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Abstract The robust observer problem is considered
in this paper for a class of discrete-time neural net-
works with Markovian jumping parameters and mode-
dependent time delays which are in both discrete-
time form and finite distributed form. The neural net-
work switches from one mode to another controlled
by a Markov chain with known transition probabil-
ity. Time-delays considered in this paper are mode-
dependent which may reflect a more realistic version
of the neural network. By using the Lyapunov func-
tional method and the techniques of linear matrix in-
equalities (LMIs), sufficient conditions are established
in terms of LMIs that ensure the existence of the ro-
bust observer. The obtained conditions are easy to be
verified via the LMI toolbox. An example is presented
to show the effectiveness of the obtained results.

Keywords Robust observer · Discrete-time neural
network · Markovian jumping parameters · Mixed
mode-dependent delays · Linear matrix inequality

1 Introduction

It is well known that a large amount of neural net-
works are successfully used in various areas in the
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last few decades, such as image processing, associative
memory, pattern recognition, and so on. In large-scale
neural networks, however, it is often that only partial
information about the neuron states is available in the
form of the network outputs. Therefore, to make use
of the neural networks in practice, it becomes neces-
sary to estimate the neuron states. For the discrete de-
lay system, Trinh and Aldeen obtained a memoryless
state observer by the state augmentation approach [1].
In [2], a general form of linear observers was given
for the continuous delay systems by using the factor-
ization approach. Recently, the state estimation prob-
lem for neural networks has drawn research interests
(see [3–11]). For example, in [3], the neural state es-
timation problem was described by an effective LMI
approach which developed to verify the stability of the
estimation error dynamics. In [12], an adaptive state
estimator was addressed by using techniques of opti-
mization theory.

In practice, because of the limited speed of sig-
nals traveling through the links, time delays often
occur in neural networks [13–15]. It is known that
time delays can cause complex dynamics such as pe-
riodic or quasi-periodic motions, higher-dimensional
chaos [16]. It is worth mentioning that the time de-
lays can be categorized as discrete ones and distributed
ones generally. The distributed delays were obtained
particular attention since a network usually has a spa-
tial nature due to the presence of an amount of par-
allel pathways of a variety of axon sizes and lengths
[17–19].
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On the other hand, complex networks may be
subject to network mode switching. For example,
in [20, 21], it revealed that a neural network had
finite modes which switched from one to another
sometimes, and the switching can be controlled by
a Markov chain. In [22], the bufferless packet switch-
ing of leveled networks was illustrated to be achiev-
able. In [20], authors investigated the exponential
stability of delayed recurrent neural networks with
Markovian jumping parameters. The exponential syn-
chronization problem was studied for a class of
continuous-time complex networks with Markovian
jump and mixed delays [6, 23–28]. In [29], due to the
uncomplicated form and size of switching elements,
it showed that practical interconnection systems can
be designed by the shuffle-exchange network. In [30],
the associative memory of a stochastic Hopfield neural
system was described to switch between pattern attrac-
tors. It is worth mentioning that the control problems
for dynamical systems with Markovian jumping para-
meters were already widely studied; see, e.g., [31], and
the references therein. Moreover, discrete-time neural
networks were more suitable to model digitally sig-
nals in a dynamical way. Note that discrete-time net-
works have already been applied in a wide range of
areas, such as image processing, time series analysis,
quadratic optimization problems, and system identifi-
cation, so it is worth studying.

In this paper, we deal with the robust state estima-
tion problem for a class of discrete-time neural net-
works with Markovian jumping parameters and mode-
dependent mixed time delays. By using the Lyapunov
functional method, we get several sufficient conditions
under which the estimation error dynamics is asymp-
totically stable. The obtained criteria are in the form
of LMIs whose solution could be easily calculated by
utilizing the LMI toolbox.

Notations The standard notations will be used in this
paper. Throughout this paper, for real symmetric ma-
trices X and Y , the notation X ≤ Y (respectively,
X < Y ) means that the matrix X −Y is negative semi-
definite (respectively, negative definite). The super-
script “T ” represents the transpose. diag{· · · } stands
for a block-diagonal matrix. I and 0 is the identity
matrix and zero matrix with compatible dimension,
respectively. | · | refers to the Euclidean vector norm.
N denotes the natural number set, i.e., N = {0,1, . . .}.
R

n and R
n×m denote, respectively, the n-dimensional

Euclidean space and the set of all n × m real matrices.
In symmetric block matrices, we use an asterisk “∗”
to represent a term that is induced by symmetry. E[x]
and E[x|y] mean, respectively, the expectation of x

and the expectation of x conditional on y. Matrices, if
they are not explicitly, are assumed to have compatible
dimensions.

2 Model formulation and preliminaries

In this section, the problem discussed in this paper is
formulated and some lemmas are introduced which
will play an important role in the proof of the main
result in Sect. 3.

