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Abstract This paper is concerned with the analysis
of motion of a gas bubble in a uniformly oscillating
incompressible fluid. A theoretical model explaining
the effect of sinking of gas bubbles in the absence of
a standing pressure wave is validated experimentally.
The conditions under which this effect occurs are de-
termined, and a simple formula is derived for the aver-
age velocity of a gas bubble in the fluid.

Keywords Compressible bubble · Sinking
conditions · Incompressible viscous fluid · Uniform
oscillations · Average velocity

Introduction

The motion of a gas bubble in an oscillating fluid is of
essential interest for flotation theory and for a whole
number of other technological processes.

In papers [1–5] it was shown that gas bubbles can
sink and heavy particles can rise in the standing wave
field in a fluid. An overview of these papers and a de-
tailed description of the authors’ own results are given
in the monograph [5]. The solution of the problem
for nondeformable particle using the concept of vibra-
tional mechanics and the method of direct separation
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of motions was provided in paper [4]. According to
this work, a necessary condition for the arising of the
effects is the presence of a standing wave, which for
corresponding relatively low excitation frequencies is
possible only in a gas-saturated fluid. The effect of gas
bubbles sinking in such a fluid was experimentally ob-
served and described in papers [4, 6].

Papers [7–10] are devoted to the analysis of motion
of a solid and deformable particle in a uniformly os-
cillating fluid. It was shown that the average velocity
of “heavy” particle sinking and gas bubble rising can
significantly reduce due to the nonlinear character of
the resistance force at large Reynolds numbers. This
fact is confirmed by experiments [11, 12].

The motion of small (“before resonant”) bubbles in
an oscillating incompressible fluid was examined by
Bleich [13], who obtained an expression for the criti-
cal depth, which does not allow for fluid viscosity, and
experimentally confirmed the possibility of gas bubble
sinking starting from this depth. However, Bleich did
not solve the rather complicated differential equation
of gas bubble motion considering resistance forces,
and so he did not obtain an expression for its average
velocity; the experimental part of the research is also
rather partial.

The present study appreciably supplements results
of the papers [13] and [4]. The supposition that the
effect of gas bubble sinking in a vertically oscillat-
ing fluid-filled volume can occur in the absence of
the standing wave, which is conditional on the gas–
fluid medium compressibility, i.e. in a fluid without
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Fig. 1 Model of a bubble in a fluid

other bubbles, is confirmed by theoretical and exper-
imental research. In this case sinking takes place due
to the deformability of the bubble under the action of
fast-varying pressure caused by oscillations and pro-
portional to the mass of the fluid column placed above
the bubble. An approximate expression for the average
velocity of gas bubble motion in a fluid, which consid-
erably depends on the depth of its submergence and on
vibration parameters, is also derived in this paper.

Thereby, at present two different mechanisms, two
explanations of the effect of gas bubbles sinking in
a vertically oscillating fluid-filled volume were pro-
posed: “wave” and “nonwave,” “vibrational.” For the
first explanation a key factor is the gradient of the wave
amplitude, while for the second it is the compressibil-
ity of the bubble. In both cases gas bubble sinking is
possible only starting from some critical depth X0; the
presence of gas bubbles at this depth can be caused
by emergence of the turbulent fluid-gas layer [14] near
the fluid surface. The relatively complicated joint con-
sideration of these mechanisms is the subject of future
analysis.

1 Model system

The motion of a bubble in a harmonically oscillating
with amplitude A and frequency ω fluid-filled volume
is analyzed (Fig. 1). The fluid is considered to be in-
compressible and oscillating uniformly. The height of
the fluid column is designated as H0.

In our analysis we take into account bubble vol-
ume pulsations caused by the influence of the vary-
ing pressure, which is exerted on the bubble due to the
fluid oscillations. These pulsations are considered to

be isothermal and quasistatic; i.e., the following con-
dition is fulfilled:

PtVb = PeVb0 = const (1)

where Vb is the current volume of the bubble, Vb0 is
the volume of the bubble near the free surface of the
fluid, Pe is the external pressure, which in the simplest
case is equal to the atmospheric pressure P0,

Pt = Pe + ρx
(
g + Aω2 sinωt

)
(2)

is the current value of the fluid pressure exerted on the
bubble, x is the coordinate of the center of the bub-
ble, counted off from the free surface, ρ is the density
of the fluid, and g is gravitational acceleration. For
the fulfillment of the assumption that bubble volume
pulsations are quasistatic, it is necessary for the fre-
quency ω to be sufficiently smaller (practically three
times smaller) than the frequency λ of its free radial
oscillations. This supposition is fulfilled for bubbles
with radius R < 2 cm at frequencies ω < 280 1/c [4]
(see Sect. 5).

