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Abstract This paper is concerned with the problem of
exponential synchronization for chaotic systems with
time-varying delays by using periodically intermittent
control. Some new and useful synchronization crite-
ria are obtained based on the differential inequality
method and the analysis technique. It is noteworthy
that the methods used in this paper are different from
the techniques employed in the existing works, and the
derived conditions are less conservative. Especially, a
strong constraint on the control width that the control
width should be large than the time delay imposed by
the current references is released in this paper. More-
over, the new synchronization criteria do not impose
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any restriction on the size of time delay. Numerical
examples are finally presented to illustrate the effec-
tiveness of the theoretical results.
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1 Introduction

During the past decades, the control and synchroniza-
tion of chaotic systems has been an active research
topic due to its importance in theory and its poten-
tial applications in various areas such as mechanics,
neural networks, biology, and secure communications
[1–4]. Numerous methods have been developed for the
control and synchronization in various chaotic systems
which include linear and nonlinear feedback control,
time-delay feedback control, adaptive control, impul-
sive control, intermittent control, among many others;
see [1–23] and the references therein.

Intermittent control, a discontinuous feedback con-
trol which is activated during certain nonzero time in-
tervals, but is off during other time intervals, has been
widely used in engineering fields for its practical and
easy implementation in engineering control. Recently,
much effort has been devoted to study the issue of
stabilization and synchronization of delayed chaotic
systems and delayed dynamical networks by using in-
termittent control, and many important and interest-
ing results have been obtained (see [14–23]). How-
ever, there exist different limitations in these results
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and such restrictions make these results less applica-
ble. For example, in [14–20], two central differential
inequalities and Lyapunov function method are used to
investigate the stabilization and synchronization prob-
lems, but the results obtained in [14–20] require that
the control width should be larger than the time delay.
So, when the time delay has a relatively larger value,
the results in [14–20] fail to check the stabilization
and synchronization. And the results in [19, 20] also
impose the restriction that the time delays are smaller
than the noncontrol width. Since the results in [21] are
delay-dependent, they cannot be applied to deal with
exponential synchronization of delayed chaotic sys-
tems with any time delay. The results in [22] require
the time-varying delays be differentiable and simulta-
neously their derivatives be not greater than 1. More-
over, the results in [23] focus on studying exponential
lag synchronization of neural networks with discrete
delays and distributed delays. Hence, the stabilization
and synchronization problems of delayed chaotic sys-
tems and delayed dynamical networks under intermit-
tent control have not been fully investigated yet. New
techniques and methods for further improving the re-
sults mentioned above need to be explored and devel-
oped.

The problem of exponential synchronization for
chaotic systems with time-varying delays by means of
intermittent control is investigated in this paper. Some
new and useful synchronization criteria are obtained
by using the methods which are different from the
techniques employed in the existing works, and the de-
rived results are less conservative. Especially, the tra-
ditional assumption that the control width should be
larger than the time delay imposed by the current ref-
erences is removed in our results. Moreover, the new
synchronization criteria are delay-independent in the
sense that they are applicable for any bounded time-
varying delays. Finally, two examples and their simu-
lations are given to show the effectiveness of the theo-
retical results.

2 Problem formulation and preliminaries

Consider a class of chaotic systems with time-varying
delays:

ẋ(t) = Ax(t) + Bf
[
x(t)

] + Cg
[
x
(
t − τ(t)

)]
, t > 0,

x(t) = ϕ(t), −τ ≤ t ≤ 0,
(1)

where x(t) ∈ Rn is the state vector, A, B , and C are
n × n constants matrices, the time delay τ(t) may be
unknown (constant or time-varying) but is bounded by
a known constant, i.e., 0 ≤ τ(t) ≤ τ, f, g : Rn →
Rn are nonlinear vector-valued functions satisfying
f (0) = 0 and g(0) = 0. Moreover, we here always
assume that the nonlinear vector-valued functions f,

g satisfy uniform Lipschitz condition, i.e., for any
x, y ∈ Rn, there exist positive constants Lf and Lg

such that

∥∥f (x) − f (y)
∥∥ ≤ Lf ‖x − y‖,

∥∥g(x) − g(y)
∥∥ ≤ Lg‖x − y‖.