In the following, we consider a discrete-time uncer-
tain nonlinear system:

x(k + 1)

= (
D

(
r(k)

) + �D
(
k, r(k)

))
x(k)

+ (
A

(
r(k)

) + �A
(
k, r(k)

))
F

(
x(k)

)

+ (
B

(
r(k)

) + �B
(
k, r(k)

))
G

(
x(k − τ1,r(k))

)

+ (
C

(
r(k)

) + �C
(
k, r(k)

)) τ2,r(k)∑

v=1

H
(
x(k − v)

)
,

(1)

where {r(k)|k ≥ 0} is a Markov chain taking values in
a finite state space S = {1,2,3, . . . ,N}, and

P
{
r(k + 1) = j |r(k) = i

} = πij , ∀i, j ∈ S,

where πij ≥ 0 (i, j ∈ S) is the transition rate from i

to j and
∑N

j=1 πij = 1, ∀i ∈ S ; x(k) = (x1(k), x2(k),

. . . , xn(k))T is the neural state vector; D(r(k)) =
diag{d1(r(k)), d2(r(k)), . . . , dn(r(k))} describes the
rate with which each neuron will reset its poten-
tial to the resting state in isolation when discon-
nected from the exogenous inputs and networks;
A(r(k)) = [aij (r(k))]n×n,B(r(k)) = [bij (r(k))]n×n

and C(r(k)) = [cij (r(k))]n×n are the connection
weight matrix, the discretely delayed connection
weight matrix and the distributively delayed con-
nection weight matrix, respectively; �D(k, r(k)),
�A(k, r(k)), �B(k, r(k)) and �C(k, r(k)) are un-
known matrices which representing the mode
parameter uncertainties; F(x(k)) = (f1(x1(k)),

f2(x2(k)), . . . , fn(xn(k)))T , G(x(k − τ1,r(k))) =
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(g1(x1(k − τ1,r(k))), g2(x2(k − τ1,r(k))), . . . ,

gn(xn(k − τ1,r(k))))
T and H(x(k)) = (h1(x1(k)),

h2(x2(k)), . . . , hn(xn(k)))T are the nonlinear activa-
tion functions; τ1,r(k) stands for the discrete time de-
lay while τ2,r(k) denotes the distributed time delay, and
both kinds of time delays are dependent on the system
mode r(k). Note that D(r(k)), A(r(k)), B(r(k)), and
C(r(k)) are the constant matrices for any r(k) ∈ S .

The initial condition of system (1) is assumed to be

x(k) = φ(k), k = −τ, . . . ,0,

where φ(k) is a known function, and τ =
maxi∈S {τ̄1, τ̄2}, τ̄1 = maxi∈S {τ1,i}, τ̄2 = maxi∈S {τ2,i}.

Throughout this paper, we make the following as-
sumption on the nonlinear functions in system (1).

Assumption 1 For i ∈ {1,2, . . . , n}, the neuron acti-
vation functions in (1) satisfy

λ−
i ≤ fi(s1) − fi(s2)

s1 − s2
≤ λ+

i , fi(0) = 0;

σ−
i ≤ gi(s1) − gi(s2)

s1 − s2
≤ σ+

i , gi(0) = 0;

υ−
i ≤ hi(s1) − hi(s2)

s1 − s2
≤ υ+

i ,

hi(0) = 0; ∀s1, s2 ∈ R, s1 �= s2

(2)

where λ−
i , λ+

i , σ−
i , σ+

i , υ−
i and υ+

i are constants.

Remark 1 Just as pointed out in [19], the constants
λ−

i , λ+
i , σ−

i , σ+
i , υ−

i , υ+
i in Assumption 1 are allowed

to be positive, negative, or zero. So, the activation
functions are more general than the usual sigmoid
functions because they could be nonmonotonic. This
description is very accurate in quantifying the lower
and upper bounds of the activation functions, and is
very helpful for using the LMI approach.

It is worth noticing that in neural networks, either
biological or artificial, it is usually difficult to get the
complete information of their states and, therefore, it
is necessary to estimate the states of neural networks
based only on the output. In this paper, we assume that
the output from the system (1) is of the following form:

y(k) = (
E

(
r(k)

) + �E
(
k, r(k)

))
x(k) + S

(
k, x(k)

)
,

(3)

where y(k) = (y1(k), y2(k), . . . , ym(k))T stands for
the measurement output of the neural network; and
we assume m < n because only partial information of
the system states could be accessed from output mea-
surements. E(r(k)) ∈ R

m×n is a constant matrix and
�E(k, r(k)) is an unknown matrix. S(k, x(k)) ∈ R

m

is a nonlinear disturbance dependent on neural states
satisfying the following Lipschitz condition:

∣∣S(k, ς1) − S(k, ς2)
∣∣ ≤ ∣∣W(ς1 − ς2)

∣∣,

∀k ∈ N and ς1, ς2 ∈ R
n, (4)

where W is a known real constant matrix of appropri-
ate dimension.

Assumption 2 The uncertain matrices �D(k, r(k)),
�A(k, r(k)), �B(k, r(k)), �C(k, r(k)), and �E(k,

r(k)) are assumed to be of the following form:

(
�D(k, r(k)) �A(k, r(k)) �B(k, r(k)) �C(k, r(k))

)

= M1
(
r(k)

)
Φ

(
k, r(k)

)

× (
N1(r(k)) N2(r(k)) N3(r(k)) N4(r(k))

)
,

�E
(
k, r(k)

) = M2
(
r(k)

)
Φ

(
k, r(k)

)
N5

(
r(k)

);

(5)

where M1(r(k)), M2(r(k)), N1(r(k)), N2(r(k)),
N3(r(k)), N4(r(k)), and N5(r(k)) are known real
constant matrices and Φ(k, r(k)) is an unknown real-
valued matrix satisfying

ΦT
(
k, r(k)

)
Φ

(
k, r(k)

) ≤ I, ∀k ∈ N, r(k) ∈ S. (6)

Remark 2 The structure of the parameter uncertainties
in (5)–(6) has been widely used for the robust control
and robust observer problems for both the discrete-
time and the continuous-time systems, which can rep-
resent many practical situations [32, 33].

