are said to be exponentially sta-
ble in mean square if there exist two positive constant
scalars α > 0 and λ > 0 such that

E
∣∣x(t)

∣∣2 ≤ α‖ϕ‖2e−λt ,

for the initial value ϕ ∈ C([−h,0];Rn) and r0 ∈ S,
where x(t) denotes the trajectory of the systems state
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at time t from the initial system state ϕ and the initial
mode r0.

Definition 2.2 Consider the uncertain Markovian
jump systems (2.1). If there exists a state feedback
controller (2.7) such that the resulting closed-loop sys-
tems (2.8) are robustly exponentially stable, then the
uncertain Markovian jump systems (2.1) are said to
be robustly exponentially stabilizable and the corre-
sponding state feedback controller (2.7) are said to
robustly exponentially stabilize systems (2.1) for all
admissible uncertainties (2.4)–(2.5).

Before ending this section, we introduce the follow-
ing lemmas, which are the necessary tools for the de-
velopment of our results.

Lemma 2.3 (Schur complement lemma [3]) For a
given matrix

S =
[

S11 S12

ST
12 S22

]

with S11 = ST
11, S22 = ST

22, the following conditions
are equivalent:

(1) S < 0;
(2) S22 < 0, S11 − S12S

−1
22 ST

12 < 0;
(3) S11 < 0, S22 − ST

12S
−1
11 S12 < 0.

Lemma 2.4 [3] Let U,V,W and M be real matri-
ces of appropriate dimensions with M satisfying M =
MT , then

M + UV W + WT V T UT < 0, for all V T V ≤ I,

if and only if there exist a scalar ε > 0 such that

M + ε−1UUT + εWT W < 0.

3 Main results

In this section, some LMIs-based sufficient conditions
for the exponential stability for the nominal systems
(2.6) when u(t) = 0 are firstly given by using the free-
weighting matrices (see Refs. [14, 15, 25]).

Theorem 3.1 For a given scalar κ > 0, and the time-
varying delays hi(t) satisfies 0 ≤ hi(t) ≤ hi ≤ h and

ḣi (t) ≤ μi (i ∈ S). If there exist some positive def-
inite symmetric matrices P,Q1,Q2,Q3,Q4,Q1i ∈
Rn×n (i ∈ S) and some appropriately dimensional
matrices Ni = [NT

1i ,N
T
2i ,N

T
3i ,N

T
4i ,N

T
5i]T ,Mi = [MT

1i ,

MT
2i ,M

T
3i ,M

T
4i ,M

T
5i]T (i ∈ S), such that the following

linear matrix inequalities (LMIs) hold:

Πi =
[

Ωi Πi12

ΠT
i12 Πi22

]

< 0,

Ψi =
[

Ωi Ψi12

Ψ T
i12 Ψi22

]

< 0,

Φi =
[

Ωi Φi12

ΦT
i12 Φi22

]

< 0,

Υi =
[

Ωi Υi12

Υ T
i12 Υi22

]

< 0,

(3.1)

|γii |Q1 +
N∑

j=1

γijQ1j ≤ Q2, (3.2)

where

Ωi =
⎡

⎢
⎣

Ωi11 Ωi12 Ωi13

∗ Ωi22 Ωi23

∗ ∗ Ωi33

⎤

⎥
⎦ ,

Πi12 = Ψi12

=
⎡

⎢
⎣

hN4i −hNT
1i AT

i Q4

−hN4i + hM4i −hNT
2i AT

idQ4

−hM4i −hDT
3i 0

⎤

⎥
⎦ ,

Πi22 =
⎡

⎢
⎣

−hQ3 −h2NT
4i 0

∗ −hQ4 0

∗ ∗ − κ
eκh−1

Q4

⎤

⎥
⎦ ,

Ψi22 =
⎡

⎢
⎣

−hQ3 −h2NT
5i 0

∗ −hQ4 0

∗ ∗ − κ
eκh−1

Q4

⎤

⎥
⎦ ,

Φi12 = Υi12

=
⎡

⎢
⎣

hN5i −hMT
1i AT

i Q4

−hN5i + hM5i −hMT
2i AT

idQ4

−hM5i −hMT
3i 0

⎤

⎥
⎦ ,
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Φi22 =
⎡

⎢
⎣

−hQ3 −h2MT
4i 0

∗ −hQ4 0

∗ ∗ − κ
eκh−1

Q4

⎤

⎥
⎦ ,

Υi22 =
⎡

⎢
⎣

−hQ3 −h2MT
5i 0

∗ −hQ4 0

∗ ∗ − κ
eκh−1

Q4

⎤

⎥
⎦ ,

Ωi11 = κPi + PiAi + AT
i Pi +

N∑

j=1

γijPj + eκhQ1

+ ekhQ1i + eκh − 1

κ
Q2 + eκh − 1

κ
Q3

+ NT
1i + N1i ,

Ωi12 = PiAid + N2i − NT
1i + MT

1i ,

Ωi13 = N3i − MT
1i ,

Ωi22 = [−(1 − μi)e
κhQ1

] ∨ [−(1 − μi)Q1
]

− NT
2i − N2i + MT

2i + M2i ,

Ωi23 = −N3i − MT
2i + M3i ,

Ωi33 = −Q1i − MT
3i − M3i ,

and ∗ means symmetric terms, the nominal Markovian
jump systems (2.6) when u(t) = 0 are exponentially
stable.

Proof Define a Lyapunov–Krasovskii functional can-
didate for systems (2.6) as

V (t, xt , i) = V1(t, xt , i) + V2(t, xt , i) + V3(t, xt , i),

(3.3)

where

xt = x(t + θ), −2h ≤ θ ≤ 0,

and

V1(t, xt , i) = eκtxT (t)Pix(t),

V2(t, xt , i) =
∫ t

t−hi(t)

eκ(s+h)xT (s)Q1x(s) ds

+
∫ t

t−h

eκ(s+h)xT (s)Q1ix(s) ds,

V3(t, xt , i) =
∫ 0

−h

∫ t

t+θ

eκ(s−θ)

× xT (s)(Q2 + Q3)x(s) ds dθ

+
∫ 0

−h

∫ t

t+θ

eκ(s−θ)ẋT (s)Q4ẋ(s) ds dθ.