From equalities (1) and (2) we obtain

Vb = PeVb0

Pe + ρx(g + Aω2 sinωt)
(3)

The following inequality is assumed to hold:

(
ρH0(g + Aω2)

Pe

)2

� 1 (4)

i.e., the value of the external pressure is much greater
than the sum of the hydrostatic pressure and the pres-
sure caused by inertial forces at the bottom of the vol-
ume x = H0. For example, for Pe = P0 = 105 Pa and
Aω2 = 14 g, H0 = 0.2 m we obtain ρH0(g + Aω2) =
0.2 · 15 · 104 = 3 · 104 Pa, and (ρH0(g +Aω2)/Pe)

2 =
0.09. We note that assumption (4) is optional, though it
simplifies the analytical research significantly; in nu-
merical experiments it can be omitted.

So expression (3) can be written in the form

Vb = Vb0

1 + ρx
Pe

(g + Aω2 sinωt)

≈ Vb0

[
1 − ρxg

Pe

(
1 + Aω2

g
sinωt

)]
(5)

Introducing the nondimensional small parameter

γ = ρH0g

Pe
� 1 (6)
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and load coefficient

w = Aω2

g
(7)

expression (5) for the current volume of the bubble
transforms to the form

Vb = Vb0

(
1 − γ

x

H0
− γ

x

H0
w sinωt

)
(8)

In the present paper the motion of the bubble is an-
alyzed in the presence of the high intensity vibration
w � 1.

Due to the employed assumption (4), the fluid pres-
sure at the bottom of the volume is always positive

Pd = Pe + ρH0
(
g + Aω2 sinωt

)
> 0 (9)

i.e., cavitations cannot occur.
The following expression for instantaneous radius

of the bubble can be derived from equality (8), with
correlation (6) taken into account:

R = R0

(
1 − γ

3

x

H0
− γ

3

x

H0
w sinωt

)
(10)

where R0 = 3
√

3
4π

Vb0 is the radius of the bubble near
the free surface of the fluid.

2 Governing equation

The equation of the gas bubble motion has the follow-
ing form:

(m + m0)ẍ + ṁ0ẋ

= −F(ẋ) + (m − ρVb)
(
Aω2 sinωt + g

)
(11)

Here m is the mass of the bubble (particles attached
to the bubble), which is usually much smaller than
the mass of the fluid in its volume. When this condi-
tion is fulfilled, the Archimedes force is much greater
than the weight of the bubble (particles attached to the
bubble), so it rises in the absence of vibration. m0 is
the added mass of the fluid, defined by the formula
m0 = χVbρ, where χ is an added mass coefficient,
with the magnitude of χ = 1/2.

In (11) the term ṁ0ẋ corresponds to the additional
force caused by added mass variations [21]. F(ẋ) des-
ignates the resistance force to the gas bubble motion.

In the general case this force is defined by the follow-
ing expression [11, 12, 16]:

F(ẋ) = 4ρR2Ψ (Re)ẋ2sgnẋ (12)

Here, as above, ρ is the density of the fluid, R is the
radius of the bubble, and Ψ (Re) is the resistance coef-
ficient, whose dependence on the Reynolds number

Re = 2ρRV/μ (13)

is given by the classical Rayleigh diagram [7, 12, 16].
In expression (13) μ is the dynamic viscosity of the
fluid, and V is the velocity of the gas bubble motion.
Formulas (12) and (13), strictly speaking, correspond
to the case of motion with constant velocity. However
in problems similar to that concerned here, the veloc-
ity ẋ varies significantly during one period of oscil-
lation. So, for such problems questions about the ap-
plicability of expression (12), and about the magni-
tude of the velocity V , which should be used to deter-
mine the Reynolds number, are stated (see, for exam-
ple, [17–19]). As concerns expression (12), it is em-
ployed frequently in the case of variable velocity ẋ

(the stationarity hypothesis), sometimes (in the case
of large Reynolds number Re) with the linear term
being added [18]. There are no precise recommen-
dations about the value of the velocity V in expres-
sion (13). In the present paper the velocity V means
the period average velocity of the gas bubble motion.
The corresponding Reynolds number is considered to
be “large” (Re > 1000), but is less than the Reynolds
number corresponding to the crisis of the flow around,
Re ≈ 2 · 105. Under this assumption, according to the
Rayleigh diagram, the resistance coefficient can be
considered to be approximately constant:

Ψ (Re) ≈ 0.2 ≡ Ψ∞

3 Solution by the method of direct separation of
motions

3.1 Equations of “fast” and “slow” motions

Employing the expression (8), the equation of the gas
bubble motion (11) can be written in the form

(
D0(x) + D1(x) sinωt

)
ẍ

+ (
E0(ẋ) + E1(ẋ) sinωt + G1(x) cosωt

)
ẋ
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= −F(ẋ) + C0(x) + C1(x) sinωt