To estimate the state of system (1), we construct a
full-order state estimator as follows:

x̂(k + 1) = D
(
r(k)

)
x̂(k) + A

(
r(k)

)
F

(
x̂(k)

)

+ B
(
r(k)

)
G

(
x̂(k − τ1,r(k))

)

+ C
(
r(k)

) τ2,r(k)∑

v=1

H
(
x̂(k − v)

)
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− K
(
r(k)

)[
y(k) − E

(
r(k)

)
x̂(k)

− S
(
k, x̂(k)

)]
, (7)

where x̂(k) is the estimation of the neuron state, and
K(r(k)) (r(k) ∈ S) are the estimate gain matrices to
be designed.

Definition 1 System (7) is said to be an robustly as-
ymptotic state estimator of system (1) with measure-
ment output (3) if the state estimation error x̃(k) =
(x̃1(k), . . . , x̃n(k))T � x(k) − x̂(k) satisfies

lim
k→+∞ E

[∣∣x̃(k)
∣∣2] = 0. (8)

Lemma 1 (See [34]) Let B ∈ R
n×n is a positive semi-

definite matrix, zi ∈ R
n is a vector and ai ≥ 0 is a

scalar (i = 1,2, . . .). The following inequality holds

(+∞∑

i=1

aizi

)T

B
(+∞∑

i=1

aizi

)

≤
(+∞∑

i=1

ai

)(+∞∑

i=1

aiz
T
i Bzi

)

(9)

if the series are convergent.

Lemma 2 (See [6]) Let D = diag{γ1, γ2, . . . , γn} ≥ 0,
z = (z1, z2, . . . , zn)

T ∈ R
n, H(z) = (�1(z1),�2(z2),

. . . ,�n(zn))
T is a continuous nonlinear function and

l−i ≤ �i (s)

s
≤ l+i ; s �= 0, s ∈ R, i = 1,2, . . . , n,

where l−i and l+i are constant scalars. Then

(
z

H(z)

)T ( DL1 −DL2

−DL2 D

)(
z

H(z)

)
≤ 0,

or

zT DL1z − 2zT DL2 H(z) + H(z)T D H(z) ≤ 0,

where L1 = diag{l−1 l+1 , l−2 l+2 , . . . , l−n l+n } and L2 =
diag{ l−1 +l+1

2 ,
l−2 +l+2

2 , . . . ,
l−n +l+n

2 }.

Lemma 3 (See [4]) Let A,D,E,F, and P be real
matrices of appropriate dimensions with P > 0 and F

satisfying FT F ≤ I . Then for any scalar ε > 0 satis-
fying P −1 − ε−1DDT > 0, we have

(A + DFE)T P (A + DFE)

≤ AT
(
P −1 − ε−1DDT

)−1
A + εET E. (10)

For presentation convenience, in the following, we de-
note

τ 1 = min
i∈S

{τ1,i}, τ 2 = min
i∈S

{τ2,i},

π = min
i∈S

{πii};

Λ1 = diag
{
λ−

1 λ+
1 , λ−

2 λ+
2 , . . . , λ−

n λ+
n

}
,

Λ2 = diag

{
λ−

1 + λ+
1

2
,
λ−

2 + λ+
2

2
, . . . ,

λ−
n + λ+

n

2

}
;

Σ1 = diag
{
σ−

1 σ+
1 , σ−

2 σ+
2 , . . . , σ−

n σ+
n

}
,

Σ2 = diag

{
σ−

1 + σ+
1

2
,
σ−

2 + σ+
2

2
, . . . ,

σ−
n + σ+

n

2

}
;

Υ1 = diag
{
υ−

1 υ+
1 , υ−

2 υ+
2 , . . . , υ−

n υ+
n

}
,

Υ2 = diag

{
υ−

1 + υ+
1

2
,
υ−

2 + υ+
2

2
, . . . ,

υ−
n + υ+

n

2

}
.

3 Main result

In this section, the robust observer is designed for sys-
tem (1) by resorting to the Lyapunov functional and
the LMI approach.

Theorem 1 Let K(i) (i ∈ S) be known constant ma-
trices; suppose Assumptions 1–2 and condition (4)
hold. Then system (7) is an robustly asymptotic state
estimator of system (1) with measurement output (3)
if there exist scalar constants εi > 0, ϑi > 0, matri-
ces Pi > 0, Q > 0 and R > 0, and diagonal matrices
Ω1i > 0, Ω2i > 0, Θ1i > 0, Θ2i > 0, �1i > 0, �2i > 0
(i ∈ S) satisfying:

Ψi �

⎛

⎜
⎝

Πi ZT
o (i)P̄i 0

∗ −P̄i P̄iM̃(i)

∗ ∗ −εiI

⎞

⎟
⎠ < 0, i ∈ S (11)

where
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Zo(i) = (
Do(i) Ao(i) 0 Bo(i) 0 Co(i) Ko(i)

)
,

Do(i) =
(

D(i) 0
0 D(i) + K(i)E(i)

)
,

Ao(i) = diag
{
A(i),A(i)

}
, Bo(i) = diag

{
B(i),B(i)

}
,

Co(i) = diag
{
C(i),C(i)

}
, Ko(i) = diag

{
0,K(i)

}; P̄i =
N∑

j=1

πijPj ;

M̃(i) = (
M̃1(i) M̃2(i)

)
, M̃1(i) =

(
M̄1(i)

M̄1(i)

)
, M̃2(i) =

(
0

K(i)M̄2(i)

)
,

M̄1(i) = (
M1(i) 0

)
, M̄2(i) = (

0 M2(i)
); Πi = ϕi + εiÑ

T (i)Ñ(i), Ñ(i) =
(

N̂1(i)