Let L be the weak infinitesimal generator of the
random process {(xt , r(t), t ≥ 0} (see Ref. [21]). For
each i ∈ S and t > h, we have

LV (t, xt , i) = LV1(t, xt , i) + LV2(t, xt , i)

+ LV3(t, xt , i), (3.4)

where

LV1(t, xt , i)

= eκtxT (t)

[

κP + PiAi + AT
i Pi +

N∑

j=1

γijPj

]

x(t)

+ 2eκtxT (t)PiAidx
(
t − hi(t)

)
, (3.5)

LV2(t, xt , i)

= eκt
[
xT (t)

[
eκhQ1 + eκhQ1i

]
x(t)

− (
1 − ḣi (t)

)
xT

(
t − hi(t)

)

× e−κ(hi (t)−h)Q1x
(
t − hi(t)

)

− xT (t − h)Q1ix(t − h)
]

+
N∑

j=1

γij

∫ t

t−hj (t)

eκ(s+h)xT (s)Q1x(s) ds

+
∫ t

t−h

eκ(s+h)xT (s)

N∑

j=1

γijQ1j x(s) ds, (3.6)

LV3(t, xt , i)

= eκt

[
xT (t)

eκh − 1

κ
(Q2 + Q3)x(t)

+ ẋT (t)
eκh − 1

κ
Q4ẋ(t)

]

− eκt

∫ t

t−h

eκhxT (s)Q2x(s) ds

− eκt

∫ t

t−hi(t)

eκhxT (s)Q3x(s) ds
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− eκt

∫ t−hi(t)

t−h

eκhxT (s)Q3x(s) ds

− eκt

∫ t

t−hi(t)

eκhẋT (s)Q4ẋ(s) ds

− eκt

∫ t−hi(t)

t−h

eκhẋT (s)Q4ẋ(s) ds. (3.7)

By calculation, as μi ≤ 1 (i ∈ S),

−(
1 − ḣi (t)

)
eκh−κhi(t)xT

(
t − hi(t)

)
Q1x

(
t − hi(t)

)

≤ −(1 − μi)e
κh−κhi(t)xT

(
t − hi(t)

)
Q1x

(
t − hi(t)

)

≤ −(1 − μi)x
T
(
t − hi(t)

)
Q1x

(
t − hi(t)

)
, (3.8)

and as μi > 1(i ∈ S),

−(
1 − ḣi (t)

)
eκh−κhi(t)xT

(
t − hi(t)

)
Q1x

(
t − hi(t)

)

≤ −(1 − μi)e
κh−κhi(t)xT

(
t − hi(t)

)
Q1x

(
t − hi(t)

)

≤ −(1 − μi)e
κhxT

(
t − hi(t)

)
Q1x

(
t − hi(t)

)
.

(3.9)

Thus, from (3.8) and (3.9) it follows that

−(
1 − ḣi (t)

)
eκh−κhi(t)xT

(
t − hi(t)

)
Q1x

(
t − hi(t)

)

≤ xT
(
t − hi(t)

)[−(1 − μi)e
κhQ1

]

∨ [−(1 − μi)Q1
]
x
(
t − hi(t)

)
. (3.10)

Noting that γij ≥ 0, for j �= i and γii ≤ 0, it follows
that

N∑

j=1

γij

∫ t

t−hj (t)

eκ(s+h)xT (s)Q1x(s) ds

≤
∑

j �=i

γij

∫ t

t−hj (t)

eκ(s+h)xT (s)Q1x(s) ds

− |γii |
∫ t

t−hi(t)

eκ(s+h)xT (s)Q1x(s) ds

≤
∑

j �=i

γij

∫ t

t−h

eκ(s+h)xT (s)Q1x(s) ds

= |γii |
∫ t

t−h

eκ(s+h)xT (s)Q1x(s) ds. (3.11)

On the other hand, from the Newton–Leibniz for-
mula, it is clear that

a1i (t) := 2eκt ζ T (t)Ni

[
x(t) − x

(
t − hi(t)

)

−
∫ t

t−hi(t)

ẋ(s) ds

]
= 0, (3.12)

a2i (t) := 2eκt ζ T (t)Mi

[
x
(
t − hi(t)

) − x(t − h)

−
∫ t−hi(t)

t−h

ẋ(s) ds

]
= 0, (3.13)

where

ζ(t) =
[
xT (t), xT

(
t − hi(t)

)
, xT (t − h),

[∫ t

t−hi(t)

x(s) ds

]T

,

[∫ t−hi(t)

t−h

x(s) ds

]T ]T

.

Substituting (3.5)–(3.13) into (3.4) yields

LV (t, xt , i)

≤ eκt

{

xT (t)

[

κPi + PiAi + AT
i Pi

+
N∑

j=1

γijPj + eκhQ1 + eκhQ1i

+ eκh − 1

κ
(Q2 + Q3)

]

x(t)

+ 2xT (t)PiAidx
(
t − hi(t)

)

+ xT
(
t − hi(t)

)[−(1 − μi)e
κhQ1

]

∨ [−(1 − μi)Q1
]
x
(
t − hi(t)

)

− xT (t − h)Q1ix(t − h)

+ |γii |
∫ t

t−h

eκhxT (s)Q1x(s) ds

+
∫ t

t−h

eκhxT (s)

N∑

j=1

γijQ1j x(s) ds

− eκt

∫ t

t−h

eκhxT (s)Q2x(s) ds

− eκt

∫ t

t−hi(t)

eκhxT (s)Q3x(s) ds

− eκt

∫ t−hi(t)

t−h

eκhxT (s)Q3x(s)

+ ẋT (t)
eκh − 1

κ
Q4ẋ(t)