+ C2(x) sin2 ωt (14)

where

C0(x) =
[
m − ρVb0

(
1 − γ

x

H0

)]
g

C1(x) =
[
m − ρVb0

(
1 − 2γ

x

H0

)]
Aω2

C2(x) = ρVb0γ
x

H0
wAω2

D0(x) = m + χρVb0

(
1 − γ

x

H0

)

D1(x) = −γwχρVb0
x

H0

E0(ẋ) = −γχρVb0
ẋ

H0

E1(ẋ) = −γwχρVb0
ẋ

H0

G1(x) = −γwχρVb0ω
x

H0

For the solution of the problem we use the concept
of vibrational mechanics and the method of direct sep-
aration of motions [20], and we seek solutions to (14)
in the form

x = X(t) + ψ(t, τ )

where X is “slow” and ψ is “fast”, 2π periodic in di-
mensionless (“fast”) time, τ = ωt variable, with aver-
age zero:

〈
ψ(t, τ )

〉 = 0,

where for any h = h(t, τ ), T = 2π the periodic in τ ,
we define 〈h(t, τ )〉 = 1

T

∫ T

0 hdτ .
The following equations for the new variables X

and ψ are obtained:

(m + m01)Ẍ − γ · m01

(
X

H0
Ẍ + 〈ψψ̈〉

H0

+ w

(
X

H0
〈ψ̈ sinωt〉

+ 〈ψ sinωt〉
H0

Ẍ + 〈ψ̈ψ sinωt〉
H0

))

− γ · m01

(
Ẋ2 + 〈ψ̇2〉

H0
+ 2

Ẋ

H0
w〈ψ̇ sinωt〉

+ X

H0
wω〈ψ̇ cosωt〉 + Ẋ

H0
wω〈ψ cosωt〉

)

= −〈
F(Ẋ + ψ̇)

〉 + (m − ρVb0)g

+ γ · ρVb0

(
X

H0
g + Aω2

H0
〈ψ sinωt〉

+ w

(
X

H0

Aω2

2
+ 〈ψ sin2 ωt〉

H0
Aω2

+ 〈ψ sinωt〉
H0

g

))
(15)

and

(m + m01)ψ̈ − γ · m01

(
X

H0
ψ̈ + ψ

H0
Ẍ

+ ψψ̈ − 〈ψψ̈〉
H0

+ w

(
X

H0

(
(Ẍ + ψ̈) sinωt − 〈ψ̈ sinωt〉)

+ Ẍ

(
ψ sinωt

H0
− 〈ψ sinωt〉

H0

)

+ ψψ̈ sinωt

H0
− 〈ψψ̈ sinωt〉

H0

))

− γ · m01

(
2Ẋ

H0
ψ̇ + ψ̇2 − 〈ψ̇2〉

H0

+ (Ẋ + ψ̇)2

H0
w sinωt − 2

Ẋ

H0
w〈ψ̇ sinωt〉

+ (X + ψ)

H0
(Ẋ + ψ̇)wω cosωt

− X

H0
wω〈ψ̇ cosωt〉 − Ẋ

H0
wω〈ψ cosωt〉

)

= −F(Ẋ + ψ̇) + 〈
F(Ẋ + ψ̇)

〉

+ (m − ρVb0)Aω2 sinωt

+ γ · ρVb0

(
X

H0
Aω2 sinωt + ψ

H0
g

+ Aω2

H0

(
ψ sinωt − 〈ψ sinωt〉)

+ w

(
X + ψ

H0
sinωt

(
Aω2 sinωt + g

)
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− X

H0

Aω2

2
− 〈ψ sin2 ωt〉

H0
Aω2 − 〈ψ sinωt〉

H0
g

))

(16)

where m01 = χρVb0 is the added mass of the fluid near
its free surface.

The equation of “slow” motions (15) is simpli-
fied using correlation (6), inequalities w � 1, A

H0
�

1,
ψ
H0

� 1 and neglecting relatively small terms. So
this equation is written in the form

(m + m01)Ẍ − γ · m01w
X

H0

(〈ψ̈ sinωt〉

+ ω〈ψ̇ cosωt〉)

= −〈
F(Ẋ + ψ̇)

〉 + (m − ρVb0)g

+ γ · ρVb0w
X

H0

Aω2

2
(17)

The essential advantage of the method of direct sep-
aration of motions is the possibility to solve equations
of “fast” motions in an approximate manner, if, as is
typical, the equation of “slow” motion is the one of
primary interest. In the considered case all terms with
the factor γ · w(which is assumed to be much less
than unity) can be neglected, because they are small
in comparison with (m − ρVb)Aω2 sinωt . As a result,
the equation of “fast” motions (16) is simplified:

