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Abstract This work presents a new method to cal-
culate the Lyapunov spectrum of dynamical systems
based on the time evolution of initially small dis-
turbed copies (“clones”) of the motion equations. In
this approach, it is not necessary to construct the tan-
gent space associated with the time evolution of lin-
earized versions of motion equations, being the Lya-
punov exponents directly estimated in terms of the rate
of convergence or divergence of these disturbed clones
with respect to the fiducial trajectory, there being pe-
riodic correction via the Gram–Schmidt Reorthonor-
malization procedure. The proposed method offers the
possibility of partial estimation of the Lyapunov spec-
trum and can also be applied to nonsmooth dynamics,
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since the linearization procedure is no longer required.
The idea is tested for representative continuous- and
discrete-time dynamical systems and validated by
means of comparison with the classical method to
perform this calculation. To illustrate its applicabil-
ity in the nonsmooth context, the largest Lyapunov
exponent of the FitzHugh–Nagumo neuronal model
under discontinuous periodic excitation is calculated
taking the amplitude of stimulation as control param-
eter. This analysis reveals some complex behaviours
for this simple neuronal model, which motivates rele-
vant discussions about the possible role of chaos in the
cognitive process.

Keywords Chaos · Lyapunov spectrum estimation ·
FitzHugh–Nagumo neuronal model · Discontinuous
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1 Introduction

Dynamical systems can be understood in terms of
state mappings usually described by a set of differ-
ential equations. When these mappings are defined
by nonlinear functions of the state variables, in gen-
eral, a rich scenario of oscillatory behaviors can be
achieved, which includes convergence to stationary
points (fixed points), periodic solutions (limit-cycles),
quasiperiodicity, and chaos [4, 19, 29, 30].

The analysis of the motion equations in the phase
space is closely related to the system stability, being
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the average growth rate of initially small deviations
a manner to quantify it, an idea that is strongly sup-
ported by Lyapunov’s seminal work (see [29] for some
interesting historical notes). Thus, it is possible to ver-
ify how small perturbations evolve under the system
motion in the phase space by studying the linearized
versions of the state equations in successive time steps,
which allows conclusions to be drawn about the nature
of the system behavior [19].

Lyapunov’s framework can be illustrated by con-
sidering a discrete-time system given by the mo-
tion equation x(n + 1) = F(x(n)), where n is the dis-
crete time index. Considering δx0 a small magnitude
value, e1 is a basis vector specifying a direction, for
instance, e1 = [1;0; . . . ;0]k×1 for a k-dimensional
system. Then, if a small perturbation of the form
�(n) = δx0e1 is applied to a specific system state
variable, its dynamical evolution can be described as
[2, 4, 10]:

x(n + 1) + �(n + 1)

= F
(
x(n) + �(n)

)

≈ J
(
x(n)

) · �(n) + F
(
x(n)

)
, (1)

where J(x(n)) is the Jacobian matrix of F(x(n)), with
elements given by ∂Fi(x(n))/∂xj , which leads to:

�(n + 1) ≈ J
(
x(n)

) · �(n)

= J
(
x(n)

) · δx0 · e1. (2)

In this case, dynamical stability can be analyzed
in terms of the evolution of the perturbation vector
�(n + 1), which can be obtained L steps ahead by ap-
plying the chain rule to the Jacobian matrix [2, 10]:

�(n + L) ≈ J
(
x(n + L − 1)

) · J
(
x(n + L − 2)

) · · ·
· J

(
x(n)

) · �(n)

= JL
(
x(n)

) · �(n)

= JL
(
x(n)

) · δx0 · e1, (3)

where JL(x(n)) is the composition of L Jacobian ma-
trices during the time evolution. In addition to that,
(2)–(3) are satisfied by the exponential function de-
scribed in (4):
∥∥�(n + L)

∥∥ = ∥∥�(n)
∥∥ · exp(λL) (4)

being λ the average largest growing rate (in the L in-
terval) of the dynamics, also called largest Lyapunov

exponent. Using (3)–(4), it is possible to obtain λ for
the whole attractor in the state space (a rigorous math-
ematical proof can be found in [6]):

λ = lim
δx0→0

lim
L→∞

1

L
ln

(∥∥∥∥
�(n + L)

δx0

∥∥∥∥

)

= lim
L→∞

1

L
ln

(∥∥JL
(
x(n)

) · e1
∥∥)

(5)

and a theorem stated by Oseledec in [18] ensures that
this limit exists for almost all initial conditions in the
same basin of attraction.