N̂2(i)

)

,

ϕi =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

Ξi ΩiΛ̄2 ΘiΣ̄2 0 �iῩ2 0 0
∗ −Ωi 0 0 0 0 0
∗ ∗ κ0Q − Θi 0 0 0 0
∗ ∗ ∗ −Q 0 0 0
∗ ∗ ∗ ∗ κiR − �i 0 0
∗ ∗ ∗ ∗ ∗ − 1

τ2,i
R 0

∗ ∗ ∗ ∗ ∗ ∗ −ϑiI

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

and

N̂1(i) = (
Ñ1(i) Ñ2(i) 0 Ñ3(i) 0 Ñ4(i) 0

)
,

N̂2(i) = (
Ñ1(i) 0 0 0 0 0 0

)
,

Ñ1(i) = (
N̄1(i) 0

)
, Ñ2(i) = (

N̄2(i) 0
)
,

Ñ3(i) = (
N̄3(i) 0

)
, Ñ4(i) = (

N̄4(i) 0
)
,

N̄1(i) =
(

N1

N5

)
, N̄2(i) =

(
N2

0

)
,

N̄3(i) =
(

N3

0

)
, N̄4(i) =

(
N4

0

)
;

Ξi = −Pi − ΩiΛ̄1 − ΘiΣ̄1 − �iῩ1 + ϑiW
T
o Wo,

Wo = diag{0,W }, Ωi = diag{Ω1i ,Ω2i},
Θi = diag{Θ1i ,Θ2i}, �i = diag{�1i ,�2i},
Λ̄1 = diag{Λ1,Λ1}, Σ̄1 = diag{Σ1,Σ1},
Ῡ1 = diag{Υ1,Υ1}, Λ̄2 = diag{Λ2,Λ2},
Σ̄2 = diag{Σ2,Σ2}, Ῡ2 = diag{Υ2,Υ2},
κ0 = (1 − π)(τ̄1 − τ 1) + 1,

κi = τ2,i + (1 − πii)(τ̄2 − τ 2)

+ 1

2
(1 − π)(τ̄2 − τ 2)(τ̄2 − τ 2 − 1).

Proof From (1) and (7), we have

x̃(k + 1)

= (
D

(
r(k)

) + K
(
r(k)

)
E

(
r(k)

))
x̃(k)

+ A
(
r(k)

)(
F

(
x(k)

) − F
(
x̂(k)

))

+ B
(
r(k)

)(
G

(
x(k − τ1,r(k))

)

− G
(
x̂(k − τ1,r(k))

))

+ C
(
r(k)

) τ2,r(k)∑

v=1

(
H

(
x(k − v)

) − H
(
x̂(k − v)

))

+ K
(
r(k)

)(
S
(
k, x(k)

) − S
(
k, x̂(k)

))

+ (
�D

(
k, r(k)

) + K
(
r(k)

)
�E

(
k, r(k)

))
x(k)

+ �A
(
k, r(k)

)
F

(
x(k)

)

+ �B
(
k, r(k)

)
G

(
x(k − τ1,r(k))

)

+ �C
(
k, r(k)

) τ2,r(k)∑

v=1

H
(
x(k − v)

)
. (12)
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Let

η(k) �
(

x(k)

x̃(k)

)
,

F̃
(
η(k)

) =
(

F(x(k))

F (x(k)) − F(x̂(k))

)
,

G̃
(
η(k)

) =
(

G(x(k))

G(x(k)) − G(x̂(k))

)
,

H̃
(
η(k)

) =
(

H(x(k))

H(x(k)) − H(x̂(k))

)
,

S̃
(
k, η(k)

) =
(

0
S(k, x(k)) − S(k, x̂(k))

)
,

�Do

(
k, r(k)

)

=
(

�D(k, r(k)) 0
�D(k, r(k)) + K(r(k))�E(k, r(k)) 0

)
,

�Ao

(
k, r(k)

) =
(

�A(k, r(k)) 0
�A(k, r(k)) 0

)
,

�Bo

(
k, r(k)

) =
(

�B(k, r(k)) 0
�B(k, r(k)) 0

)
,

�Co

(
k, r(k)

) =
(

�C(k, r(k)) 0
�C(k, r(k)) 0

)
;

with the above notations and from (1) and (12), we
obtain

η(k + 1) = D̄o

(
k, r(k)

)
η(k) + Āo

(
k, r(k)

)
F̃

(
η(k)

)

+ B̄o

(
k, r(k)

)
G̃

(
η(k − τ1,r(k))

)

+ C̄o

(
k, r(k)

) τ2,r(k)∑

v=1

H̃
(
η(k − v)

)

+ Ko

(
r(k)

)
S̃
(
k, η(k)

)
, (13)

where

D̄o

(
k, r(k)

) = Do

(
r(k)

) + �Do

(
k, r(k)

)
,

Āo

(
k, r(k)

) = Ao

(
r(k)

) + �Ao

(
k, r(k)

);
B̄o

(
k, r(k)

) = Bo

(
r(k)

) + �Bo

(
k, r(k)

)
,

C̄o

(
k, r(k)

) = Co

(
r(k)

) + �Co

(
k, r(k)

)
.