− eκt

∫ t

t−hi(t)

eκhẋT (s)Q4ẋ(s) ds
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− eκt

∫ t−hi(t)

t−h

eκhẋT (s)Q4ẋ(s)

}

+ a1i (t) + a2i (t)

≤ 1

h2

∫ t

t−hi(t)

∫ t

t−hi(t)

eκtηT (t, s, α, i)

× Π ′
i η(t, s, α, i) ds dα

+ 1

h2

∫ t−hi(t)

t−hi

∫ t

t−hi(t)

eκtηT (t, s, α, i)

× Ψ ′
i η(t, s, α, i) ds dα

+ 1

h2

∫ t

t−hi(t)

∫ t−hi(t)

t−h

eκtηT (t, s, α, i)

× Φ ′
iη(t, s, α, i) ds dα

+ 1

h2

∫ t−hi(t)

t−h

∫ t−hi(t)

t−h

eκtηT (t, s, α, i)

× Υ ′
i η(t, s, α, i) ds dα

+ |γii |eκt

∫ t

t−h

eκhxT (s)Q1x(s) ds

+
∫ t

t−h

eκhxT (s)

N∑

j=1

γijQ1j x(s) ds

− eκt

∫ t

t−h

eκhxT (s)Q2x(s) ds, (3.14)

where ξ(t, s, α, i) = [xT (t), xT (t − hi(t)), x
T (t − h),

ẋT (s)]T , and

Π ′
i =

[
Ωi Π ′

i12

Π ′T
i12 Π ′

i22

]

+ eκh − 1

κ
ÃT

i Q−1
4 Ãi ,

Ψ ′
i =

[
Ωi Ψ ′

i12

Ψ ′T
i12 Ψ ′

i22

]

+ eκh − 1

κ
ÃT

i Q−1
4 Ãi ,

Φ ′
i =

[
Ωi Φ ′

i12

Φ ′T
i12 Φ ′

i22

]

+ eκh − 1

κ
ÃT

i Q−1
4 Ãi ,

Υ ′
i =

[
Ωi Υ ′

i12

Υ ′T
i12 Υ ′

i22

]

+ eκh − 1

κ
ÃT

i Q−1
4 Ãi ,

Π ′
i12 = Ψ ′

i12 =
⎡

⎢
⎣

hN4i −hNT
1i

−hN4i + hM4i −hNT
2i

−hM4i −hNT
3i

⎤

⎥
⎦ ,

Φ ′
i12 = Υ ′

i12 =
⎡

⎢
⎣

hN5i −hMT
1i

−hN5i + hM5i −hMT
2i

−hM5i −hMT
3i

⎤

⎥
⎦ ,

Π ′
i22 =

[−hQ3 −h2N4i

∗ −hQ4

]

,

Ψ ′
i22 =

[−hQ3 −h2NT
5i

∗ −hQ4

]

,

Ψ ′
i22 =

[−hQ3 −h2M4i

∗ −hQ4

]

,

Υ ′
i22 =

[−hQ3 −h2MT
5i

∗ −hQ4

]

,

Ãi = [
QT

4 Ai,Q
T
4 Aid,0

]
.

It follows from (3.1), by applying Lemma 2.3, that
for each i ∈ S

Π ′
i < 0, Ψ ′

i < 0, Φ ′
i < 0, Υ ′

i < 0.

And, by virtue of (3.2), when t > h, from (3.14) it
implies that

LV (t, xt , i) ≤ 0. (3.15)

Let α1 = maxi∈S{|Ai |} and α2 = maxi∈S{|Aid |}.
Thus, it follows from ẋ(t) = Aix(t)+Aidx(t −hi(t))

that for any t ≥ 0,

∣∣x(t)
∣∣ =

∣∣∣∣x(0) +
∫ t

0

[
Aix(s) + Aidx

(
s − hi(s)

)]
ds

∣∣∣∣

≤ ∣∣x(0)
∣∣ +

∫ t

0
α2

∣∣x
(
s − hi(s)

)∣∣ds

+
∫ t

0
α1

∣∣x(s)
∣∣ds.

When 0 ≤ t ≤ h, the above inequality implies that

∣∣x(t)
∣∣ ≤ [α2h + 1] sup

−h≤θ≤0

∣∣ϕ(θ)
∣∣ +

∫ t

0
α1

∣∣x(s)
∣∣ds.

By applying the Gronwall inequality to this inequality,
we obtain, when 0 ≤ t ≤ h,

∣∣x(t)
∣∣ ≤ [α2h + 1]eα1h sup

θ∈[−h,0]
∣∣ϕ(θ)

∣∣. (3.16)
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Hence, we have, when 0 ≤ t ≤ h,

∣∣x(t)
∣∣2 ≤ ν sup

θ∈[−h,0]
∣∣ϕ(θ)

∣∣2
, (3.17)

where ν = [α2h + 1]2e2α1h. Now, by employing the
Dynkin’s formula, (3.15) and (3.17), it follows that,
when t > h,

EV
(
t, xt , r(t)

)

= V
(
h,xh, r(h)

) + E

∫ t−h

0
LV

(
xs, r(s), s

)
ds

≤ V
(
h,xh, r(h)

)

= eκhxT (h)Pix(h)

+
∫ h

h−hi(h)

eκ(s+h)xT (s)Q1x(s) ds

+
∫ h

0
eκ(s+h)xT (s)Q1ix(s) ds

+
∫ 0

−h

∫ h

h+s

eκhxT (s)(Q2 + Q3)x(s) ds dθ

+
∫ 0

−h

∫ h

h+s

eκhẋT (s)Q4ẋ(s) ds dθ

≤ eκh max
i∈S

{|Pi |
}
ν sup

θ∈[−h,0]

∣∣ϕ(θ)
∣∣2

+ eκh|Q1|e
κh − 1

κ
sup

θ∈[−h,0]
∣∣ϕ(θ)

∣∣2

+ max
i∈S

{|Q1i |
}
eκh eκh − 1

κ
sup

θ∈[−h,0]

∣∣ϕ(θ)
∣∣2

+ (|Q2| + |Q3|
)

× eκh eκh − κh − 1

κ2
sup

θ∈[−h,0]

∣∣ϕ(θ)
∣∣2

+ 2|Q4|
(
α2

1ν + α2
2

)

× eκh eκh − κh − 1

κ2
sup

θ∈[−h,0]
∣∣ϕ(θ)

∣∣2
.