When small perturbations are initially applied to all
orthogonal directions of the phase space, it is possible
to estimate all Lyapunov exponents, each being related
to the average growth rate in a given direction. The set
of Lyapunov exponents for all directions is called Lya-
punov spectrum of the dynamical system, and once
the largest Lyapunov exponent is known, it is possi-
ble to characterize the system dynamics. In particular,
if λ > 0 (being the solution within a compact space),
the dynamics will present, at least, one unstable direc-
tion in the phase space, which implies chaotic behavior
[4, 19]. In this case, the system will exhibit interest-
ing oscillatory characteristics such as aperiodicity and
sensitivity to initial conditions [2, 4, 8, 10, 19, 29, 30],
which can be extremely relevant for the physical pro-
cess under study.

In this context, Lyapunov exponents are an invari-
ant measure of the dynamics, i.e., a measure indepen-
dent of a specific orbit or initial condition in the same
basin of attraction. Invariances are of fundamental
importance to characterize chaotic behavior [10, 15],
and, in particular, the focused one provides a measure
of the predictability of the system, since, in practice, it
is impossible to infer its initial state with infinite pre-
cision [4, 8, 23, 29, 30].

Given the state equations, there are fundamentally
two methods to estimate the Lyapunov spectrum. The
first is to use the multiplicative ergodic theorem stated
by Oseledec [18] to form the Oseledec matrix and ex-
tract its eigenvalues by applying a recursive QR de-
composition. This avoids its ill-conditioned behavior
when L is large [1, 2, 10, 19]. This ill-conditioned be-
havior refers to the alignment of the directions defined
by the linearized system in its most expansive direc-
tion, which can cause the numerical collapse of com-
position of the Jacobian matrices. The second method
was introduced independently in [7] and in [24], being
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revisited in [30]. In these works, the exponents are ob-
tained by establishing a reference trajectory (the fidu-
cial trajectory, which is the solution of the dynamical
system) and constructing the tangent space associated
with the dynamics. The main axes of the tangent space
are related to a set of variational equations, which gov-
ern the time evolution of the linearized versions of
state equations. The exponents are then obtained by
estimating the average divergence rate provided by the
application of this tangent map to an orthogonal ba-
sis anchored to the fiducial trajectory. In this case, the
collapse of the tangent space after long term evolu-
tion can be avoided by applying the Gram–Schmidt
Reorthonormalization (GSR) procedure to the vectors
obtained after tangent map application [19, 22, 30].
There are several modifications of these two methods
intending faster and more robust calculations (see [22]
for a comparison).

The present work proposes an alternative method
for estimating the Lyapunov spectrum which over-
comes certain limitations in the usual procedures. The
main idea bears some resemblance with an early work
by Bennettin and coauthors in [6] where the largest
exponent is obtained by quantifying the expanding or
the contracting behavior of a difference state vector
built from the original system and a copy initially
disturbed by a small value. This approach is analo-
gous to the one developed in (3)–(5), estimating the
ratio ‖�(n + L)/δx0‖ instead of determining the sys-
tem Jacobian via the solution of the variational equa-
tions. The present paper extends the ideas developed
in [6] by calculating the Lyapunov spectrum using dis-
turbed copies (called “clones”) of the original dynam-
ics for each direction associated with its respective ex-
ponents, avoiding the collapse of all clones in the most
expansive direction by applying the GSR procedure,
as is done in the classical tangent map approach in-
troduced in [7, 24, 30]. This work does not aim to
present a rigorous mathematical proof as a general-
ization of [6] to all directions of phase space, but to
offer a consistent and practical algorithm to obtain the
desired spectra based on the fundamental concept of
evolution of small perturbations combined to classi-
cal numerical corrections. This new strategy to per-
form the calculation can provide relevant advantages
in specific cases (for instance, nonsmooth and hyper-
chaotic dynamical systems), and it is carefully tested
and compared here to the tangent map approach for
representative continuous- and discrete-time models.

The method offers the possibility of partial estima-
tion of the Lyapunov spectrum, which allows the inte-
gration (or iteration) of a smaller number of differen-
tial (or difference) equations to obtain, for instance,
only the positive exponents of the dynamics, which
may be interesting for hyperchaotic models. In addi-
tion to that, as the proposal does not require lineariza-
tion of the state equations, it is suitable for applications
in nonsmooth dynamical systems. This applicability
is illustrated with the aid of the FitzHugh–Nagumo
neuronal model [12] excited with rectangular pulses,
a scenario of difficult theoretical treatment employing
usual methods, but frequently adopted in practice [9].
Rigorously, discontinuous rectangular pulses do not
exist in experimental procedures, but they are useful
as approximations of real-world stimuli. In this con-
text, the application of the developed method to neu-
ronal models seems to be specially attractive, as there
are evidences relating chaotic behaviour to informa-
tion transmission, coding and storage (memory) in bi-
ological systems [16].