For convenience, we denote

ηk = (
ηT (k) ηT (k − 1) . . . ηT (k − τ)

)T
,

ξ(k, i) = (
ηT (k) F̃ T (η(k)) G̃T (η(k)) G̃T (η(k − τ1,i )) H̃ T (η(k))

∑τ2,i

v=1H̃
T (η(k − v)) S̃T (k, η(k))

)T
,

(14)
�Zo(k, i) = (

�Do(k, i) �Ao(k, i) 0 �Bo(k, i) 0 �Co(k, i) 0
)
,

Z(k, i) = (
D̄o(k, i) Āo(k, i) 0 B̄o(k, i) 0 C̄o(k, i) Ko(i)

) = Zo(i) + �Zo(k, i)

where Zo(i) is as defined in (11) and i ∈ S .
Now, to ensure that system (7) is a robust state esti-

mator of system (1) with measurement output (3), we
just need to show that the system (13) is asymptoti-
cally stable in the mean square. Construct the follow-
ing Lyapunov–Krasovskii functional V (ηk, k, r(k)) as

V
(
ηk, k, r(k)

)

= V1
(
ηk, k, r(k)

) + V2
(
ηk, k, r(k)

)

+ V3
(
ηk, k, r(k)

) + V4
(
ηk, k, r(k)

)

+ V5
(
ηk, k, r(k)

)
, (15)

where

V1
(
ηk, k, r(k)

) = ηT (k)Pr(k)η(k),

V2
(
ηk, k, r(k)

) =
k−1∑

v=k−τ1,r(k)

G̃T
(
η(v)

)
QG̃

(
η(v)

)
,

V3
(
ηk, k, r(k)

) =
τ̄1−1∑

l=τ 1

k−1∑

v=k−l

G̃T
(
η(v)

)
Q̄G̃

(
η(v)

)
,

V4
(
ηk, k, r(k)

) =
τ2,r(k)∑

l=1

k−1∑

v=k−l

H̃ T
(
η(v)

)
RH̃

(
η(v)

)
,
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V5
(
ηk, k, r(k)

)

=
τ̄2∑

s=τ 2+1

s−1∑

l=1

k−1∑

v=k−l

H̃ T
(
η(v)

)
R̄H̃

(
η(v)

)

and Q̄ = (1 − π)Q, R̄ = (1 − π)R.
Calculate the expectation of the difference of the

Lyapunov functional at two consecutive time instants,
and one has

E
[
V1

(
ηk+1, k + 1, r(k + 1)

)|ηk, r(k) = i
]

− V1(ηk, k, i)

= ξT (k, i)ZT (i)P̄iZ(i)ξ(k, i)

− ηT (k)Piη(k), (16)

E
[
V2

(
ηk+1, k + 1, r(k + 1)

)|ηk, r(k) = i
]

− V2(ηk, k, i)

=
N∑

j=1

πij

k∑

v=k−τ1,j +1

G̃T
(
η(v)

)
QG̃

(
η(v)

)

−
k−1∑

v=k−τ1,i

G̃T
(
η(v)

)
QG̃

(
η(v)

)

= πii

[
k∑

v=k−τ1,i+1

−
k−1∑

v=k−τ1,i

]

G̃T
(
η(v)

)
QG̃

(
η(v)

)

+
∑

j �=i

πij

[
k∑

v=k−τ1,j +1

−
k−1∑

v=k−τ1,i

]

× G̃T
(
η(v)

)
QG̃

(
η(v)

)

≤ πii

[
G̃T

(
η(k)

)
QG̃

(
η(k)

)

− G̃T
(
η(k − τ1,i )

)
QG̃

(
η(k − τ1,i )

)]

+
∑

j �=i

πij

[
k∑

v=k+1−τ̄1

−
k−1∑

v=k−τ1,i

]

× G̃T
(
η(v)

)
QG̃

(
η(v)

)

≤ G̃T
(
η(k)

)
QG̃

(
η(k)

)

− G̃T
(
η(k − τ1,i )

)
QG̃

(
η(k − τ1,i )

)

+ (1 − πii)

k−τ1,i∑

v=k+1−τ̄

G̃T
(
η(v)

)
QG̃

(
η(v)

)

≤ G̃T
(
η(k)

)
QG̃

(
η(k)

)

− G̃T
(
η(k − τ1,i )

)
QG̃

(
η(k − τ1,i )

)

+ (1 − π)

k−τ 1∑

v=k−τ̄1+1

G̃T
(
η(v)

)
QG̃

(
η(v)

)
, (17)

E
[
V3

(
ηk+1, k + 1, r(k + 1)

)|ηk, r(k) = i
]

− V3(ηk, k, i)

=
τ̄1−1∑

l=τ 1

(
G̃T

(
η(k)

)
Q̄G̃

(
η(k)

)

− G̃T
(
η(k − l)

)
Q̄G̃

(
η(k − l)

))

= (1 − π)(τ̄1 − τ 1)G̃
T
(
η(k)

)
QG̃

(
η(k)

)

− (1 − π)

k−τ 1∑

v=k−τ̄1+1

G̃T
(
η(v)

)
QG̃

(
η(v)

)
, (18)

and

E
[
V4

(
ηk+1, k + 1, r(k + 1)

)|ηk, r(k) = i
]

− V4(ηk, k, i)

=
N∑

j=1

πij

τ2,j∑

l=1

k∑

v=k−l+1

H̃ T
(
η(v)

)
RH̃

(
η(v)

)

−
τ2,i∑

l=1

k−1∑

v=k−l

H̃ T
(
η(v)

)
RH̃

(
η(v)

)

= πii

τ2,i∑

l=1

[
H̃ T

(
η(k)

)
RH̃

(
η(k)

)

− H̃ T
(
η(k − l)

)
RH̃

(
η(k − l)

)]

+
∑

j �=i

πij

[ τ2,i∑

l=1

k∑

v=k−l+1

−
τ2,i∑

l=1

k−1∑

v=k−l

]

× H̃ T
(
η(v)