To realize synchronization by means of periodically
intermittent control in master-slave configuration with
system (1) as the master (drive) system, the slave (re-
sponse) system is designed as

ẏ(t) = Ay(t) + Bf
[
y(t)

] + Cg
[
y
(
t − τ(t)

)]

+ K(t)
[
x(t) − y(t)

]
, t > 0, (2)

y(t) = φ(t), −τ ≤ t ≤ 0,

where y(t) ∈ Rn denotes the state vector of system (2),
and K(t) is the intermittent linear state feedback con-
trol gain defined as follows:

K(t) =
{

K, nT ≤ t < (n + θ)T,

0, (n + θ)T ≤ t < (n + 1)T,
(3)

where K ∈ Rn×n is a constant control gain, T > 0 is
the control period, 0 < θ < 1 is the rate of control du-
ration called control rate, and n = 0,1,2, . . . . In this
paper, we are concerned with how to design suitable
θ , T, and K, such that the response system (2) expo-
nentially synchronizes to the drive system (1).

Let e(t) = y(t) − x(t) be the synchronization error
between the states of drive system (1) and response
system (2). According to the control law (3), then we
can derive the following error dynamical system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė(t) = Ae(t) + Bf (x, y, t) + Cf (xτ , yτ , t − τ(t))

− Ke(t), nT ≤ t < (n + θ)T,

ė(t) = Ae(t) + Bf (x, y, t) + Cf (xτ , yτ , t − τ(t)),

(n + θ)T ≤ t < (n + 1)T,

(4)
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where f (x, y, t) = f [y(t)] − f [x(t)], and f (xτ , yτ ,

t − τ(t)) = g[y(t − τ(t))] − g[x(t − τ(t))]. It is clear
that if the zero solution of the error dynamical system
(4) is globally exponentially stable, then exponential
synchronization between the drive system (1) and the
response system (2) is achieved.

To derive our main results is discussed in the next
section. We need the following lemmas.

Lemma 1 [24] For any two n-dimensional real vec-
tors Y and Z, and a symmetrical positive definite ma-
trix Q ∈ Rn×n, the following matrix inequality holds:

YT Z + ZT Y ≤ YT QY + ZT Q−1Z.

Lemma 2 Suppose that function y(t) is continuous
and nonnegative when t ∈ [−τ,∞) and satisfies the
following condition:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏ(t) ≤ −γ1y(t) + γ2y(t − τ(t)),

nT ≤ t < (n + θ)T,

ẏ(t) ≤ γ3y(t) + γ2y(t − τ(t)),

(n + θ)T ≤ t < (n + 1)T,

(5)

where γ1, γ2, γ3 are constants, and n = 0,1,2, . . . . If

γ1 > γ2 > 0, δ = γ1 + γ3 > 0, and

� = λ − δ(1 − θ) > 0,
(6)

then

y(t) ≤ sup
−τ≤s≤0

y(s) exp{−�t}, t ≥ 0,

where λ > 0 is the unique positive solution of the equa-
tion λ − γ1 + γ2 exp{λτ } = 0.

Proof Denote f (λ) = λ−γ1 +γ2 exp{λτ }. Since γ1 >

γ2 > 0, we have f (0) < 0, f (+∞) > 0, and f ′(λ) >

0. Using the continuity and the monotonicity of f (λ),
the equation λ − γ1 + γ2 exp{λτ } = 0 has an unique
positive solution λ > 0. Take M0 = sup−τ≤s≤0 y(s),
and W(t) = exp{λt}y(t), where t ≥ 0. Let Q(t) =
W(t) − hM0, where h > 1 is a constant. It is easy to
see that

Q(t) < 0, for all t ∈ [−τ,0]. (7)

In the following, we will prove that

Q(t) < 0, for all t ∈ [0, θ T). (8)

If this is not true, by (7) and the continuity of y(t) as
t ∈ [−τ,∞), then there exists a t0 ∈ [0, θ T) such that

Q(t0) = 0, Q̇(t0) ≥ 0, (9)

Q(t) < 0, −τ ≤ t < t0. (10)

Using (5), (9) and (10), we obtain

Q̇(t0) = λW(t0) + exp{λt0}ẏ(t0)

≤ (λ − γ1)W(t0) + γ2 exp{λτ }W (
t0 − τ(t0)

)

<
(
λ − γ1 + γ2 exp{λτ })hM0 = 0. (11)

This contradicts the second inequality in (9), and so
(8) holds.