This work has the following organization: in Sect. 2,
a brief review of the classical procedure to compute
Lyapunov exponents using tangent maps is presented,
followed by the introduction of the cloned dynamics
method. In Sect. 3, the proposed method is tested for
representative discrete- and continuous-time chaotic
systems. Furthermore, the cloned dynamics approach
is then applied to analyze the oscillatory behavior of
the FitzHugh–Nagumo neuronal model under periodic
discontinuous stimulation. Finally, in Sect. 4, some
discussions and comments about the contributions and
perspectives are exposed.

2 Methods

2.1 The tangent map (TANMAP) approach

Given an n-dimensional dynamical system ẋ = F(x, t)

with initial condition x0, the first step to evaluate the
Lyapunov exponents is to establish n orthogonal vec-
tors initially defined as

{δ1x, δ2x, . . . , δnx} = {e1, e2, . . . , en} = In, (6)

with In the n-dimensional identity matrix, anchored
on the fiducial trajectory. These vectors will be trans-
formed by successive applications of the tangent map
associated with the motion equations. The principal



416 D.C. Soriano et al.

axes of the tangent map are determined by the vari-
ational equations, which rule the time evolution of lin-
earized versions of the state equations, analytically de-
scribed by

Φ̇(x, t) = J(x, t) · Φ(x, t), (7)

where J(x, t) is the Jacobian of F(x, t), and its ele-
ments are given by

Jij (x, t) = ∂Fi(x, t)

∂xj (t)
. (8)

The divergence rate is then evaluated by integrating
the whole system (original motion and the variational
equations) for an interval T starting from x0 with
Φ(x0) = In. After this process, is possible to update
the vectors anchored in the fiducial trajectory trans-
formed by the tangent map, which for the most expan-
sive direction (largest Lyapunov exponent), is given by
δ
(1)
1x = Φ(x, T ) · u(0)

1 , being u(0)
1 = δ

(0)
1x /‖δ(0)

1x ‖ (where
the superscript denotes the current iteration). Repeat-
ing the integration and normalization procedure K

times (for K large enough to take into account the en-
tire attractor behavior), the largest Lyapunov exponent
is given by [19, 30]:

λ1 = lim
K→∞

1

KT
·

K∑

k=1

ln
∥
∥δ

(k)
1x

∥
∥. (9)

Since the system continuously changes its orien-
tation, it is impossible to define a specific axis of
the phase space as either expansive or contractive.
Moreover, the vectors δ1x, δ2x, . . . , δnx tend to align
in the most expansive direction as the dynamical sys-
tem evolves, which leads to numerical errors and can
cause the collapse of the tangent map into a single
direction. Having this fact in view, the Gram–Schmidt
Reorthonormalization (GSR) can be employed to sub-
tract the contribution of the most expansive direc-
tion from the others, which allows the correct esti-
mation of λ2 to λn. The GSR procedure that leads to
the corrected version of the vectors δ1x, δ2x, . . . , δnx

given by v1,v2, . . . ,vn and their normalized ver-
sions u1,u2, . . . ,un can be analytically described as
[19, 30]:

v(k)
1 = δ

(k)
1x ,

u(k)
1 = v(k)

1

‖v(k)
1 ‖

,

v(k)
2 = δ

(k)
2x − 〈

δ
(k)
2x ,u(k)

1

〉
,u(k)

1 ,

u(k)
2 = v(k)

2

‖v(k)
2 ‖

, (10)

...

v(k)
n = δ(k)

nx − 〈δ(k)
nx ,u(k)

1 〉u(k)
1 − · · ·

− 〈
δ(k)
nx ,u(k)

n−1

〉
u(k)

n−1,

u(k)
n = v(k)

n

‖v(k)
n ‖

,

where 〈a,b〉 denotes the inner product of vectors a
and b. In the K th iteration, the Lyapunov spectrum
is given by

λn = lim
K→∞

1

KT
·

K∑

k=1

ln
∥∥v(k)

n

∥∥. (11)

After that, the tangent map given by Φ(x, T ) is set
as the identity matrix, to correctly evaluate the diver-
gence (or convergence) rates for the next iteration. The
same procedure can be applied to discrete-time dy-
namical systems, being also necessary to perform the
GSR correction for every iteration.