On the other hand,

EV (t, xt , i) ≥ 1

maxi∈S{|P −1
i |}e

κtE
∣∣x(t)

∣∣2
.

Hence, when t > h,

E
∣∣x(t)

∣∣2 � σ(h) sup
θ∈[−h,0]

∣∣ϕ(θ)
∣∣2

e−κt , (3.18)

where

σ(h) = max
i∈S

{∣∣P −1
i

∣∣}
{
eκh max

i∈S

{|Pi |
}
ν

+ eκh|Q1|e
κh − 1

κ
+ max

i∈S

{|Q1i |
}
eκh eκh − 1

κ

+ (|Q2| + |Q3|
)
eκh eκh − κh − 1

κ2

+ 2|Q4|
(
α2

1ν + α2
2

)
eκh eκh − κh − 1

κ2

}
.

When 0 ≤ t ≤ h, we obtain

1

maxi∈S{|P −1
i |}e

κtE
∣∣x(t)

∣∣2

≤ eκtExT (t)Pix(t)

≤ eκh max
i∈S

{|Pi |
}
ν sup

θ∈[−h,0]
∣∣ϕ(θ)

∣∣2
.

That is,

E
∣∣x(t)

∣∣2 ≤ max
i∈S

{∣∣P −1
i

∣∣}eκh max
i∈S

{|Pi |
}
ν

× sup
θ∈[−h,0]

∣∣ϕ(θ)
∣∣2

e−κt . (3.19)

It follows from (3.18) and (3.19) that when t > 0,

E
∣∣x(t)

∣∣2 ≤ σ ′(h) sup
θ∈[−h,0]

∣∣ϕ(θ)
∣∣2

e−κt ,

where σ ′(h) = max{σ(h),maxi∈S{|P −1
i |}eκh ×

maxi∈S{|Pi |}ν}. Thus, the nominal systems (2.6) are
exponentially stable with the decay rate κ . The proof
of this theorem is completed. �

Remark 3.2 It is satisfactory that Theorem 3.1 holds
without the restrictive condition: ḣi (t) ≤ μi < 1
(i ∈ S). Thus, Theorem 3.1 is more general than those
given in [27, 30].

Remark 3.3 For the nominal Markovian jump sys-
tems (2.6) with mode-dependent time-varying state
delays, the novelties of Theorem 3.1 are that the mod-
ified Lyapunov–Krasovskii functional (3.3) we intro-
duced and the terms −eκt

∫ t−hi(t)

t−h
eκhxT (s)Q3x(s) ds

and −eκt
∫ t−hi(t)

t−h
eκhẋT (s)Q4ẋ(s) ds are fully used,

which can reduce the conservatism.

Remark 3.4 In considering Theorem 3.1, the deriva-
tive value of the Lyapunov–Krasovskii functional can
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ultimately be written as the sum (3.14) of four parts:

1

h2

∫ t

t−hi(t)

∫ t

t−hi(t)

eκtηT (t, s, α, i)

× Π ′
i η(t, s, α, i) ds dα,

1

h2

∫ t−hi(t)

t−hi

∫ t

t−hi(t)

eκtηT (t, s, α, i)

× Ψ ′
i η(t, s, α, i) ds dα,

1

h2

∫ t

t−hi(t)

∫ t−hi(t)

t−h

eκtηT (t, s, α, i)

× Φ ′
iη(t, s, α, i) ds dα and

1

h2

∫ t−hi(t)

t−h

∫ t−hi(t)

t−h

eκtηT (t, s, α, i)

× Υ ′
i η(t, s, α, i) ds dα.

This treatment is different from the ones in [19, 24, 27,
29, 32] and can effectively reduce the conservatism in
[19, 24, 27, 29, 32], which will be illustrated by some
numerical examples in Sect. 5.

Now, we generalize Theorem 3.1 to the correspond-
ing uncertain case, and give the following sufficient
conditions on the robustly exponential stability for
the uncertain Markovian jump systems (2.1) when
u(t) = 0.

Theorem 3.5 For a given scalar κ > 0, and the time-
varying delays hi(t) satisfies 0 ≤ hi(t) ≤ hi ≤ h and
ḣi (t) ≤ μi (i ∈ S). If there exist some positive def-
inite symmetric matrices: P,Q1,Q2,Q3,Q4,Q1i ∈
Rn×n (i ∈ S) and some appropriately dimensional
matrices Ni = [NT

1i ,N
T
2i ,N

T
3i ,N

T
4i ,N

T
5i]T ,Mi = [MT

1i ,

MT
2i ,M

T
3i ,M

T
4i ,M

T
5i]T (i ∈ S), and some positive sca-

lars ε1i , ε2i , ε3i , ε4i (i ∈ S) such that (3.2) and the fol-
lowing linear matrix inequalities (LMIs) hold:

Π ′
i =

[
Ω1

i Πi12

ΠT
i12 Πi22

]

< 0,

Ψ ′
i =

[
Ω2

i Ψi12

Ψ T
i12 Ψi22

]

< 0,

Φ ′
i =

[
Ω3

i Φi12

ΦT
i12 Φi22

]

< 0,

Υ ′
i =

[
Ω4

i Υi12

Υ T
i12 Υi22

]