Now, we prove that for t ∈ [θT,T)

H(t) = W(t) − hM0 exp
{
δ(t − θT)

}
< 0. (12)

Otherwise, there exists a t1 ∈ [θT,T) such that

H(t1) = 0, Ḣ (t1) ≥ 0, (13)

H(t) < 0, θT ≤ t < t1. (14)

For τ(t) > 0, if θT ≤ t1 − τ(t1) < t1, it follows from
(14) that

W
(
t1 − τ(t1)

)
< hM0 exp

{
δ(t1 − θT)

}
,

and if −τ ≤ t1 −τ(t1) < θT, from (7) and (8), we have

W
(
t1 − τ(t1)

)
< hM0 ≤ hM0 exp

{
δ(t1 − θT)

}
.

Hence, for τ(t) > 0, we always have

W
(
t1 − τ(t1)

)
< hM0 exp

{
δ(t1 − θT)

}
.

Then

Ḣ (t1) = λW(t1) + exp{λt1}ẏ(t1)

− δhM0 exp
{
δ(t1 − θT)

}

≤ (λ + γ3)W(t1) + γ2 exp{λτ }W (
t1 − τ(t1)

)

− δhM0 exp
{
δ(t1 − θT)

}

<
(
λ − γ1 + γ2 exp{λτ })hM0

× exp
{
δ(t1 − θT)

} = 0, (15)

which contradicts the second inequality in (13). Hence,
(12) holds. That is, for t ∈ [θT,T),

W(t) < hM0 exp
{
δ(t − θT)

} ≤ hM0 exp
{
δ(1 − θ)T

}
.
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On the other hand, it follows from (7) and (8) that for
t ∈ [−τ, θT)

W(t) < hM0 < hM0 exp
{
δ(1 − θ)T

}
.

So

W(t) < hM0 exp
{
δ(1 − θ)T

}
, for all t ∈ [−τ,T).

(16)

Similarly, we can prove that for t ∈ [T, (1 + θ)T),

W(t) < hM0 exp
{
δ(1 − θ)T

}
,

and for t ∈ [(1 + θ)T,2T)

W(t) < hM0 exp
{
δ(t − 2θ)T

}
.

By induction, we can derive the following estima-
tion of V (t) for any integer n.

For nT ≤ t < (n + θ)T,

W(t) < hM0 exp
{
nδ(1 − θ)T

}
, (17)

and for (n + θ)T ≤ t < (n + 1)T,

W(t) < hM0 exp
{
δ
[
t − (n + 1)θT

]}
. (18)

Since for any t ≥ 0, there exists a nonnegative integers
k, such that kT ≤ t < (k + 1)T, we can deduce the fol-
lowing estimation of V (t) for any t by (17) and (18).

For kT ≤ t < (k + θ)T,

W(t) < hM0 exp
{
kδ(1 − θ)T

} ≤ hM0 exp
{
δ(1 − θ)t

}

and for (k + θ)T ≤ t < (k + 1)T,

W(t) < hM0 exp
{
δ
(
t − (k + 1)θT

)}

≤ hM0 exp
{
δ(1 − θ)t

}
.

Let h → 1, from the definition of V (t), we obtain

y(t) ≤ M0 exp
{−[

λ − δ(1 − θ)
]
t
} = M0 exp{−�t},

t ≥ 0.

This completes the proof of Lemma 2. �

Throughout this paper, P > 0(< 0,≤ 0,≥ 0) de-
notes a symmetrical positive (negative, seminegative,
semipositive) definite matrix P ; also P 	, λmax(min)(P )

are the transpose and the maximum (minimum) eigen-
value of a square matrix P , respectively. The vector (or
matrix) norm is taken to be Euclidian, denoted by ‖ ·‖.

3 Main results

In this section, with the help of Lemma 2, some novel
exponential synchronization criteria through intermit-
tent linear state feedback are rigorously derived. The
main results are stated as follows.

Theorem 1 Suppose that there exist a symmetric pos-
itive define matrix P > 0 and positive constants γ1 >

γ2, γ3, μ1, and μ2 such that the following conditions
hold:

(i) P(A − K) + (A − K)	P + μ1PBB	P

+ μ−1
1 L2

f In + μ2PCC	P + γ1P ≤ 0,

(ii) μ−1
2 L2

gIn − γ2P ≤ 0,

(iii) PA + A	P + μ1PBB	P + μ−1
1 L2

f In

+ μ2PCC	P − (γ3 − γ1)P ≤ 0,
(iv) � = ε − γ3(1 − θ) > 0,

where ε > 0 is the unique positive solution of the equa-
tion ε − γ1 + γ2 exp{ετ } = 0. Then the drive-response
systems (1) and (2) are exponentially synchronized.