Finally, it is important to remark that at least one
positive Lyapunov exponent is a necessary but not a
sufficient condition for a system to exhibit chaotic be-
haviour. In fact, the solution of the dynamical sys-
tem has also to remain within a compact space and,
if dissipative dynamical systems are considered, con-
traction has to outweigh expansion [10, 19]. In this
case, any limit set in an autonomous continuous-time
system, except for an equilibrium point, has at least
one null Lyapunov exponent (see [19] for a mathe-
matical proof) and the signals of the others exponents
will define the topological characteristics of the at-
tractor. For instance, a dissipative third-dimensional
continuous-time dynamical system having the Lya-
punov spectrum described by (λ1, λ2, λ3) can exhibit
chaotic behavior when those signals are (+,0,−) be-
ing, λ3 < −λ1. A two-torus can also be obtained when
the exponents are (0,0,−), and a limit cycle is pro-
duced when they assume the combination equal to
(0,−,−). Finally, it is possible to characterize a fixed
point for (λ1, λ2, λ3) = (−,−,−). It is important to
observe that autonomous continuous-time dynamical
systems require at least three state variables to exhibit
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chaos, a restriction that does not hold for discrete-time
dynamical systems. In the latter case, unidimensional
motion equations can exhibit a positive Lyapunov ex-
ponent and chaotic behavior, but this oscillating pat-
tern is only achieved if the solution of the dynami-
cal system also satisfies the requirement of remaining
within a compact space, defining an attracting limit set
in order to characterize a strange attractor [10, 19]. For
instance, a geometric progression xn+1 = rxn with ra-
tio r > 1 has a positive Lyapunov exponent, but it is
not chaotic since its solution does not remain within a
compact space.

2.2 The cloned dynamics (CLDYN) approach

The essence of the proposed method is to analyze the
evolution of the difference state vectors defined as the
distance between the fiducial trajectory and the clones
of these motion equations initially disturbed by small
values in orthogonal directions. Therefore, given an n-
dimensional dynamical system, n clones are created
(if one wishes to estimate all n exponents):

ẋc1 = F(xc1, t),

ẋc2 = F(xc2, t),

(12)
...

ẋcn = F(xcn, t).

Each clone receives the initial condition of the ref-
erence system disturbed by a small value δx0 along a
specific orthogonal direction, which means that:

x0c1 = x0 + δ
(0)
1x ,

x0c2 = x0 + δ
(0)
2x ,

(13)
...

x0cn = x0 + δ(0)
nx ,

being {δ1x, δ2x, . . . , δnx} an orthogonal basis initially
defined as δx0{e1, e2, . . . , en} = δx0In. Note that, in
this case, the identity matrix is now multiplied for
the magnitude of the applied perturbation, which im-
plies in an important difference from the TANMAP ap-
proach. In the CLDYN approach, the value of δx0 has
to be numerically chosen as small enough to be con-
sidered infinitesimal when compared to the attractor

size. More details about the effect of this on the nu-
merical estimation of the Lyapunov spectrum and how
to suitably choose δx0 will be provided in the next sec-
tion.

In the posed framework, each clone will correspond
to a specific direction associated with the Lyapunov
exponent to be evaluated. Thus, the original motion
equations and the clones are then integrated (or iter-
ated for discrete-time dynamical systems) for an in-
terval T , and at the end of this process, the perturba-
tion vectors are estimated by the difference of the fi-
nal states achieved by the fiducial trajectory and the
cloned trajectories (defining the difference state vec-
tors) in the form:

δ
(1)
1x = x(T ) − xc1(T ),

δ
(1)
2x = x(T ) − xc2(T ),

(14)
...

δ(1)
nx = x(T ) − xcn(T ).

To avoid the same numerical problems previously
commented in the explanation of the TANMAP ap-
proach, the GSR procedure is applied as described
in (10). After that, and before starting a new it-
eration, the clones are displaced in the neighbor-
hood of the fiducial trajectory, receiving new “initial
conditions” in the orthogonal frame spanned by the
{u1,u2, . . . ,un} vectors:

x(1)
0c1 = x(T ) + δx0u(1)

1 ,

x(1)
0c2 = x(T ) + δx0u(1)

2 ,

(15)
...

x(1)
0cn = x(T ) + δx0u(1)

n

and so the small disturbances will always stand in the
specific direction of the Lyapunov exponent being es-
timated. Finally, after the K th iteration, the Lyapunov
exponents are given by:

λn = lim
δx0→0

lim
K→∞

1

KT

K∑

k=1

ln

∥∥∥∥
v(k)
n

δx0

∥∥∥∥. (16)