< 0,

(3.20)

where

Ωk
i =

⎡

⎢
⎣

Ωk
i11 Ωk

i12 Ωi13

∗ Ωi22 Ωi23

∗ ∗ Ωi33

⎤

⎥
⎦ , k = 1,2,3,4,

Πi12

= Ψi12

=
⎡

⎢
⎣

hN4i −hNT
1i AT

i Q4 P T
i Ei

−hN4i + hM4i −hNT
2i AT

idQ4 0

−hM4i −hNT
3i 0 0

⎤

⎥
⎦ ,

Πi22 =

⎡

⎢⎢⎢
⎣

−hQ3 −h2NT
4i 0 0

∗ −hQ4 0 0

∗ ∗ − κ
eκh−1

Q4 QT
4 Ei

∗ ∗ ∗ −ε1iI

⎤

⎥⎥⎥
⎦

,

Ψi22 =

⎡

⎢⎢⎢
⎣

−hQ3 −h2NT
5i 0 0

∗ −hQ4 0 0

∗ ∗ − κ
eκh−1

Q4 QT
4 Ei

∗ ∗ ∗ −ε2iI

⎤

⎥⎥⎥
⎦

,

Φi12

= Υi12

=
⎡

⎢
⎣

hN5i −hMT
1i AT

i Q4 P T
i Ei

−hN5i + hM5i −hMT
2i AT

idQ4 0

−hM5i −hMT
3i 0 0

⎤

⎥
⎦ ,

Φi22 =

⎡

⎢⎢⎢
⎣

−hQ3 −h2MT
4i 0 0

∗ −hQ4 0 0

∗ ∗ − κ
eκh−1

Q4 QT
4 Ei

∗ ∗ ∗ −ε3iI

⎤

⎥⎥⎥
⎦

,

Υi22 =

⎡

⎢⎢⎢
⎣

−hQ3 −h2MT
5i 0 0

∗ −hQ4 0 0

∗ ∗ − κ
eκh−1

Q4 QT
4 Ei

∗ ∗ ∗ −ε4iI

⎤

⎥⎥⎥
⎦

,

Ωk
i11 = κPi + PiAi + AT

i Pi +
N∑

j=1

γijPj + eκhQ1

+ ekhQ1i + eκh − 1

κ
Q2 + eκh − 1

κ
Q3

+ NT
1i + N1i + εkiH

T
1iH1i ,

Ωk
i12 = PiAid + N2i − NT

1i + MT
1i + εkiH

T
1iH2i ,

k = 1,2,3,4, i ∈ S,
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Ωi13,Ωi22,Ωi23,Ωi33 are given in Theorem 3.1 and
∗ means the symmetric terms, the uncertain Marko-
vian jump systems (2.1) when u(t) = 0 are robustly
exponentially stable.

Proof Replacing Ai,Aid in (3.1) with Ai + 	Ai(t),
Aid + 	Aid(t), 	Ai(t),	Aid(t) are described in
(2.3) and (2.4), and we obtain

Π ′
i = Πi + Γ T

i Fi(t)	i + 	T
i Fi(t)Γi, i ∈ S,

where

Γi = [
ET

i Pi 0 0 0 0 ET
i Q4

]
,

	i = [H1i H2i 0 0 0 0].
From Lemma 2.4, we know Π ′

i < 0 (i ∈ S) are
equivalent to

Π ′′
i = Πi + ε−1

1i Γ T
i Γi + ε1i	

T
i 	i,

where ε1i > 0 (i ∈ S). From Π ′
i < 0 (i ∈ S), by using

Lemma 2.3, we know that Π ′′
i < 0 (i ∈ S). Similarly,

the other three cases can be proved. Hence, the proof
is completed. �

4 A state feedback controller design

In this section, we consider the robust stabilization for
the uncertain Markovian jump systems. When a con-
trol in law (2.6) is applied to systems (2.1), the closed-
loop systems (2.8) become

ẋ(t) = (
Âi + EiFi(t)Ĥ1i

)
x(t)

+ (
Âid + EiFi(t)Ĥ2i

)
x
(
t − hi(t)

)
, (4.1)

where Âi = Ai + BiKi , Âid = Aid + BiKid , Ĥ1i =
H1i + H3iKi and Ĥ2i = H2i + H3iKid (i ∈ S).

Theorem 4.1 For a given scalar κ > 0, and time-
varying delays hi(t) satisfies 0 ≤ hi(t) ≤ hi ≤ h

and ḣi (t) ≤ μi (i ∈ S). If there exist some positive
definite symmetric matrices Q̃3, Q̃4,Xi,Ri, Ti, S1i ∈
Rn×n (i ∈ S) and some appropriately dimensional
matrices Ñi = [ÑT

1i , Ñ
T
2i , Ñ

T
3i , Ñ

T
4i , Ñ

T
5i]T , M̃i = [M̃T

1i ,

M̃T
2i , M̃

T
3i , M̃

T
4i , M̃

T
5i]T (i ∈ S), such that the following

linear matrix inequalities (LMIs) hold:

Πi =
[

Ωi Πi12

ΠT
i12 Πi22

]

< 0,

Ψi =
[

Ωi Ψi12

Ψ T
i12 Ψi22

]

< 0,

Φi =
[

Ωi Φi12

ΦT
i12 Φi22

]

< 0,

Υi =
[

Ωi Υi12

Υ T
i12 Υi22

]