(m + m01)ψ̈ = −F(Ẋ + ψ̇) + 〈
F(Ẋ + ψ̇)

〉

+ (m − ρVb0)Aω2 sinωt (18)

As was noted above, in this paper we consider the case
of high intensity vibration w � 1. Thus, we assume
that the condition |ψ̇ | � |Ẋ| holds; i.e., the “fast”
component of the velocity is much greater than the
“slow” component for almost all values of the “fast”
time τ (verification of this assumption is provided in
Sect. 5.1. For some values of τ ψ̇ is equal to zero).
Hence, sgn(Ẋ + ψ̇) = sgnψ̇; from the expression (12)
with correlation (10) taken into account we obtain (all
terms of higher order of smallness were neglected)

−F(Ẋ + ψ̇) = −4ρR2
0Ψ∞

(
ψ̇2 + 2Ẋψ̇

− 2

3
γ

X

H0
wψ̇2 sinωt

)
sgnψ̇ (19)

In expression (19) the first term is much greater than
the rest (|ψ̇ | � |Ẋ| and γ · w � 1). So, using this ex-

pression and neglecting relatively small terms, we ob-
tain the equation of “fast” motions in the form

(m + m01)ψ̈ = −4ρR2
0Ψ∞

(
ψ̇2sgnψ̇ − 〈

ψ̇2sgnψ̇
〉)

+ (m − ρVb0)Aω2 sinωt (20)

Note that in the considered problem the resistance
force should be taken into account when solving the
equation of “fast” motions, because it considerably af-
fects the total results.

3.2 The solution of the equation of “fast” motions

An approximate solution of the equation of “fast” mo-
tions (20) is sought by the method of harmonic balance
in the form

ψ = B sin(ωt + ϕ) (21)

where B and ϕ are constants. Hence, we have
〈
ψ̇2sgnψ̇

〉 = 0

Placing expression (21) into (20), we multiply it by
sin(ωt +ϕ), and then by cos(ωt +ϕ). Integrating over
period T = 2π/ω, we obtain equalities

− (m + m01)B

2
= (m − ρVb0)A

cosϕ

2
(22)

0 = − 16

3π
ρR2

0Ψ∞B2 − (m − ρVb0)A
sinϕ

2
(23)

As a result, the amplitude B of bubble “fast” oscil-
lations can be determined from the equation

(
16

3π

)2

ρ2R4
0Ψ 2∞B4 + (m + m01)

2

4
B2

− (m − ρVb0)
2

4
A2 = 0 (24)

the positive solution of which has the form

B2 = 2(m − ρVb0)
2A2

(m + m01)2 +
√

(m + m01)4 + 163

9π2 (m − ρVb0)2ρ2R4
0Ψ 2∞A2

(25)

Employing the condition m � ρVb0, expression (25)
can be transformed into the form

B2 = 2A2

χ2 +
√

χ4 + 162

π4 Ψ 2∞ A2

R2
0

(26)
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Taking into account correlation (25), the following
expression for sinϕ can be derived from (23):

sinϕ = 64

3π

ρR2
0Ψ∞A

ρVb0 − m

· 1

(
m+m01
ρVb0−m

)2 +
√

(
m+m01
ρVb0−m

)4 + ( 64
3π

ρR2
0Ψ∞A

ρVb0−m
)2

(27)

which for m � ρVb0 is simplified as follows:

sinϕ = 16

π2

Ψ∞
χ2

A

R0
· 1

1 +
√

1 + ( 16
π2

Ψ∞
χ2

A
R0

)2
(28)

To compose the equation of “slow” motions (17)
it is necessary to define expression 〈ψ̈ sinωt〉 and ex-
pression 〈ψ̇ cosωt〉. But 〈ψ̈ sinωt〉 = −ω2B

cosϕ
2 , and

〈ψ̇ cosωt〉 = ωB
cosϕ

2 . Hence, we obtain

〈ψ̈ sinωt〉 + ω〈ψ̇ cosωt〉 = 0 (29)

3.3 Determination of the effective resistance force to
gas bubble motion

Employing correlation (29), we obtain the equation of
“slow” motions (17) in the form

(m + m01)Ẍ + 〈
F(Ẋ + ψ̇)

〉

= γ · ρVb0w
X

H0

Aω2

2
− (ρVb0 − m)g (30)

To define the range of parameters at which the gas
bubble will sink in the fluid, it is necessary to deter-
mine the period T = 2π/ω average value of the resis-
tance force 〈F(Ẋ + ψ̇)〉. Using correlation (19) and
taking into account that 〈ψ̇2sgnψ̇〉 = 0, the following
expression for this value is obtained:

〈
F(Ẋ + ψ̇)