Figure 1 illustrates a typical iteration of the CLDYN

method for disturbances initially applied in two or-
thogonal directions of the phase space (δ(0)

1x and δ
(0)
2x ).
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Fig. 1 Illustration of a
typical CLDYN iteration.
δ
(0)
1x and δ

(0)
2x are the initial

difference state vectors
given by δx0{e1, e2}. p is
the projection of δ

(1)
2x in δ

(1)
1x

used to obtain v2 vector.
A and B represent the initial
conditions for the next
iteration of the procedure.
The value of δx0 was
exaggerated here for the
sake of the illustration

As time passes, for each iteration, the difference state
vectors are updated as in (14), being the tendency of
alignment with the most expansive direction corrected
by the GSR procedure. Before the next iteration be-
gins, the clones are displayed in the neighborhood of
the fiducial trajectory in an orthogonal manner (as it
stated in (15)). Finally, the next iteration begins with
the clones starting from points A and B. This process
is repeated until the average behaviour of the whole
attractor is taken into account.

3 Results

3.1 Analyzing the performance of the CLDYN

approach for classical dynamical models

Figure 2 brings the time evolution of the Lyapunov
spectrum for the classical Lorenz system obtained by
the TANMAP and CLDYN methods (with T = 0.5 s
and δx0 = 10−4). It can be noted that both algorithms
have very similar convergence behaviors and yield al-
most identical exponent values in “steady state” condi-
tions. The Lorenz model is a natural choice since there
is a great deal of “numerical experimentation” avail-
able in the literature regarding it. In particular, the nu-
merical values for the Lyapunov exponents found here
are in perfect accordance with these works (see [22]
for values provided by different methods).

Table 1 shows the numerical values of the Lya-
punov exponents obtained after convergence (tfinal =
10000 s) for three emblematic continuous-time chaotic
systems: the already mentioned Lorenz system, the

Fig. 2 Time evolution of Lorenz Lyapunov spectrum using
TANMAP and CLDYN methods

chaotic and the hyperchaotic Rössler system (the mod-
els are described in [22] and also in Appendix). The re-
sults show that the proposed method is a reliable algo-
rithm to perform this calculation, even for the hyper-
chaotic Rössler system, which displays two positive
exponents and two exponents close to zero (a difficult
scenario in terms of numerical estimation) [22]. In the
latter case, the possibility of partial spectrum estima-
tion allowed the calculation of the positive exponents
by solving 12 differential equations (the original mo-
tion equations and two clones), while the TANMAP ap-
proach required the construction of the entire tangent
space, being necessary the integration of 20 differen-
tial equations. Moreover, Table 1 also shows that the
standard deviations of the Lyapunov exponents when
tfinal is attained tend to zero as time evolves. This result
illustrates the convergence of the Lyapunov exponents
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Table 1 Lyapunov spectra ± standard deviation (σi ) obtained using the TANMAP and CLDYN methods

Dynamics Method λ1 ± σ1 λ2 ± σ2 λ3 ± σ3 λ4 ± σ4 tsim

Lorenz TANMAP 0.9037 ± 0.0527 0.0011 ± 0.1376 −14.5672 ± 0.1651 – 689.9463

CLDYN 0.9025 ± 0.0519 −0.0014 ± 0.1340 −14.5293 ± 0.1528 – 564.3825

Rössler TANMAP 0.0886 ± 0.0020 0.0002 ± 0.0059 −9.8009 ± 0.1011 – 239.9587

CLDYN 0.0895 ± 0.0031 0.0002 ± 0.0059 −9.8079 ± 0.1013 – 135.0057

Rösslerh TANMAP 0.1083 ± 0.0032 0.0228 ± 0.0052 −0.0007 ± 0.1102 −25.4881 ± 0.6586 1179.8421

CLDYN 0.1128 ± 0.0053 0.0324 ± 0.0053 −0.0247 ± 01102 −23.9892 ± 0.6353 452.6063

Logistic TANMAP 0.3634 ± 0.0119 – – – 0.0021

CLDYN 0.3637 ± 0.0119 – – – 0.0024

Hénon TANMAP 0.4173 ± 0.0181 −1.6213 ± 0.0314 – – 0.1767

CLDYN 0.4173 ± 0.0181 −1.6213 ± 0.0314 – – 0.1695

In all simulations, δx0 = 10−4 and tfinal = 10000 s for continuous-time cases (exponents given in [nats/s]). Both methods uti-
lized the following parameters: Lorenz, x0 = [1 0 1]T , T = 0.5 s, Rössler, x0 = [1 0 1]T , T = 1.0 s; Rössler hyperchaos (Rösslerh),
x0 = [−20 0 0 15]T and T = 0.1 s. For discrete-time models (exponents given in [nats/iteration]), δx0 = 10−4, N = 10000 iterations.
Logistic map: x0 = 0.49, T = 1 iteration; Hénon map: x0 = [0 0]T , T = 1 iteration. The upper index T denotes matrix transpose. The
last column presents the required time in seconds for the simulation of each one of the dynamical systems

estimation process and it is in completely agreement
with the result provided by [1], obtained by applying a
recursive QR decomposition approach.