Proof Consider the following Lyapunov function:

V (t) = e	(t)P e(t). (19)

According to Lemma 1 and conditions (i)–(iii), the
derivative of V (t) with respect to time t along the tra-
jectory of the error system (4) can be calculated as fol-
lows:

When nT ≤ t < (n + θ)T, for n = 0,1,2, . . . ,

V̇ (t) = 2e	(t)P
[
Ae(t) + Bf (x, y, t)

+ Cf
(
xτ , yτ , t − τ(t)

) − Ke(t)
]

≤ e	(t)
[
P(A − K) + (A − K)	P

]
e(t)

+ μ1e
	(t)PBB	Pe(t) + μ−1

1 L2
f e	(t)e(t)

+ μ2e
	(t)PCC	Pe(t)

+ μ−1
2 L2

ge
	(

t − τ(t)
)
e
(
t − τ(t)

)

= e	(t)
[
P(A − K) + (A − K)	P

+ μ1PBB	P + μ−1
1 L2

f In

+ μ2PCC	P + γ1P
]
e(t)

− γ1e
	(t)P e(t) + e	(

t − τ(t)
)[

μ−1
2 L2

gIn

− γ2P
]
e
(
t − τ(t)

)
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+ γ2e
	(

t − τ(t)
)
Pe

(
t − τ(t)

)

≤ −γ1e
	(t)P e(t) + γ2e

	(
t − τ(t)

)
Pe

(
t − τ(t)

)

= −γ1V (t) + γ2V
(
t − τ(t)

)
.

and when (n+θ)T ≤ t < (n+1)T, for n = 0,1,2, . . . ,

V̇ (t) = 2e	(t)P
[
Ae(t) + Bf (x, y, t)

+ Cf
(
xτ , yτ , t − τ(t)

)]

≤ e	(t)
[
PA + A	P

]
e(t) + μ1e

	(t)PBB	Pe(t)

+ μ−1
1 L2

f e	(t)e(t)

+ μ2e
	(t)PCC	Pe(t) + μ−1

2 L2
ge

	

× (
t − τ(t)

)
e
(
t − τ(t)

)

= e	(t)
[
PA + A	P + μ1PBB	P + μ−1

1 L2
f In

+ μ2PCC	P − (γ3 − γ1)P
]
e(t)

+ (γ3 − γ1)e
	(t)P e(t) + e	(

t − τ(t)
)

× [
μ−1

2 L2
gIn − γ2P

]
e
(
t − τ(t)

)

+ γ2e
	(

t − τ(t)
)
Pe

(
t − τ(t)

)

≤ (γ3 − γ1)e
	(t)

× Pe(t) + γ2e
	(

t − τ(t)
)
Pe

(
t − τ(t)

)

= γ3V (t) + γ2V
(
t − τ(t)

)
.

Namely, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V̇ (t) ≤ −γ1V (t) + γ2V (t − τ(t)),

nT ≤ t < (n + θ)T,

V̇ (t) ≤ (γ3 − γ1)V (t) + γ2V (t − τ(t)),

(n + θ)T ≤ t < (n + 1)T.

(20)

Using Lemma 2 and condition (iv), we obtain

V (t) ≤ sup
−τ≤s≤0

V (s) exp{−�t}, t ≥ 0. (21)

By (19) and (21), we have

∥∥e(t)
∥∥ ≤

√
sup−τ≤s≤0 V (s)

λmax(P )
exp

{
−�

2
t

}
, t ≥ 0.

This implies the conclusion and the proof is com-
plete. �

In the following, we shall establish some numeri-
cally tractable synchronization criteria. To this end, let

P = In, K = kIn, μ1 = Lf , μ2 = Lg in Theorem 1,
then the following results can be obtained readily from
Theorem 1.