〉 = 4ρΨ∞R2
0

(
2Ẋ〈ψ̇sgnψ̇〉

− 2

3
γ

X

H0
w

〈
ψ̇2sgnψ̇ sinωt

〉)
(31)

Employing solution (21) of the equation of “fast” mo-
tions, we get

〈ψ̇sgnψ̇〉 = 2

π
Bω

〈
ψ̇2sgnψ̇ sinωt

〉 = −4 sinϕ

3π
B2ω2

(32)

Thereby, expression (31) transforms into the form

〈
F(Ẋ + ψ̇)

〉 = 16

π
ρΨ∞R2

0ẊBω

+ 32Ψ∞
9π

ρR2
0γw

X

H0
B2ω2 sinϕ (33)

The presence of the second term in this expression
is conditioned on the compressibility of the bubble;
i.e., if we did not take compressibility into account,
then we would obtain the following expression for the
average value of the resistance force:

〈
F(Ẋ + ψ̇)

〉
n

= 16

π
ρΨ∞R2

0ẊBω (34)

The second term in expression (33) can be trans-
formed using correlation (23):
〈
F(Ẋ + ψ̇)

〉 = 〈
F(Ẋ + ψ̇)

〉
n

+ γw2(ρVb0 − m)g
X

H0

sin2 ϕ

3
(35)

where sinϕ is defined by formula (27).

3.4 The condition of gas bubble sinking

Employing expression (35) for the period average
value of the resistance force, the equation of “slow”
motions (30) can be written in the form

(m + m01)Ẍ + 〈
F(Ẋ + ψ̇)

〉
n

= γ · w2 ρVb0g

2

X

H0

(
1 − 2

3

(
1 − m

ρVb0

)
sin2 ϕ

)

− (ρVb0 − m)g (36)

We transform this equation, using expression (28)
and taking into account that m � ρVb0:

m01Ẍ + 〈
F(Ẋ + ψ̇)

〉
n

= γ · w2 X

H0

ρVb0g

2

×
(

1 − 2

3

θ A2

R2
0

2(1 +
√

1 + θ A2

R2
0
) + θ A2

R2
0

)
− ρVb0g

(37)

Here the coefficient θ = 162

π4
Ψ 2∞
χ4 ≡ 1.68. (We recall

that χ = 1/2, and Ψ∞ = 0.2.)
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The range of parameters at which the gas bubble
sinks (or rises) in the fluid can be determined from the
form of (37). Indeed, if the expression written on the
right side of this equation has a positive value, then
the bubble sinks after a certain period of time, which
depends on its initial velocity; if it is negative, then the
bubble rises. So the condition of gas bubble sinking
can be written in the form

γ · w2 X

H0

1

2

(
1 − 2

3

θ A2

R2
0

2(1 +
√

1 + θ A2

R2
0
) + θ A2

R2
0

)
> 1

(38)

The “slow” variable X is presented on the left side
of inequality (38), so the fulfillment of the condition
of gas bubble sinking depends on its current position
in the fluid. In other words, if the bubble is situated in
the position with coordinate X > X0, then it will sink;
if it is in the position X < X0, then it will rise. That
is, the gas bubble sinking in fluid occurs only from a
certain depth X0. The value of X0 is determined from
the expression

X0 = 2H0

γ · w2
·

2(1 +
√

1 + θ A2

R2
0
) + θ A2

R2
0

2(1 +
√

1 + θ A2

R2
0
) + θ

3
A2

R2
0

(39)

from which we can see that for any magnitudes of
parameters X0 is positive. If X0 > H0, then gas bub-
bles rise throughout the whole volume. The case when
X0 < H0 seems to be the most interesting—bubbles
situated lower than a certain level sink; those situated
higher rise.

For example, when the external pressure Pe is equal
to the atmospheric pressure Pe = P0 = 105 Pa and
the height of the fluid column in the volume is equal
to H0 = 0.16 m, the small parameter γ is equal to
γ = 0.016. The volume of the bubble is considered to
be equal to Vb0 = 0.1 ·10−6 m3 (radius R0 = 2.9 mm).
The amplitude of the external force is assumed to be
equal to A = 6.5 mm, and the frequency ω = 170 1/s.
Then the load coefficient is equal to w = 19. Us-
ing expression (39) for X0 we obtain X0 = 0.54H0;
i.e., bubbles situated in the positions with coordi-
nates H0 > X > 0.54H0 will sink in the fluid. We
note that in this case condition (4) holds, because
(ρH0(g + Aω2)/Pe)

2 = 0.1. For the frequency of the

Fig. 2 Dependences of w∗ on η for several magnitudes of the
threshold depth

external excitation ω = 195 1/s and the same val-
ues of the rest parameters from expression (39), we
obtain X0 = 0.31H0 (in this case (ρH0(g + Aω2)/

Pe)
2 = 0.17).
According to (39) the value of the ratio X0

H0
depends

on two parameters: w∗ = γ ·w2, the characteristic load
parameter, and η = A

R0
, the ratio of the excitation am-

plitude to the radius of the bubble. The dependences
of w∗ on η for several magnitudes of the ratio X0

H0
, i.e.,

the threshold depths starting from which gas bubble
sinking occurs, are shown in Fig. 2.

