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Abstract The stochastic resonance in a bias monos-
table system driven by a periodic rectangular signal
and uncorrelated noises is investigated by using the
theory of signal-to-noise (SNR) in the adiabatic limit.
The analytic expression of the SNR is obtained for
arbitrary signal amplitude without being restricted to
small amplitudes. The SNR is a nonmonotonic func-
tion of intensities of multiplicative and additive noises
and the noise intensity ratio R = D/Q, so stochastic
resonance exhibits in the bias monostable system. We
investigate the effect of any system parameter (such as
D,Q,R, r) on the SNR. It is shown that the SNR is
a nonmonotonic function of the static asymmetry r ,
also; the SNR is decreased when |r| is increased.
Moreover, the SNR is increased when the noise inten-
sity ratio R = D/Q is increased.
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1 Introduction

Stochastic resonance (SR) is one of the most stud-
ied and utilized fundamental physical phenomenon
and has already been observed in experimental stud-
ies. The original work on SR is mentioned by Benzi
et al. [1] for explaining the periodic recurrences of
the earth’s ice ages. The study of stochastic resonance
in bistable system with several periodic forces has at-
tracted great attention [2–5]. Landa and McClitock [2]
found the vibrational resonance in an over-damped
bistable system only subject to two periodic fields.
Gitterman [3] developed the theoretical results of a
bistable oscillator driven by two periodic forces. Grig-
orenko et al. [5] investigated the response of a bistable
system with a frequency mixing force. Strier et al. [6]
presented an analytical study of the enhancement of
the signal-to-noise ratio (SNR) in a monostable non-
harmonic potential. They made use of the exact ex-
pression for the diffusion for propagator obtained in a
previous work, and found a monotonically increasing
response with the noise amplitude. For the first time,
they provided a cut-off to such an increase, which pre-
vents a probability leakage out of the system. Conven-
tional SR is a nonlinear effect that accounts for the
optimum response of a dynamical system to an exter-
nal force at certain noise intensity. The SR in a broad
sense means the nonmonotonic behavior of the out-
put signal as a function of some characteristics of the
noise (noise intensity or noise correlation time) or of a
periodic force (amplitude or frequency).
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There are a lot of monostable systems [7–15] in
actual systems, including chemical, electronic, phys-
ical, and biological systems. These systems have been
widely studied in theory and experiment. Dykman et
al. [7] and Evstigneev et al. [9] investigated the SR
in a monostable over-damped system based on linear
response theory. Stocks et al. investigated the zero-
dispersion stochastic resonance in a monostable sys-
tem [14, 15], for which the dependence of eigen-
frequency upon energy has an extremum. It is well
known that multiplicative noise is more familiar in
real physical systems and often plays a different role
on the output of a system, with respect to the addi-
tive noise. Therefore, the investigation of the response
of a monostable system driven by multiplicative noise
is of great significance. In this paper, based on adia-
batic approximation theory, we study the SR in a bias
monostable system driven by a periodic rectangular
signal and uncorrelated noises.

2 The monostable system and its signal-to-noise
ratio

Consider an over-damped monostable system [8]
driven by a periodic rectangular signal and uncor-
related noises described by the following Langevin
equation:

ẋ = −ax3 + xξ(t) + η(t) + AG(t) + r, (1)

where a > 0 is a system parameter, and r is a constant
force, denoting the bias of the monostable system. The
multiplicative colored noise ξ(t) and additive white
noise η(t) are uncorrelated with the following statis-
tical properties:
〈
ξ(t)

〉 = 〈
η(t)

〉 = 0,
〈
ξ(t)ξ

(
t ′
)〉 = 2Dδ

(
t − t ′

)
,

〈
η(t)η

(
t ′
)〉 = 2Qδ

(
t − t ′

)
,

〈
ξ(t)η

(
t ′
)〉 = 〈

η(t)ξ
(
t ′
)〉 = 0.

(2)

Here, D and Q describe the intensity of multiplicative
and additive noise.

The periodic rectangular signal G(t) with period T

is given by

G(t + T ) = G(t) =
{

1, 0 < t ≤ T/2,

−1, T /2 < t ≤ T .
(3)

According to (1) and (2), the corresponding Fok-
ker–Plank equation of the monostable system, (1) can
be written as

∂ρ(x, t)

∂t
= − ∂

∂t

[
F(x, t)ρ(x, t)

]

+ ∂2

∂x2

[
B(x)ρ(x, t)

]
, (4)

where

F(x, t) = Dx − ax3 + AG(t) + r,

B(x) = Dx2 + Q.
(5)

We assume that external force is so small that there
is enough time to reach the local equilibrium during
the period of external force, i.e., we make the assump-
tion that the system satisfies the adiabatic approxima-
tion condition [16]. The asymptotic long-time distrib-
ution function can be derived from (3) and (4) in the
adiabatic limit, i.e.,

ρ(x, t) = N

[B(x)] 1
2

exp

[
−V (x)

D

]
, (6)

where N is normalization constant, and V (x) is the
rectified potential function, which has the form

V (x) =
∫ x

−∞
D(−U ′(x) + AG(t) + r)

B(x)
dx

= −a

2
x2 + D2 + aQ

2D
ln

(
Dx2 + Q

)

+ √
D/Q

(
r + AG(t)

)
arctan

(√
D/Q

)
, (7)

with U ′(x) = dU
dx

= ax3 − Dx.
From (6) and (7), one can see that, for the case of

D �= 0, i.e., in the presence of multiplicative noise,
the monostable system (1) can thus be regarded as
an equivalent bistable system, i.e., corresponding to
the so-called two-state model [16], with xu = 0 and
x± = ±√