< 0,

(4.2)

|γii |Ri +
N∑

j=1

γij S1j ≤ Ti, (4.3)

where

Ωi =
⎡

⎢
⎣

Ωi11 Ωi12 Ωi13

∗ Ωi22 Ωi23

∗ ∗ Ωi33

⎤

⎥
⎦ ,

Πi12 = Ψi12 =

⎡

⎢⎢
⎣

hXT
i Ñ4i −hÑT

1iQ̃4 XT
i AT

i + L̃T
i BT

i Ξi

−hXT
i Ñ4i + hXT

i M̃4i −hÑT
2iQ̃4 XT

i AT
id + L̃T

idBT
i 0

−hXT
i M̃4i −hÑT

3iQ̃4 0 0

⎤

⎥⎥
⎦ ,

Πi22 =

⎡

⎢⎢⎢⎢
⎣

−hQ̃3 −h2ÑT
4iQ̃4 0 0

∗ −hQ̃4 0 0

∗ ∗ − κ
eκh−1

Q̃4 0

∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥
⎦

,
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Ψi22 =

⎡

⎢⎢⎢⎢
⎣

−hQ̃3 −h2ÑT
5iQ̃4 0 0

∗ −hQ̃4 0 0

∗ ∗ − κ
eκh−1

Q̃4 0

∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥
⎦

,

Φi12 = Υi12 =

⎡

⎢⎢
⎣

hXT
i Ñ5i −hM̃T

1iQ̃4 XT
i AT

i + L̃T
i BT

i Ξi

−hXT
i Ñ5i + hXT

i M̃5i −hM̃T
2iQ̃4 XT

i AT
id + L̃T

idBT
i 0

−hXT
i M̃5i −hM̃T

3iQ̃4 0 0

⎤

⎥⎥
⎦ ,

Φi22 =

⎡

⎢⎢⎢⎢
⎣

−hQ̃3 −h2M̃T
4iQ̃4 0 0

∗ −hQ̃4 0 0

∗ ∗ − κ
eκh−1

Q̃4 0

∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥
⎦

,

Υi22 =

⎡

⎢⎢⎢⎢
⎣

−hQ̃3 −h2M̃T
5iQ̃4 0 0

∗ −hQ̃4 0 0

∗ ∗ − κ
eκh−1

Q̃4 0

∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥
⎦

,

Ωi11 = κXi + AiXi + XT
i AT

i + BiL̃i + L̃T
i BT

i + γiiXi + eκhRi + ekhS1i + eκh − 1

κ
Ti + ÑT

1iXi + XT
i Ñ1i ,

Ωi12 = AidXi + BiL̃id + XT
i Ñ2i − ÑT

1iXi + M̃T
1iXi,

Ωi13 = XT
i Ñ3i − M̃T

1iXi,

Ωi22 = [−(1 − μi)e
κhRi

] ∨ [−(1 − μi)Ri

] − ÑT
2iXi − XT

i Ñ2i + M̃T
2iXi + XT

i M̃2i ,

Ωi23 = −XT
i Ñ3i − MT

2iXi + XT
i M̃3i ,

Ωi33 = −Ñ1i − M̃T
3iXi − XT

i M̃3i ,

Ξi = [√
γi1X

T
i , . . . ,

√
γi(i−1)X

T
i ,

√
γi(i+1)X

T
i , . . . ,

√
γiNXT

i ,XT
i

]
,

Γi = diag

{
X1, . . . ,Xi−1,Xi+1, . . . ,XN,

κ

eκh − 1
Q̃3

}
,

and ∗ means the symmetric terms, then the nomi-
nal closed-loop systems (4.1) are exponentially stable.
Moreover, the gain matrices Ki and Kid can be chosen
as

Ki = L̃iX
−1
i

and

Kid = L̃idX−1
i ,

for each i ∈ S.

Proof Setting

Pi = X−1
i , Ri = XT

i Q1Xi,

S1i = X−1
i Q1iXi, Ti = XT

i Q2Xi,

Q3 = Q̃−1
3 , Q4 = Q̃−1

4 ,

N1i = Ñ1iX
−1
i , M1i = M̃1iX

−1
i ,

N2i = Ñ2iX
−1
i , M2i = M̃2iX

−1
i ,

N3i = Ñ3iX
−1
i , M3i = M̃3iX

−1
i ,
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N4i = Ñ4iQ̃
−1
3 , M4i = M̃4iQ̃

−1
3 ,

N5i = Ñ5iQ̃
−1
3 , M5i = M̃5iQ̃

−1
3 , i ∈ S.

Then, pre-multiplying and post-multiplying (4.2) with
diag{Xi,Xi,Xi, Q̃3, Q̃4, Q̃4} (i ∈ S) can result in
(3.1) by using Lemma 2.3. By pre-multiplying and
post-multiplying (4.3) with Xi (i ∈ S), we obtain
(3.2). Thus, by virtue of Theorem 3.1, the closed-loop
systems (4.1) have exponential stability. The proof of
this theorem is completed. �

Next, we also generalize Theorem 4.1 to the un-
certain case, and the design theorem is given as fol-
lows:

Theorem 4.2 For a given scalar κ > 0, and time-
varying delays hi(t) satisfies 0 ≤ hi(t) ≤ hi ≤ h

and ḣi (t) ≤ μi (i ∈ S). If there exist some positive
definite symmetric matrices Q̃3, Q̃4,Xi,Ri, Ti, S1i ∈

Rn×n (i ∈ S) and some appropriately dimensional
matrices Ñi = [ÑT

1i , Ñ
T
2i , Ñ

T
3i , Ñ

T
4i , Ñ

T
5i]T , M̃i = [M̃T

1i ,

M̃T
2i , M̃

T
3i , M̃

T
4i , M̃

T
5i]T (i ∈ S) and ε1i , ε2i , ε3i , ε4i

(i ∈ S) such that (4.3) and the following linear ma-
trix inequalities (LMIs) hold:

Πi =
[

Ω1
i Πi12

ΠT
i12 Πi22

]

< 0,

Ψi =
[

Ω2
i Ψi12

Ψ T
i12 Ψi22

]

< 0,

Φi =
[

Ω3
i Φi12

ΦT
i12 Φi22

]

< 0,

Υi =
[

Ω4
i Υi12

Υ T
i12 Υi22

]

< 0,

(4.4)

where

Ωk
i =

⎡

⎢⎢
⎣

Ωk
i11 Ωi12 Ωi13

∗ Ωi22 Ωi23

∗ ∗ Ωi33

⎤

⎥⎥
⎦ , k = 1,2,3,4,

Πi12 = Ψi12 =
⎡

⎢
⎣

hXT
i Ñ4i −hÑT

1iQ̃4 XT
i AT

i + L̃T
i BT

i XT
i HT

1i + L̃T
i HT

3i Ξi

−hXT
i Ñ4i + hXT

i M̃4i −hÑT
2iQ̃4 XT

i AT
id + L̃T

idBT
i XT

i HT
2i + L̃T

idHT
3i 0

−hXT
i M̃4i −hÑT

3iQ̃4 0 0 0

⎤

⎥
⎦ ,

Πi22 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−hQ̃3 −h2ÑT
4iQ̃4 0 0 0