Two well-known discrete-time systems were also
considered in Table 1: the Logistic map and the Hénon
map (see Appendix). The one-dimensional Logistic
map has the attractiveness that is not difficult to de-
rive a expression for its Jacobian, which allows a
simple formula to be reached for the TANMAP ap-
proach [29]. In this sense, the values reached by the
CLDYN method indicated that the proposal is a con-
sistent tool to calculate Lyapunov spectrum. Further-
more, the Hénon map generalizes the calculations to a
two-dimensional discrete-time case, in which there is
also agreement with the numerical values obtained via
the classical procedure.

In almost all performed simulations, the CLDYN

method has required a shorter simulation time than the
TANMAP approach (last column—Table 1). Although
this difference of performance seems to be significa-
tive in some cases, as observed for the hyperchaotic
Rössler system, it may be related to the required time
to solve the set of differential equations provided by
the different approaches using a specific numerical
method. In such a case, it is difficult to say a priori
which method will require minimal computational re-
sources.

Although the numerical experiments gave rise to
very similar results obtained using both methods. It
should be stressed that a certain degree of caution is
required when it comes to choosing some parameters
of the CLDYN method. As has already been exposed
in [30], the TANMAP approach presents a good robust-
ness with respect to the integration time (T ), which
specifies the GSR interval. Meanwhile, increasing T

implies decreasing the computational cost to calculate
the exponents; on the other hand, this can introduce
numerical oscillations in the spectrum or even cause
the tangent map to collapse, if T is taken to be ex-
tremely large. Figure 3(a) illustrates this robustness
by repeating the calculation of the Lorenz Lyapunov
spectrum 10 times, increasing T progressively (from
0.2 s to 2 s with steps of 0.2 s), which does not affect
the obtained exponent values. When this simulation is
repeated for the CLDYN method (see Fig. 3(b)), it can
be observed that λ1 and λ2 are similar to those ob-
tained via the TANMAP, but an overestimation of λ3

for larger values of T is detected. This imprecision for
the lowest exponent is related to the loss of informa-
tion due to the fast convergence of the cloned trajec-
tory to the fiducial one in the most contractive flux di-
rection, which requires a more conservative choice of
T for the CLDYN method. A systematic approach to
determine T would be to perform the whole spectrum
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Fig. 3 The Lorenz Lyapunov spectrum for the TANMAP and
CLDYN approaches under a progressive increase of T (from
0.2 s to 2 s, with steps of 0.2 s)

calculation reducing this parameter on each simulation
for achieving a lower bound for λ3.

Overestimates of λ3 in the CLDYN method can also
occur when the magnitude of the initial perturbation
δx0 is not small enough. Figure 4 shows the Lorenz’s
Lyapunov spectrum for a progressive increase in δx0

(from 10−5 to 10−1 with a geometric ratio of 10). It
can be observed that a significant overestimate of λ3

starts to occur from δx0 = 10−2, while λ1 and λ2 are
negligibly affected. A small perturbation of 10−4 was
adequate for the strange attractors analyzed here, and
a progressive reduction of δx0 can also be carried out
for achieving a lower bound to λ3 and ensuring more
reliable calculations.

Fig. 4 Effect of a progressive increase in the magnitude of the
initial perturbation δx0 (from 10−5 to 10−1 with a geometric
ratio 10) in the Lorenz Lyapunov spectrum for CLDYN method

3.2 The CLDYN approach applied
to the FitzHugh–Nagumo model with
discontinuous inputs

An advantage of the proposed method is the possibil-
ity of evaluating the Lyapunov spectrum without con-
structing the tangent space, which can be useful in a
wide range of applications, such as the analysis of dy-
namics with discontinuous inputs or states. To illus-
trate this, the CLDYN method is employed to analyze
the oscillatory behaviour of the neuronal FitzHugh–
Nagumo model [12] for nonsmooth inputs (rectan-
gular pulses of frequency ω and amplitude A—see
Appendix). This system consists of a modified ver-
sion of the Van der Pol’s equations to describe re-
laxation oscillators, aiming to capture the character-
istics of neuronal oscillations. Although rectangular
pulses are commonly used to extract relevant neuronal
characteristics such as refractory period or to obtain
the strength versus duration curve. The mathematical
treatment of the neuronal FitzHugh–Nagumo model is
far from trivial due to their discontinuous nature [9].