D/a being the unstable and stable states
of the equivalent bistable system. Under the adiabatic
limit condition, the transition rates out of x± can be
obtained by

W±(t) = |[U ′′(xu)U
′′(x±)]| 1

2

2π

× exp

[
−V (xu) − V (x±)

D

]

= N0 exp
[∓p ∓ qG(t)

]
, (8)
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where N±0 denotes the characteristic switching fre-
quency of the equivalent bistable system when it is
only driven by multiplicative and additive noise, which
is given

N0 = D√
2π

exp

[
− (D + a/R) ln(DR/a + 1) − D

2D

]
,

(9)

with

p = r
√

R arctan(
√

DR/a)

D
,

q = A
√

R arctan(
√

DR/a)

D
,

R = D

Q
.

(10)

The occupation probabilities n± of the equivalent
bistable system satisfy the following master equation:

dn+
dt

= W+p+ + W−p−,

dp−
dt

= W+p+ − W−p−.

(11)

Under the adiabatic limit, the timescale for the tran-
sients between the two stable states is much longer
than the timescale of intrawall relaxation, then the so-
lution of (11) is given as

n+(t) = W−(t)

W−(t) + W+(t)
,

n−(t) = W+(t)

W−(t) + W+(t)
.

(12)

The following formula is valid for the arbitrary
function f ,

f
[
α + βG(t)

] = 1

2

[
f (α + β) + f (α − β)

+ G(t)
(
f (α + β) − f (α − β)

)]
.

(13)

By using formula (13) and combing with the
method in [17, 18], the expression of the correlation
function has the following form:

K(t) = B2(p, q)
〈
G(t)G(0)

〉 + C(p,q)δ(t), (14)

where

〈
G(t)G(0)

〉 = 4

π2

∞∑

k=0

(2k + 1)−2

× exp
[−i(2k + 1)Ωt

]
,

B2(P,Q) = D

4a

(
tanh(p + q) − tanh(p − q)

)2
,

C(p,q) = S1(0) = D

2aN0

(
1

cosh3(p + q)

+ 1

cosh3(p − q)

)
,

Ω = 2π

T
.

(15)

By using the Fourier transform of the autocorrela-
tion function, we can get the expression of the power
spectrum

S(ω) = S1(0) + S2(ω), (16)

where

S1(0) = C(p,q),

S2(ω) = B2(p, q)
8

π

∞∑

k=0

(2k + 1)−2

× δ
[
ω − (2k + 1)Ω

]
.

(17)

So the SNR can be defined as

SNR = 8

π

B2(p, q)

C(p,q)
. (18)

The formula (18) is derived in the adiabatic limit
under the condition q � 1 is satisfied, so the B2(P,Q)

and C(p,q) can be approximated as follows:

B2(p, q) = D

4a

(
sinh(p + q)

cosh(p + q)
− sinh(p − q)

cosh(p − q)

)2

= D

4a

(
sinh(2q)

cosh(p + q) cosh(p − q)

)2

≈ D

4a

(
2q

cosh2(p)

)2

, (19)

C(p,q) ≈ D

aN0

1

cosh3(p + q)
. (20)
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Then the SNR can be simplified as

SNR = 8

π

N0q
2

cosh(p)
, (21)

where the p and q have been defined earlier.

3 Discussion and conclusion

We discuss the influences of the multiplicative noise
intensity D, additive Gaussian white noise intensity

Fig. 1 Signal-to-noise ratio SNR as a function of multiplicative
noise intensity D with different values of the parameter r for
a = 1,A = 0.1,Q = 2

Fig. 2 Signal-to-noise ratio SNR as a function of additive
noise intensity Q with different values of the parameter r for
a = 1,A = 0.1,D = 1

Q, noise intensity ratio R, and static asymmetry r on
the SNR using (18). For simplicity, we plot the curves
in Figs. 1–4 in the case of r > 0.

The effects of the multiplicative noise intensity D

on the SNR with different values of r are illustrated
in Fig. 1. There is a single peak in the curves and SR
appears. The peak becomes lower and the position of
the peak shifts to the left with increase of the static
asymmetry r .

In Fig. 2, the curve of SNR versus the additive
Gaussian white noise intensity Q with different val-
ues of r exhibits a maximum and SR exists for this

Fig. 3 Signal-to-noise ratio SNR as a function of noise ratio R

with different values of the parameter r for a = 1, A = 0.05,
D = 1

Fig. 4 Signal-to-noise ratio SNR as a function of the static
asymmetry r with different values of the parameter R for a = 1,
A = 0.1, D = 1
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case. The position of the peak shifts to the right with
the increase r . From Fig. 1 and Fig. 2, we can see the
effects of the multiplicative noise intensity D and the
additive noise intensity Q are different on the SR. The
SR appears when Q is larger but D is smaller.

In Fig. 3, the SNR is shown as a function of the
noise intensity ratio R = D/Q for different values
of r . The curve exhibits a pronounced single peak
and SR appears on the R-SNR parameter plane. When
asymmetry r is increased, the peak becomes lower and
the position of the peak moves to the left, which is con-
sistent with the result of [19].

The effects of the static asymmetry on the SNR
is given in Fig. 4. We can see the SNR is decreased
when |r| is increased. Which is consistent with the re-
sult of [18, 19]. Meanwhile, we can see the SNR is
increased when the noise intensity ratio R = D/Q is
increased.
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