∗ −hQ̃4 0 0 0

∗ ∗ − κ
eκh−1

Q̃4 + ε1iEiE
′
i 0 0

∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Ψi22 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−hQ̃3 −h2ÑT
5iQ̃4 0 0 0

∗ −hQ̃4 0 0 0

∗ ∗ − κ
eκh−1

Q̃4 + ε2iEiE
′
i 0 0

∗ ∗ ∗ −ε2iI 0

∗ ∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Φi12 = Υi12 =

⎡

⎢⎢
⎣

hXT
i Ñ5i −hM̃T

1iQ̃4 XT
i AT

i + L̃T
i BT

i XT
i HT

1i + L̃T
i HT

3i Ξi

−hXT
i Ñ5i + hXT

i M̃5i −hM̃T
2iQ̃4 XT

i AT
id + L̃T

idBT
i XT

i HT
2i + L̃T

idHT
3i 0

−hXT
i M̃5i −hM̃T

3iQ̃4 0 0 0

⎤

⎥⎥
⎦ ,
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Φi22 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−hQ̃3 −h2M̃T
4iQ̃4 0 0 0

∗ −hQ̃4 0 0 0

∗ ∗ − κ
eκh−1

Q̃4 + ε3iEiE
′
i 0 0

∗ ∗ ∗ −ε3iI 0

∗ ∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Υi22 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−hQ̃3 −h2M̃T
5iQ̃4 0 0 0

∗ −hQ̃4 0 0 0

∗ ∗ − κ
eκh−1

Q̃4 + ε4iEiE
′
i 0 0

∗ ∗ ∗ −ε4iI 0

∗ ∗ ∗ ∗ −Γi

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Ωk
i11 = κXi + AiXi + XT

i AT
i + BiL̃i + L̃T

i BT
i + γiiXi + eκhRi + ekhS1i

+ eκh − 1

κ
Ti + ÑT

1iXi + XT
i Ñ1i + εkiEiE

T
i , k = 1,2,3,4, i ∈ S,

the other quantities Ωi12,Ωi13,Ωi22,Ωi23,Ωi33,Ξi,

Γi (i ∈ S) are given in Theorem 4.1 and ∗ means the
symmetric terms, then the uncertain closed-loop sys-
tems (4.1) are robustly exponential stable. Moreover,
the gain matrices Ki and Kid can be chosen as

Ki = L̃iX
−1
i and Kid = L̃idX−1

i ,

for each i ∈ S.

5 Some illustrative numerical examples

In this section, some illustrative examples are provided
to show the feasibility of our obtained results.

Example 5.1 Consider the following nominal Marko-
vian jump systems, which are considered in [18, 19,
24, 29, 30, 32]:

ẋ(t) = Aix(t) + Aidx
(
t − hi(t)

)
, i ∈ S = {1,2},

(5.1)

with system matrices as follows:

A1 =
[−2 0

0 −0.9

]
, A1d =

[−1 0
−1 −1

]
,

A2 =
[−1 0.5

0 −1

]
, A2d =

[−1 0
1 −1

]
,

Table 1 The upper bounds of h with different values of μ in
Example 5.1

μ

0.9 1.0 1.5

Yue and Han in [32] 0.9279 – –

Shen et al. [24] 0.7529 0.7529 0.7255

Xu et al. [29] 0.9359 0.8886 0.8886

Ma et al. [19] 1.0428 1.0428 1.0428

Our result 1.2996 1.2996 1.2996

where 0 ≤ hi(t) ≤ hi ≤ h, ḣi(t) ≤ μi (i ∈ S). The pa-
rameter matrix Π = {γij } is given by Π = [ −1 1

2 −2

]
.

The convergence rate κ = 0.1.

Case 1. Table 1 lists the comparison results with re-
spect to [19, 24, 29, 32] when μ1 = μ2 = μ. It is not
hard to see from Table 1 that the upper bound h of
the time-varying delay h(t) is better than the ones ob-
tained in [19, 24, 29, 32]. When h = 0.8 and μ = 1.5,
the upper bound of the decay rate k is 0.8065 in [19].
However, by using Theorem 3.1, it can be derived that
the suboptimal upper bound of the decay rate k is
1.0101, which is larger than the one given in [19].

Case 2. Table 2 presents the comparison results with
respect to [18, 30] with different values μ1 and μ2

when k = 0.0. From Table 2, it can be seen that Theo-
rem 3.1 is much better than those obtained in [18, 30].
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Table 2 The upper bounds of h with different values of μ1 and
μ2 when k = 0.0 in Example 5.1

Authors

Xu et al. Ma et al. Theorem 3.1
[30] [18]

μ1 = 0.0,μ2 = 0.0 0.9800 1.5370 1.5414

μ1 = 0.0,μ2 = 0.5 0.9800 1.3550 1.3984

μ1 = 0.5,μ2 = 0.5 0.4899 1.1240 1.3900

μ1 = 1.0,μ2 = 1.5 – 0.8870 1.3872

Table 3 The allowable upper bounds of h for different γ11
when k = 0.0 in Example 5.2

γ11

−0.1 −0.3 −0.5 −0.7 −0.9

Xu et al. [29] 0.4021 0.4010 0.4001 0.3993 0.3987

Wu et al. [27] 0.4252 0.4250 0.4248 0.4246 0.4244

Our result 0.6186 0.6188 0.6191 0.6193 0.6195

Example 5.2 Consider the nominal Markovian jump
system with two modes and the following parameters,
which is considered in [2, 4, 6, 7, 9–11, 27, 29, 34]:

A1 =
[−3.4888 0.8057
−0.6451 −3.2684

]
,

A1d =
[−0.8620 −1.2919
−0.6841 −2.0729

]
,

A2 =
[−2.4898 0.2895

1.3396 −0.0211

]
,

A2d =
[−2.8306 0.4978
−0.8436 −1.0115

]
.