For the magnitudes of the parameters w∗ and η

from the area situated below the curve corresponding
to X0

H0
= 1, gas bubble sinking does not occur, and be-

low the curve corresponding, for example, to X0
H0

= 0.5
sinking occurs only for X > 0.5H0, i.e., starting from
half of the volume depth.

According to the analytical research, gas bubble
sinking takes place due to its volume pulsations caused
by the influence of the varying pressure, i.e., due to
its deformability. We note that pressure pulsations,
and therefore bubble volume pulsations, depend on the
depth of its submergence x; i.e., the deeper the bubble,
the greater the amplitudes of these pulsations. That is
why gas bubble sinking occurs only from some cer-
tain depth, starting from which its volume pulsations
become sufficient for the emergence of the effect.

4 The solution of the equation of “slow” motion

In this section we will find solutions of the equation of
“slow” motion (37). Employing expression (34), (37)
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can be transformed into the form

m01Ẍ + 16

π
ρΨ∞R2

0ẊBω

= γ · w2 X

H0

ρVb0g

2

×
(

1 − 2

3

θ A2

R2
0

2(1 +
√

1 + θ A2

R2
0
) + θ A2

R2
0

)
− ρVb0g

(40)

Assuming that the “slow” gas bubble acceleration
Ẍ is small, for the velocity of its “slow” motion we
determine the following approximate expression:

Ẋ ≈ v

(
X

X0
− 1

)
(41)

where v = π2

12·Ψ∞
R0
B

g
ω

, and X0 is defined by expres-
sion (39). Actually, v is the absolute value of the
“slow” levitation velocity of a rigid bubble; i.e., if we
had not take into account pulsations of gas bubble vol-
ume, then we would obtain the value v for the “slow”
velocity of its levitation. It may be concluded that the
compressibility influence on the velocity of “slow” gas
bubble motion is approximately reduced to the pres-
ence of the term v X

X0
in expression (41) for this veloc-

ity.
As is seen from expression (41), the velocity of

gas bubble sinking (or rising) depends on the coordi-
nate X; for the critical value X = X0 this velocity is
equal to zero.

5 Discussion of the analytical results

5.1 Verification of the assumptions used in the
analysis

Here we discuss the main assumptions employed in
our analysis.

The condition that gas bubble volume pulsations
are quasistatic, i.e., the condition of infinitesimality of
the frequency ω in comparison with the frequency λ of
its free radial vibrations, has the following form [15]:

ω � 1

R0

√
3Pe

ρ
(42)

We consider the frequencies ratio ω
λ

< 1
3 to be suffi-

cient; then via characteristic parameters w∗ and η con-
dition (42) can be written in the form

4
√

w∗ · √A < K0 · η, (43)

where K0 =
√

Pe
3ρg

· 4
√

γ .

The assumption about the quasistatic nature is ful-
filled, because even for bubbles with diameter 4 cm
situated in water at external pressure equal to the at-
mospheric pressure, the value of the frequency of ra-
dial free vibrations λ exceeds 850 1/s. At the same
time the considered excitation frequencies are less
than 250 1/s, and the gas bubble diameters are less
than 3 cm.

Solving the equation of gas bubble motion by the
method of direct separation of motions, we have as-
sumed that |Ẋ| is small compared with the amplitude
of the velocity of gas bubble “fast” oscillations Bω.
Here we verify this assumption. The “slow” velocity
of gas bubble motion Ẋ is defined by formula (41). So
the ratio of the amplitude Bω to the absolute value of
the “slow” velocity of the bubble is equal to

ξ = X0Bω

v|X − X0| , (44)

but Bω
v

� 1, therefore ξ � 1 for all magnitudes of X;
i.e., the considered assumption really holds. For exam-
ple, for the frequency ω = 195 1/s and the same mag-
nitudes of the rest of the parameters as used in Sect. 3,
we obtain Bω

v
= 26.7.