Since in this case it is impossible to use the TAN-
MAP method to compute the exponents and establish
a comparison with the CLDYN approach, an strobo-
scopic map was built to provide an independent tech-
nique for validation. The stroboscopic map is obtained
by periodic sampling of the state variables (when the
transients are assumed to have vanished) taking the
amplitude of stimulation as control parameter. In this
analysis, aperiodic oscillations, like chaotic oscilla-
tions, display a number of points that tends to infinity,
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Fig. 5 (a) Is the stroboscopic map taking the amplitude A [a.u.]
as control parameter of the neuronal FitzHugh–Nagumo model;
V [a.u.] is the state variable membrane potential. (b) Represents
the largest Lyapunov exponent associated to the respective con-
trol parameter

while periodic solutions tend to produce a finite num-
ber of points for each value of A. Thus, the map corre-
sponds to a geometrical approach that gives a qual-
itative view of the topological structure of the sys-
tem solution [4, 19, 29]. It is possible to observe in
Fig. 5(b) the richness of dynamical behaviors that this
apparently simple oscillator can achieve. For instance,
one may cite the presence of smooth transitions from
periodic to chaotic oscillations, as well as of abrupt
collapse and merging of strange attractors for smooth
changes in the control parameter. Such flip, tangent,
and crisis bifurcations have already been verified for
the FitzHugh–Nagumo model excited by smooth in-

puts [28], and can give rise to experimentally observed
oscillatory behaviors [3], as intermittent behavior [20],
defined as a bursting of action potentials of irregular
length, which is also observed in the simulations per-
formed here for points near tangent bifurcations (as
that which occurs for A = 0.6348).

Figure 5(b) shows the largest Lyapunov exponent
obtained after a significant time (3000 arbitrary time
units [a.u.]) with T = 0.5 [a.u.], δx0 = 10−4 and A

varying from 0.55 to 1.3 with steps of 2 × 10−4 [a.u.].
It can be observed that the λ1 values are in agreement
with the captured oscillatory patterns (with sampling
rate of 1 rad/a.u.) by the stroboscopic map, that is, pos-
itive exponents are associated with control parameters
that produce apparently chaotic behaviours, while neg-
ative exponents are obtained for values of A that lead
to apparently periodic oscillations.

4 Discussions and final conclusions

The main idea of estimating the Jacobian matrix of
a dynamical system by the difference of states in a
neighborhood of a given attractor point is already
known and used to calculate Lyapunov exponents
from experimental time series [10, 11]. This concept
was adapted here in order to incorporate a priori in-
formation of knowledge of motion equations, creating
initially small disturbed clones to analyze, in a more
practical and intuitive way, the stability of dynamical
systems, in accordance with what has been developed
by [6] for the estimation of the largest Lyapunov ex-
ponent, and extended here to the entire spectrum. This
new method opens interesting perspectives of appli-
cations, specially to hyperchaotic systems and nons-
mooth dynamics.

An extension of [6] has already been presented in
[13], providing the existence of a relation between
λ1 and the coupling factor between oscillators when
a synchronous pattern is achieved. In particular, [13]
presented a procedure for computing the largest expo-
nent that, under specific conditions, is analogous to the
CLDYN procedure, but is still restricted to computing
the largest exponent and not the whole spectrum.

Furthermore, the method proposed in [13] was
adapted in [26] in order to calculate λ1 for the Duff-
ing’s oscillator with impacts (a classical case of nons-
mooth dynamics) based in the synchronism of identi-
cal systems. This approach has some similarities with
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the proposed method, since it uses a cloned version
to calculate the largest exponent. However, it should
be stressed that the CLDYN method is not based on
any synchronism principle, but it is related to the main
idea introduced by the stability theory of dynamical
systems, attempting to evaluate how small perturba-
tions evolve. The strategy of monitoring a difference
state vector built from disturbed clones of the dynam-
ics with the aid of the numerical corrections, also em-
ployed in the usual TANMAP procedure, consists of
a different way to address this problem, which allows
not only computation of the largest Lyapunov expo-
nent but of the whole Lyapunov spectrum, without
performing an exhaustive search for parameters that
synchronize dynamics, or even treating discontinuous
points (in the case of nonsmooth systems) as excep-
tions, forcing state transitions, as exposed in [17]. In
this last case, nonsmooth functions that appear in the
motion equations will also appear in the clones, which
is not prohibitive in the process of obtaining the differ-
ence state vectors for calculating the Lyapunov expo-
nents.