Case 1. When k = 0.0, Table 3 presents the maxi-
mal allowable delay h for different values γ11 com-
pared with those in [27, 29] when γ22 = −0.8 and
μ1 = μ2 = 0.9. From Table 3, we can see that our re-
sult is also better than the ones given in [27, 29].

Case 2. When k = 0.0, Table 4 gives the maximal
allowable delay h for different values γ11 compared
with those discussed in [2, 4, 6, 7, 9–11, 29, 34] when
γ22 = −0.8 and μ1 = μ2 = 0.0. It is easily seen that
our result is less conservative than those derived in
[2, 4, 6, 7, 9–11, 29, 34].

Example 5.3 Consider the uncertain Markovian jump
systems in the form of (2.1) with two modes, that is

Table 4 The allowable upper bounds of h for different γ11 in
Example 5.2

γ11

−0.1 −0.5 −0.8 −1.0

Fujisaki [10] 0.2224 0.2200 – 0.2174

Boukas et al. [2] 0.2224 0.2200 0.2184 0.2174

Chen et al. [9] 0.5012 0.4941 0.4915 0.4903

Cao et al. [6] 0.5012 0.4941 – 0.4903

Cao et al. [7] 0.5012 0.4941 – 0.4903

Xu et al. [29] 0.6797 0.5794 0.5562 0.5465

Fei et al. [11] 0.6797 0.5794 0.5562 0.5465
(m = 1)

Zhao et al. [34] 0.6797 0.5794 – 0.5465

Chen et al. [4] 0.6814 0.5794 0.5563 0.5475
(k = 0.1)

Chen et al. [4] 0.6979 0.5898 0.5660 0.5568
(k = 0.3)

Chen et al. [4] 0.7053 0.5991 0.5739 0.5568
(k = 0.5)

Our result 0.7773 0.6721 0.6579 0.6530

S = {1,2}. The mode switching is governed by the in-

finitesimal generator Π = [ −3 3
5 −5

]
. The systems ma-

trices are shown as follows:

A1 =
[ −1 0.5
−0.2 −1

]
, A1d =

[−0.25 0
0 −0.2

]
,

B1 =
[

0
−0.1

]
, E1 =

[
0.2
0.1

]
,

H11 =
[

0.1 0
0 0.05

]
, H21 =

[
0.1 0
0 0.1

]
,

A2 =
[

1.8 0.8
0.15 −2

]
, A2d =

[
0.12 −0.1
0.1 −0.11

]
,

B2 =
[

1
0.1

]
, E2 =

[
0.21
0.1

]
,

H12 =
[

0.2 0.0
0.0 0.1

]
, H22 =

[
0.15 0

0 0.05

]
.

Case 1. This uncertain closed-loop system with h1(t) =
h2(t) = h is considered in [23]. From Table 5, it can be
seen that our results in this paper are less conservative
than those in Shu et al. [23].

Case 2. The time-varying delays h1(t), h2(t) satisfy
μ1 = μ2 = 0.1 and h = 1.0. The purpose is to design
a robust state feedback controller u(t) satisfying (2.7),
which can exponentially stabilize these systems. In
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Table 5 The upper bound
h of time delay for robust
stabilization when the
decay rate κ = 1.5 in
Example 5.3 (Case 1)

Methods h Controller K1 Controller K2

Shu et al. [23] 0.8000 [2.1264 −57.4410] [−4.3850 −1.0087]
Our result 1.5098 1.0 × e6 × [1.4441 0.2316] 1.0 × e4 × [−1.9271 −0.3091]

Fig. 1 The operation modes of Example 5.3

this example, we assume the decay rate κ = 0.5. We
choose

Ñ11 = Ñ21 = Ñ31 = M̃11 = M̃21 = M̃31

=
[−0.05 0
−0.01 0

]
,

Ñ12 = Ñ22 = Ñ32 = M̃12 = M̃22 = M̃32

=
[−0.01 0

0 −0.05

]
,

Ñ41 = Ñ42 = Ñ51 = Ñ52 = M̃41 = M̃42 = M̃51 = M̃52

=
[

0 0
0 0

]
.

By resorting to the Matlab LMI Control Toolbox to
solve the LMIs in (4.3) in Theorem 4.1 and (4.4) in
Theorem 4.2, the gain matrices of a robustly exponen-
tially stabilizing controller can be obtained as

K1 = [20.9844 32.7289 ],
K2 = [−7.5161 −2.9073 ],
K1d = [−0.1341 −1.8274 ],
K2d = [−0.1380 0.1188 ].

Fig. 2 The control input curve of Example 5.3 (Case 2)

Fig. 3 The control input curve of Example 5.3 (Case 2)

The simulation is displayed for h1(t) = h2(t) =
1

0.1t+1 under the initial condition ϕ(t) = [2.0,0.5] for
t ∈ [−1,0] with r(0) = 1, t ∈ [−1,0]. The simulation
results are given in Figs. 1, 2 and 3. Figures 1, 2 and 3
shows the operation modes, the response and the con-
trol input curve, respectively. From these simulation
results, it is easily seen that the uncertain closed-loop
systems (4.1) are robustly exponentially stable.
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6 Conclusion

In this paper, by constructing a modified Lyapunov–
Krasovskii functional and employing the Newton–
Leibniz formula, we obtain some sufficient conditions
ensuring the robustly exponential stability for the un-
certain Markovian jump systems. And then, a mem-
ory state feedback controller is designed such that
the closed-loop systems is also robustly exponentially
stale. The method used in this paper is different from
some previous reports. And the conservatism can be
effectively reduced, which can be shown by some il-
lustrative numerical examples.
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