Corollary 1 Suppose that there exist positive con-
stants γ1 > γ2 ≥ Lg , γ3 such that the following con-
ditions hold:

(i) A + A	 + Lf BB	 + LgCC	 + (Lf + γ1 −
2k)In ≤ 0,

(ii) A + A	 + Lf BB	 + LgCC	 + (Lf − γ3 +
γ1)In ≤ 0,

(iii) � = ε − γ3(1 − θ) > 0,

where ε > 0 is the unique positive solution of the equa-
tion ε − γ1 + γ2 exp{ετ } = 0. Then the drive-response
systems (1) and (2) are exponentially synchronized.

Letting m0 = λmax(A+A	+Lf BB	+LgCC	+
Lf In), and selecting γ2 = Lg , γ3 = (m0 + γ1) > 0,
then conditions (ii) in Corollary 1 hold. Thus, we can
reduce the above corollary to the following:

Corollary 2 The system (1) and system (2) achieve ex-
ponential synchronization if there exists positive con-
stant γ1 > Lg such that the following conditions hold:

(i) 0 <
m0+γ1

2 ≤ k,
(ii) � = ε − (γ1 + m0)(1 − θ) > 0,

where ε > 0 is the unique positive solution of the equa-
tion ε − γ1 + Lg exp{ετ } = 0.

Remark 1 Although some important and interesting
results have been obtained on the exponential stabi-
lization and synchronization for delayed chaotic sys-
tems and delayed dynamical networks via intermit-
tent control [14–22], there exist different limitations
in these results and such restrictions make these re-
sults less applicable. More specifically, the condition
θ = 0.5 is assumed in [14]. The results in [15–20]
require that the control width should be larger than
the time delay, i.e., θT > τ . So, when systems have
a relatively larger value of delay, the results in [15–
20] fail to check the stabilization and synchronization.
And the results in [19, 20] also impose the restric-
tion that the time delay is smaller than the noncon-
trol width, i.e., τ < T − θT. In addition, the assump-
tion inft∈[0,+∞){1 − τ̇ (t)} > 0 is assumed in [22], that
is, the time-varying delays are differentiable and si-
multaneously their derivatives should be not greater
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Fig. 1 The chaotic attractor
of the Ikeda system (22)

than 1, which is a very strict condition. However, all
these constraints are removed in our results. More-
over, the results in [21] are delay-dependent, which
are only valid for the time delay less than a positive
threshold. However, our results are delay-independent
in the sense that they are valid for any bounded time-
varying delays τ(t) ∈ (0,+∞). Therefore, our results
are less conservative and more practically applicable
than those in the literature [14–22].

Remark 2 It should be pointed out that the previous
results presented in [14–20] were obtained by con-
structing Lyapunov functions and using two central
differential inequalities. Because of considering the
control width and the noncontrol width in a control
period separately by using two central differential in-
equalities, a strong constraint that the control width
should be larger than the time delay is required in [14–
20]. In this paper, a novel differential inequality (see
Lemma 2) releasing the constraint mentioned above is
established, and then based on which some new and
useful results are derived. Evidently, the methods pro-
posed in this paper are totally different from the exist-
ing works [14–23].

Remark 3 From the above results, we can see that the
synchronization criteria derived in the paper depend
on the control rate θ , but not the control period T. For
practical problems, we can thus choose randomly the
control period T for achieving chaos synchronization.

Note that there is only one parameter γ1 in Corol-
lary 2. Suppose that γ1 is given as γ ∗ > Lg . Substitut-
ing γ1 = γ ∗ into the equation ε −γ1 +Lg exp{ετ } = 0
yields ε = Φ(γ ∗), then the following result is imme-
diate from Corollary 2.

Corollary 3 Suppose that γ1 is given as γ ∗ > Lg . The
system (1) and system (2) achieve exponential synchro-
nization if the following conditions hold:

(i′) k ≥ m0+γ ∗
2 > 0,

(ii′) 1 − Φ(γ ∗)
m0+γ ∗ < θ < 1.

Remark 4 Corollary 3 allows us to determine the con-
trol gain k and the control rate θ in a simple way, based
on which intermittent controller can be designed. In
order to illuminate how to design the intermittent con-
troller, the following procedures are preformed: (1)
Given γ1, and then compute Φ(γ ∗); (2) Select k, θ

such that conditions (i′) and (ii′) are satisfied; (3) Se-
lect randomly a control period T; (4) According to
above chosen k, θ , T design the intermittent con-
troller.