)
RH̃

(
η(v)

)

+
∑

j �=i

πij

[ τ2,j∑

l=1

k∑

v=k−l+1

−
τ2,i∑

l=1

k∑

v=k−l+1

]

× H̃ T
(
η(v)

)
RH̃

(
η(v)

)

≤
τ2,i∑

l=1

(
H̃ T

(
η(k)

)
RH̃

(
η(k)

)

− H̃ T
(
η(k − l)

)
RH̃

(
η(k − l)

))
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+
∑

j �=i

πij

[
τ̄2∑

l=τ 2+1

k∑

v=k−l+1

H̃ T
(
η(v)

)
RH̃

(
η(v)

)
]

≤ (
τ2,i + (1 − πii)(τ̄2 − τ 2)

)
H̃ T

(
η(k)

)
RH̃

(
η(k)

)

−
τ2,i∑

v=1

H̃ T
(
η(k − v)

)
RH̃

(
η(k − v)

)

+ (1 − π)

×
τ̄2∑

l=τ 2+1

k−1∑

v=k−l+1

H̃ T
(
η(v)

)
RH̃

(
η(v)

)
, (19)

E
[
V5

(
ηk+1, k + 1, r(k + 1)

)|ηk, r(k) = i
]

− V5(ηk, k, i)

=
τ̄2∑

s=τ 2+1

s−1∑

l=1

[
H̃ T

(
η(k)

)
R̄H̃

(
η(k)

)

− H̃ T
(
η(k − l)

)
R̄H̃

(
η(k − l)

)]

= (1 − π)

[
1

2
(τ̄2 − τ 2)(τ̄2 + τ 2 − 1)

× H̃ T
(
η(k)

)
RH̃

(
η(k)

)

−
τ̄2∑

l=τ 2+1

k−1∑

v=k−l+1

H̃ T
(
η(v)

)
RH̃

(
η(v)

)
]

. (20)

From (15)–(20), we have

E
[
V

(
ηk+1, k + 1, r(k + 1)

)|ηk, r(k) = i
]

− V (ηk, k, i)

≤ ξT (k, i)ZT (k, i)P̄iZ(k, i)ξ(k, i)

− ηT (k)Piη(k) + κ0G̃
T
(
η(k)

)
QG̃

(
η(k)

)

− G̃T
(
η(k − τ1,i )

)
QG̃

(
η(k − τ1,i )

)

+ κiH̃
T
(
η(k)

)
R ˜η(k)

−
τ2,i∑

v=1

H̃ T
(
η(k − v)

)
RH̃

(
η(k − v)

)
. (21)

Lemma 1 ensures that

−
τ2,i∑

v=1

H̃ T
(
η(k − v)

)
RH̃

(
η(k − v)

)

≤ − 1

τ2,i

[ τ2,i∑

v=1

H̃
(
η(k − v)

)
]T

× R

τ2,i∑

v=1

H̃
(
η(k − v)

)
. (22)

From Assumption 1 and (13), the definition of func-
tions F̃ (·), G̃(·), and H̃ (·), also considering Lemma 2,
it implies easily that the following inequalities hold:

ηT (k)ΩiΛ̄1η(k) − 2ηT (k)ΩiΛ̄2F̃
(
η(k)

)

+ F̃ T
(
η(k)

)
ΩiF̃

(
η(k)

) ≤ 0, (23)

ηT (k)ΘiΣ̄1η(k) − 2ηT (k)ΘiΣ̄2G̃
(
η(k)

)

+ G̃T
(
η(k)

)
ΘiG̃

(
η(k)

) ≤ 0, (24)

ηT (k)�iῩ1η(k) − 2ηT (k)�iῩ2H̃
(
η(k)

)

+ H̃ T
(
η(k)

)
�iH̃

(
η(k)

) ≤ 0. (25)

Condition (4) easily guarantees that the following in-
equality holds:

∣∣S̃
(
k, η(k)

)∣∣ ≤ ∣∣Wx̃(k)
∣∣ = ∣∣Woη(k)

∣∣, ∀η(k) ∈ R
2n.

(26)

Consider (22)–(26) with (21), we have

E
[
V

(
ηk+1, k + 1, r(k + 1)

)|ηk, r(k) = i
]

− V (ηk, k, i)

≤ ξT (k, i)ZT (k, i)P̄iZ(k, i)ξ(k, i)

− ηT (k)Piη(k) + κ0G̃
T
(
η(k)

)
QG̃

(
η(k)

)

− G̃T
(
η(k − τ1,i )

)
QG̃

(
η(k − τ1,i )

)

+ κiH̃
T
(
η(k)

)
RH̃

(
η(k)

)

− 1

τ2,i

[ τ2,i∑

v=1

H̃
(
η(k − v)

)
]

R

τ2,i∑

v=1

H̃
(
η(k − v)

)

− (
ηT (k)ΩiΛ̄1η(k) − 2ηT (k)ΩiΛ̄2F̃

(
η(k)

)

+ F̃ T
(
η(k)

)
ΩiF̃

(
η(k)

))

− (
ηT (k)ΘiΣ̄1η(k) − 2ηT (k)ΘiΣ̄2G̃

(
η(k)

)

+ G̃T
(
η(k)

)
ΘiG̃

(
η(k)

))

− (
ηT (k)�iῩ1η(k) − 2ηT (k)�iῩ2H̃

(
η(k)

)

+ H̃ T
(
η(k)

)
�iH̃

(
η(k)

))
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− (
ϑiS̃

T
(
k, η(k)

)
S̃
(
k, η(k)

)

− ϑiη
T (k)WT

o Woη(k)
)

= ξT (k, i)Ψ̃i(k)ξ(k, i), (27)

where Ψ̃i(k) = ϕi + ZT (k, i)P̄iZ(k, i).
Letting

Φ̃(k, i) =

⎛

⎜⎜
⎝

Φ(k, i) 0 0 0
0 Φ(k, i) 0 0
0 0 Φ(k, i) 0
0 0 0 Φ(k, i)

⎞

⎟⎟
⎠ ,

from Assumption 2, we have

�Zo(k, i)

= M̃1(i)

(
Φ(k, i) 0

0 Φ(k, i)

)
N̂1(i)

+ M̃2(i)

(
Φ(k, i) 0

0 Φ(k, i)

)
N̂2(i)

= M̃(i)Φ̃(k, i)Ñ(i).