5.2 On the influence of gas bubble compressibility

As determined in Sect. 4, the influence of the com-
pressibility of the bubble on the velocity of its “slow”
motion is reduced to the term v X

X0
, where v is the ab-

solute value of the velocity of rigid bubble levitation.
When inequality H0

X0
� 1 holds true, term v X

X0
in ex-

pression (41) can be neglected, because in that case
v X

X0
� v. Hence, one may conclude that the influence

of gas bubble compressibility on its motion is weak
when condition H0

X0
� 1 holds true; as a matter of fact,

in that case the bubble can be considered as nonde-
formable. We assume the value H0

X0
= 0.1 to be suffi-

cient. Then the condition of gas bubble nondeforma-
bility, with expression (39) for X0 taken into account,
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Fig. 3 Dependence of w∗ on η corresponding to the condi-
tion of gas bubble nondeformability; shaded area is the area
of non-fulfillment of quasistatic condition for A = 6.5 mm,
γ = 0.02, and Pe = P0 = 105 Pa

takes the form

2

γ · w2
·

2(1 +
√

1 + θ A2

R2
0
) + θ A2

R2
0

2(1 +
√

1 + θ A2

R2
0
) + θ

3
A2

R2
0

> 10. (45)

The influence of the surface tension also can be
a cause of gas bubble nondeformability. However,
this influence is substantial only for very small bub-
bles; for frequencies ω < 200 1/s it can be consid-
ered as small for bubbles with radius greater than
2 · 10−6 m [4].

As is seen, condition (45) depends on two charac-
teristic parameters, w∗ and η. A plot corresponding to
this condition is shown in Fig. 3; the shaded area in
the figure corresponds to the area for which condition
(43) for the quasistatic character of gas bubble volume
pulsations is not fulfilled for A = 6.5 mm, γ = 0.02,
and Pe = P0 = 105 Pa.

Thereby, for small magnitudes of the characteristic
load parameter w∗ < 0.2 the influence of gas bubble
compressibility on its motion turn out to be insignifi-
cant.

As seen from Fig. 3, the magnitude of the character-
istic load parameter w∗, which corresponds to the con-
dition of gas bubble nondeformability, increases when
parameter η is increased. Moreover, from expression
(39) it follows that value X0 at η = A

R0
→ ∞ is three

times greater than value X0 at η → 0. Thereby, it can
be concluded that the compressibility effect is more
significant for large bubbles than for small ones.

Thus, for very small bubbles, for which η = A
R0

→
∞, the compressibility effect can be considered as

negligibly small for values of the characteristic load
parameter w∗ < 0.6, and for large bubbles (η → 0),
for w∗ < 0.2.

For an amplitude of the external excitation equal
to A = 6.5 mm, bubbles of radius R0 = 2.9 mm can
be considered as nondeformable for characteristic load
parameter w∗ < 0.3.

6 Comparison with the results of direct numerical
integration

To verify the analytically obtained results, a numer-
ical experiment was conducted. The equation of gas
bubble motion (11) in view of expression (3) for its
volume and of expression (12) for the resistance force
was integrated directly by means of Mathematica 7,
and the obtained results were compared with the ana-
lytical solution.

We examine the motion of the system with the fol-
lowing parameters: Pe = P0 = 105 Pa, H0 = 0.16 m,
Vb0 = 0.1 ·10−6 m3 (R0 = 2.9 ·10−3 m), A = 6.5 mm,
ω = 195 1/s.

For these values of parameters using expression
(39) for X0, it is obtained that X0 = 0.31H0 (in this
case (ρH0(g +Aω2)/Pe)

2 = 0.17). It was derived an-
alytically that bubbles situated in the positions X > X0

sink in the fluid, and bubbles situated in the positions
X < X0 rise. Two numerical experiments were con-
ducted to verify these suppositions. In the first ex-
periment the motion of a bubble with initial position
X(0) = 0.25H0 was examined; in the second experi-
ment X(0) = 0.5H0. The corresponding dependences
of the coordinate of the center of the bubble on time
are shown in Fig. 4. The dashed line corresponds to
the “slow” component of the analytical solution (ex-
pression (41)), and the solid line to the numerical so-
lution.

In the numerical experiments the initial conditions
were determined with the obtained analytical results
taken into account, namely, expression (21) for the
“fast” variable ψ , and correlations x = X + ψ and
x(0) = X(0) + ψ(0,0). Thus, the following initial
conditions were employed when numerically integrat-
ing the equation of gas bubble motion (11):

x(0) = X(0) + B sinϕ

ẋ(0) = Bω cosϕ
(46)
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Fig. 4 The dependences of the coordinate of the center of the bubble on time: a initial position of the bubble X(0) = 0.25H0, b initial
position of the bubble X(0) = 0.5H0

in which parameters B and ϕ were determined accord-
ing to (26) and (28).

As is seen from Fig. 4, the analytically obtained
results are in good agreement with the results of di-
rect numerical integration: bubbles situated in the po-
sitions X > X0 = 0.31H0 sink, and those in the posi-
tions X < X0 rise. The analytical solution comprising
both “slow” and “fast” components virtually coincides
with the results of the numerical integration shown in
Fig. 4.