4 Numerical example

In this section, two examples are presented to show the
effectiveness of the obtained new results.
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Fig. 2 The relationship
curve between the
parameter γ ∗ and the
control rate θ in Example 1

Fig. 3 (Color online)
Synchronization errors e(t)

with control parameters
k = 10, θ = 0.965, T = 1.0
(red), and k = 10, θ = 1.0,
T = 1.0 (green) in
Example 1

Example 1 Consider the following Ikeda oscillator of

the form

ẋ(t) = −ax(t) + c sin
(
x(t − τ)

)
. (22)

This system exhibits chaotic behavior when a = 1,

c = 4, and τ = 2, which can be seen from Fig. 1. The

corresponding response system is given by

ẏ(t) = −ay(t) + c sin
(
y(t − τ)

) + K(t)
[
x(t) − y(t)

]
,

where

K(t) =

⎧
⎪⎨

⎪⎩

k nT ≤ t < (n + θ)T,

0 (n + θ)T + δ ≤ t < (n + 1)T,

n = 0,1,2, . . . .

(23)

Note that A = −1, B = 0, C = 1, Lf = 0 and Lg = 4,
one has m0 = 2. Based on Corollary 3 (ii′), we can
plot the relationship curve between the control rate θ

and the parameter γ ∗ in Fig. 2. In this example, we
select γ ∗ = 18, then we obtain k ≥ 10, and 0.963 <

θ < 1 from conditions (i′) and (ii′) of Corollary 3. For
numerical simulation, we take k = 10, θ = 0.965, T =
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Fig. 4 The chaotic attractor
of the Lu oscillator (24)

Fig. 5 The relationship
curve between the
parameter γ ∗ and the
control rate θ in Example 2

1.0 and plot the synchronization error curve, as shown
in Fig. 3. Since θT = 0.965 < τ = 2, the results in [16]
cannot be used in this case. Hence, our results is more
practically applicable.

It is noteworthy that when the control rate θ = 1.0,
the periodically intermittent control will reduce to the
general continuous linear feedback control. For com-
parison, the synchronization error curve with control
parameters k = 10, θ = 1.0, T = 1.0 is also plotted
in Fig. 3. The simulation results show that the inter-

mittent control is more cost effective than the linear
feedback control since the latter activates the control
all the times.

Example 2 Consider the Lu oscillator [25]

ẋ(t) = −Ax(t) + f
[
x(t)

] + g
[
x(t − τ)

]
, (24)

where x(t) = (x1(t), x2(t))
	 ∈ R2, τ = 1, and

A =
[

1 0
0 1

]
, f (x) =

[
3.0 5.0
0.1 2.0

][
tanh(x1)

tanh(x2)

]
,
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Fig. 6 (Color online)
Synchronization errors
e1(t), e2(t) with control
parameters k = 12,
θ = 0.95, T = 0.5 (red),
and k = 12, θ = 1.0,

T = 0.5 (green) in
Example 2

g(y) =
[−2.5 0.2

0.1 −1.5

][
tanh(y1)

tanh(y2)

]
.

The model has a chaotic attractor, as shown in Fig. 4.
The corresponding response system is of the form

ẏ(t) = −Ay(t) + f
[
y(t)

] + g
[
y(t − τ)

]

+ K(t)
[
x(t) − y(t)

]
,

where K(t) is defined by (23).

Note that Lf = 6.0989 and Lg = 2.5226, one has
m0 = 12.7204. From Corollary 3 (ii′), the relationship
curve between the control rate θ and the parameter γ ∗
is plotted in Fig. 5. In this example, we take γ ∗ = 10,
then we obtain k ≥ 11.3602, and 0.945 < θ < 1 from
Conditions (i′) and (ii′) of Corollary 3. For numeri-
cal simulation, we select k = 12, θ = 0.95, T = 0.5
and plot the synchronization error curve, as shown
in Fig. 6. For comparison, the synchronization er-
ror curve with control parameters k = 12, θ = 1.0,
T = 0.5 is also plotted in Fig. 6. We can see from the
simulation results that the intermittent control is more
cost effective than the linear feedback control since the
latter activates the control all the times.

5 Conclusion

In this paper, new sufficient conditions for exponential
synchronization of chaotic systems with time-varying

delays via intermittent control have been proposed.
The obtained results remove the traditional assump-
tion that the control width should be larger than the
time delay. Moreover, the new synchronization crite-
ria do not impose any restriction on the size of time
delays. Two numerical simulations are given to show
the effectiveness of the theoretical results.
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