Noting (11), it can be seen that

P̄i − ε−1
i P̄iM̃(i)M̃T (i)P̄i > 0, (28)

which easily implies that

P̄ −1
i − ε−1

i M̃(i)M̃T (i) > 0. (29)

By Lemma 3, we can get

ZT (k, i)P̄iZ(i)

= (
Zo(i) + �Zo(k, i)

)T
P̄i

(
Zo(i) + �Zo(k, i)

)

= (
Zo(i) + M̃(i)Φ̃(k, i)Ñ(i)

)T

× P̄i

(
Zo(i) + M̃(i)Φ̃(k, i)Ñ(i)

)

≤ ZT
o (i)

(
P̄ −1

i − ε−1
i M̃(i)M̃T (i)

)−1
Zo(i)

+ εiÑ
T (i)Ñ(i), (30)

then one obtains

Ψ̃i ≤ ϕi + ZT
o (i)

(
P̄ −1

i − ε−1
i M̃(i)M̃T (i)

)−1
Zo(i)

+ εiÑ
T (i)Ñ(i) < 0; (31)

the last inequality is assured from condition (11) by
the well-known Schur lemma. Therefore, we have that

system (13) is robustly asymptotically stable. This
completes the proof. �

In the following, it is proved that if a set of ma-
trix inequalities are feasible, the desired estimator gain
matrices can be obtained.

Theorem 2 Suppose Assumptions 1–2 and condition
(4) hold. Then system (7) is an robustly asymptotic
state estimator of system (1) with measurement out-
put (3) if there exist scalar constants εi > 0, ϑi > 0,
matrices P1i > 0, P2i > 0, Q > 0 and R > 0, diag-
onal matrices Ω1i > 0, Ω2i > 0, Θ1i > 0, Θ2i > 0,
�1i > 0, �2i > 0, and Yi (i ∈ S) satisfying:

Ψi �

⎛

⎜⎜
⎝

Πi UT
1,i 0

∗ −P̄i UT
2,i

∗ ∗ −εiI

⎞

⎟⎟
⎠ < 0, i ∈ S (32)

where

P̄i = diag{P̄1i , P̄2i}, P̄1i =
N∑

j=1

πijP1j , P̄2i =
N∑

j=1

πijP2j ;

U1,i = (
P̄iD̃o(i) + Ȳ (i)Eo(i) P̄iAo(i) 0 P̄iBo(i) 0 P̄iCo(i) Ȳ (i)

)
,

D̃o(i) = diag
{
D(i),D(i)

}
, Eo(i) =

(
0 0
0 E(i)

)
, Ȳ (i) =

(
0 0
0 Y(i)

)
,

U2,i =
(

MT
1 (i)P̄1i MT

1 (i)P̄2i

0 MT
2 (i)Y T

i

)
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and the other notations are the same as defined in The-
orem 1. Moreover, the robust observers in (7) are de-
signed to be as

K(i) = P̄ −1
2i Yi, i ∈ S. (33)

Proof In the proof of Theorem 1, let Pi = diag{P1i ,

P2i}, then P̄i = diag{P̄1i , P̄2i}. Also by noting (33)
that Yi = P̄2iK(i), it implies easily that P̄iDo(i) =
P̄iD̃o + Ȳ (i)Eo(i) and P̄iM̃(i) = UT

2,i . From Theo-
rem 1, it is easily shown that Theorem 2 holds, and
this completes the proof. �

Remark 3 In Theorem 2, the obtained conditions are
LMIs, so that one can verify them easily by using LMI
toolbox. Notice that in the two theorems, the condi-
tions τi,r(k) ≥ 1 and τ̄i > τ i (i = 1,2; r(k) ∈ S) are
utilized. If they turn to be constant delays, we can also
get the similar conclusions.

4 Numerical example

In this section, a 3-node network with Markovian
switching between two modes is considered to il-
lustrate the effectiveness of the criteria obtained in
the above section. In the nonlinear delay system
model (1), let τ1,1 = 1, τ1,2 = 3, τ2,1 = 2, τ2,2 = 4,
D(1) = diag{−0.4,−0.5,−0.6}, D(2) = diag{−0.3,

−0.5,−0.7};

A(1) =
⎛

⎜
⎝

0.2 0.5 0.1
0.2 −0.4 0
0 −0.1 0.2

⎞

⎟
⎠ ,

A(2) =
⎛

⎝
0.6 −0.2 0.1
0.1 −0.1 0.2
0.1 0 0.2

⎞

⎠ ;

B(1) =
⎛

⎜
⎝

0.2 0.2 0.2
0.2 −0.2 0
0.2 −0.1 −0.1

⎞

⎟
⎠ ,

B(2) =
⎛

⎜
⎝

0.2 0.2 0.1
0.2 −0.2 0
0.3 −0.1 −0.1

⎞

⎟
⎠ ;