7 Comparison with the results of a natural
experiment

A series of experiments has been conducted on the uni-
versal vibrating stand of the Joint Laboratory of Vi-
brational Mechanics IPME RAS (Fig. 5) to verify the
analytically obtained results.

A vessel, which was almost full to the brim with
water (the height of the air column was 1–2 mm) and
closed by a plastic cover, was fastened on the stand.
The external pressure on the free surface of the water
was equal to the atmospheric pressure, and generation
of a large quantity of bubbles due to the emergence of
the turbulent coating surface [14] was prevented by the
small amount of air in the vessel. A deformable rubber
ball, filled with air, was attached to the bottom of the
vessel by a thread (Fig. 6a). The mass of the rubber
was negligibly small compared with the mass of the
water in the volume of the bubble; the influence of the

Fig. 5 The experimental setup

rubber tensile force on the pressure inside the ball can
also be neglected. Thus, such a ball can be considered
as the simplest gas bubble model.

The height of the water column in the vessel was
equal to 214 mm. The experiment was conducted for
balls with different diameters (from 12 mm to 30 mm)
and for different lengths of the thread, i.e., initial dis-
tances from the bottom of the vessel (from 33 mm to
170 mm). The amplitude of the external excitation was
fixed and equal to 4.3 mm. The frequency of the exter-
nal excitation was increased from 0 to 200 rad/s. In
every experiment it was observed that, as soon as the
frequency of excitation reaches a certain value ω∗, the
ball falls to the bottom of the vessel (Fig. 6b). Further
increasing of the frequency did not influence the ball’s
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Fig. 6 Sinking of the gas
bubble model (deformable
rubber ball) in the vibrating
vessel with water: a the ball
in the still vessel, b the ball
in the vibrating vessel after
the threshold frequency ω∗
is exceeded

position—it remained at the bottom of the vessel. De-
creasing of the frequency led to rising of the ball; i.e.,
it returned to the initial position. Thereby the theoret-
ical conclusion that the effect of gas bubble sinking
can occur in a uniformly oscillating fluid was entirely
confirmed by the experiment. We note that earlier this
effect was observed by S.S. Grigoryan and Y.L. Yaki-
mov in their experiments [22].

It was found that decreasing the initial distance
from the bottom of the vessel to the ball (the length of
the thread) as well as increasing the size of the ball led
to a decrease of the frequency ω∗. These results are in
good agreement with analytical predictions. The mag-
nitudes of the overloads necessary for the occurrence
of the effect of rubber balls sinking in the water were
slightly smaller than the magnitudes of the overloads
necessary for the occurrence of the effect of gas bub-
bles sinking in gas-saturated fluid [4, 6]. This fact con-
forms to the analytically revealed dependence of the
condition of sinking on the size of the bubble, because
the diameters of the balls used in the described exper-
iment considerably exceeded the diameters of the real
bubbles.

To verify the assumption that the effect of gas bub-
ble sinking is conditional on its volume variations due
to vibration, an experiment with a nondeformable rigid
ball, whose density was much smaller than the density
of the water, was conducted. The effect of sinking was
not registered in this case.

As an illustrative example, the results of one of the
experiments are presented. For a rubber ball with di-
ameter d = 14 mm and total mass (the mass of the rub-

ber + the mass of the thread) m = 30 mg, whose initial
distance from the bottom of the vessel is equal to 81
mm, the experimentally obtained value of the thresh-
old frequency was equal to 168 1/s. This value is in
good agreement with the analytical result of 166 1/s.
For all conducted experiments the same qualitative re-
sult was obtained; i.e., the theoretical values of the
threshold frequencies almost coincided with the exper-
imental values.

8 Conclusion

In this paper, the effect of sinking of a free or
an “equipped” (carrying rigid particles) gas bubble
in a uniformly oscillating incompressible fluid has
been theoretically established and experimentally con-
firmed. The conditions at which this effect occurs are
formulated. An expression for the average velocity of
the gas bubble’s sinking or rising, which strongly de-
pends on the depth of its submergence and vibration
parameters, is derived. The reported results are ap-
plicable for control and optimization of relevant tech-
nological processes.

The results of the paper supplement and enhance
previous studies, which have been concerned with the
“wave” mechanism of a gas bubble sinking. In contrast
to this mechanism, the theoretical model analyzed in
this paper is “non-gradient” and can be called vibra-
tional. It is shown that the effect of gas bubble sinking
is controlled by two dimensionless parameters: w∗, the
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characteristic load parameter, and the ratio of the exci-
tation amplitude to the radius of the bubble, η. These
parameters define the bubble’s compressibility in the
course of its motion.
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