Even in the case of smooth systems, there are some
advantages in using the CLDYN method. For instance,
as the Lyapunov spectrum can be partially estimated,
the largest exponent (that is sufficient to characterize
the oscillatory behavior) of an n-dimensional dynam-
ical system can be obtained by integrating 2n differ-
ential equations, while the TANMAP method requires
the construction of whole tangent space, which im-
plies integrating n(n + 1) equations. Thus, for high-
dimensional dynamics or for state equations that are
mathematically hard to be linearized, the CLDYN

method seems to be a convenient tool to be employed.
In this work, the performance of the proposed

method was analyzed with the aid of extensive tests
based on representative continuous- and discrete-time
dynamical systems, which provided strong numer-
ical support to the developed proposal. Moreover,
the possibility of using the CLDYN method for non-
smooth dynamics was illustrated for the classical
FitzHugh–Nagumo neuronal model excited by rect-
angular pulses. In such case, the computation of Lya-
punov exponents can offer valuable bases for studying
biological information processing in the light of dis-
sipative nonlinear dynamical systems theory, by its
close connection to information theory [15, 23]. It
is already known that chaotic processes can lead to
an efficient way of transmitting and codifying infor-
mation, as was shown for some classical dynamical

systems [5], and has been, in a few steps, related to
cognitive processes through the analysis of low- and
high-dimensional neuronal systems in real and artifi-
cial paradigms [16, 21, 25].

Finally, complex systems constituted of nonlin-
ear coupled neuronal oscillators have been intensively
studied in an attempt to explain the emergence of
biopotential patterns which can be related to mem-
ory formation, learning and recognition [25] due to
nonlinear phenomenons as transient synchronism [27]
and chaotic itinerancy [14]. The characterizations of
such mechanisms are closely related to the conver-
gence of Lyapunov exponents (e.g., in the fluctuations
of largest Lyapunov exponent that characterize chaotic
itinerancy [14]), there being a possibility that the pro-
posed method be capable of leading to contributions.

Acknowledgements This work was supported by CAPES
and FAPESP.

Appendix

The Lorenz model is described by as:

ẋ = σ(y − x),

ẏ = −xz + rx − y, (17)

ż = xy − bz,

with the following employed parameters: σ = 10,
r = 28, b = 8

3 . The units of the state variables are ar-
bitrary and time is assumed to be in seconds.

The Rössler system is described as:

ẋ = −y − z,

ẏ = x + ay, (18)

ż = b + z(x − c),

with the following employed parameters: a = 0.15,
b = 0.2, c = 10. The units of state variables are arbi-
trary and time is assumed to be in seconds. The Hy-
perchatic Rössler system is described as:

ẋ = −y − z,

ẏ = x + ay + w,

(19)
ż = b + xz,

ẇ = cw − dz,
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with the following employed parameters: a = 0.25,
b = 3.0, c = 0.05, d = 0.5. The units of the state vari-
ables are arbitrary and time is assumed to be in sec-
onds.

The FitzHugh–Nagumo system is described as:

V̇ = V − V 3

3
− W + I (t),

Ẇ = c(V + a − bW), (20)

I (t) = A · square(ωt),

with the following employed parameters: a = 0.7,
b = 0.8, c = 0.1. The function A · square represents a
train of rectangular pulses of amplitude A, frequency
ω = 1 rad/a.u. (arbitrary units) and duty cycle of 50%.
V represents the membrane potential and W its refrac-
toriness, in arbitrary units. Time is given in arbitrary
unit, as well.

The logistic map is described as

Xn+1 = rXn(1 − Xn), (21)

with the employed parameter r = 3.75. The state vari-
able assumes arbitrary units.

The Hénon system is described as:

Xn+1 = 1 − aX2
n + bYn,

(22)
Yn+1 = Xn,

with the following employed parameters: a = 1.4 and
b = 0.3. The state variables have arbitrary units.

All continuous-time dynamical systems were inte-
grated using a 4th-order variable step Runge–Kutta
method with relative and absolute precision equal to
10−10. All the simulations were performed using a
computer with a CPU Intel Core 2 Quad Q8200 @
2.33 GHz (4 cores/4 threads), 4 GB RAM DDR2 @
800 MHz, Microsoft Windows XP x86 and MATLAB
R2009a (v7.8.0.347).
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