C(1) =
⎛

⎜
⎝

0.2 0.2 −0.1
0 0.4 0.3

−0.3 0 0.2

⎞

⎟
⎠ ,

C(2) =
⎛

⎜
⎝

0.2 −0.2 0.1
0.1 0.2 0.3
0.8 0 0.2

⎞

⎟
⎠ ;

E(1) = E(2) =
(

1 0 0
0 1 0

)
;

Π =
(

0.6 0.4
0.5 0.5

)
;

M1(1) = M1(2) =
⎛

⎜
⎝

0.3 0 0 0
0.1 0.4 0 0
0 0.2 0 0

⎞

⎟
⎠ ,

M2(1) = M2(2) =
(

0 0 0.1 0
0 0 0 0.1

)
,

N1(1) = N1(2) =
⎛

⎜
⎝

0.2 0.2 0.1 0
0.1 0.1 0 0.1
0.1 0.2 0 0

⎞

⎟
⎠

T

,

N2(1) = N3(1) = N4(1) = N2(2) = N3(2) = N4(2)

=
⎛

⎜
⎝

0.1 0 0 0
0.3 0.1 0 0
0.1 0.2 0 0

⎞

⎟
⎠

T

.

The activation functions are taken as follows:

f1(s) = g1(s) = h1(s) = tanh(0.1s),

f2(s) = g2(s) = h2(s) = tanh(0.14s),

f3(s) = g3(s) = h3(s) = 0.1 tanh(s), s ∈ R

and the nonlinear function S(k, x) = (0.2 sinx1,

0.2 cosx2)
T . It can be readily verified that

Λ1 = Σ1 = Υ1 = 0,

Λ2 = Σ2 = Υ2 = diag{0.05,0.07,0.05},

W =
(

0.2 0 0
0 0.2 0

)
.

With the above parameters, by using the Matlab tool-
box, inequalities (32) have feasible solutions. Here,
only some of the solution matrices are given for space
consideration:
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Fig. 1 State x1 in
system (1)

Fig. 2 State x2 in
system (1)

P11 =
⎛

⎜
⎝

0.1217 −0.0043 0.0148
−0.0043 0.0440 0.0049
0.0148 0.0049 0.0451

⎞

⎟
⎠ , P12 =

⎛

⎜
⎝

0.0021 −0.0002 −0.0000
−0.0002 0.0010 −0.0009
−0.0000 −0.0009 0.0021

⎞

⎟
⎠ ,

P21 =
⎛

⎜
⎝

0.1526 −0.0067 0.0262
−0.0067 0.0468 0.0048
0.0262 0.0048 0.0734

⎞

⎟
⎠ , P22 =

⎛

⎜
⎝

0.0027 −0.0004 0.0002
−0.0004 0.0017 −0.0017
0.0002 −0.0017 0.0038

⎞

⎟
⎠ ,
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Fig. 3 State x3 in
system (1)

Fig. 4 Estimation error x̃1
in system (12)

Q =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.5850 −0.0304 −0.0355 0.0005 0.0003 0.0007
−0.0304 0.0878 −0.0057 0.0002 0.0001 −0.0000
−0.0355 −0.0057 0.0814 −0.0004 0.0000 0.0000
0.0005 0.0002 −0.0004 0.0198 −0.0018 −0.0021
0.0003 0.0001 0.0000 −0.0018 0.0026 −0.0018
0.0007 −0.0000 0.0000 −0.0021 −0.0018 0.0111

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

Ω11 = diag{0.7735,0.4766,0.1932}, Θ12 = diag{2.4745,0.3452,0.2948},
�12 = diag{16.3915,1.4253,2.9396}, �21 = diag{0.2139,0.0254,0.0683},
ϑ1 = 0.0043, ϑ2 = 0.0052, ε1 = 0.0634, ε2 = 0.0650.
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Fig. 5 Estimation error x̃2
in system (12)

Fig. 6 Estimation error x̃3
in system (12)

Therefore, from Theorem 2, the robust observers are

designed to be as:

K(1) =
⎛

⎝
0.0112 −0.0026

−0.0026 0.0118
−0.0027 0.0057

⎞

⎠ ,

K(2) =
⎛

⎝
0.0119 −0.0022

−0.0006 0.0097
−0.0074 0.0119

⎞

⎠ .

For simulation, let Φ(k, i) (i = 1,2) take values
randomly in interval [−1,1]; the initial conditions are
chosen to be x(−4) = x(−3) = x(−2) = x(−1) =
[0 0 0]T , x(0) = [1 1 1]T ; and x̂(−4) = x̂(−3) =
x̂(−2) = x̂(−1) = x̂(0) = [0 0 0]T . From Figs. 1, 2
and 3, one can get the original system is stable; and
from Figs. 4, 5 and 6, it is shown that with the robust
state estimator given above, the full-order state esti-
mator (7) approaches globally robustly to the original
system.
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5 Conclusions

In this paper, we have discussed the robust state es-
timation for a class of discrete-time neural networks
with Markovian parameters and mode-dependent
mixed time-delays. An robust observer is designed
to estimate the neuron states by using available out-
put measurements. By using the Lyapunov–Krasovskii
functional, we have obtained the sufficient conditions
in LMI form ensuring the existence of the robust state
estimators. A numerical example has been given to
demonstrate the usefulness of the derived LMI-based
conditions. Inspired from the excellent work in [9, 28],
in the near future, the randomly varying sensor delays
and missing measurement phenomena should be taken
into account for the system discussed in our paper.
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