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Abstract In this study, we consider the vibration
mitigation problem for a structural system using a
magneto-rheological (MR) damper. For this purpose,
through the use of Lyapunov-based design techniques,
a nonlinear adaptive controller which can compensate
the parametric uncertainties related to both the struc-
tural system and the MR damper has been constructed.
To overcome effects of the unmeasurable internal dy-
namics of the MR damper on the controller, a filter-
based design has been utilized. Experimental results
performed on a six-degree-of-freedom (DOF) struc-
ture installed on a shaking table, illustrating the via-
bility and the performance of the proposed method are
also included.
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1 Introduction

Safety of structural systems against earthquake and
wind loading is one of the most important matters
in the life cycle of a building. Therefore, especially
over the last three decades, the problem of vibration
mitigation of structural system has been extensively
targeted by control researchers from both theoreti-
cal and experimental points of view. Much work has
been done in the area of structural control in terms
of passive, semiactive, and active cases. As a result,
many control algorithms and semiactive devices such
as electro-rheological (ER) and magneto-rheological
(MR) dampers have been investigated to earthquake
hazard mitigation [7]. ER and MR dampers contain
fluids that have capacity to change their viscosity, from
a viscous fluid to a semisolid state, in milliseconds.
Due to numerous advantages, mostly of practical us-
age, MR dampers are preferred to ER dampers [21].
MR dampers are semiactive devices that do not inject
energy into system they are attached. They can ab-
sorb the vibratory energy that depends on the motion
of the MR damper and input control voltage applied
to them. Due to their mechanical simplicity, high dy-
namic range, low power requirements, low cost, large
force capacity, and inherit stability, these devices are
suitable for different applications such as suspension
system and structural control [3, 20]. However, MR
dampers exhibit nonlinear hysteresis behaviors when
subjected to load. Therefore, one of the challenging
issues for researchers working on systems equipped
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with MR damper is choosing an accurate and suitable
model to describe this nonlinear hysteresis behavior.

In order to describe the nonlinear hysteresis dy-
namic behavior of MR dampers, several models have
been proposed, some of them have been investigated
on quasistatic models [24, 27]. Although these mod-
els are useful for MR damper design, they are not
sufficient to describe the MR damper nonlinear be-
havior under dynamic loading, specifically the nonlin-
ear force velocity behavior [25, 29]. To overcome the
forementioned problem, mainly two alternative mod-
els have been proposed in the literature; the first one is
the Bouc–Wen hysteresis model proposed by Spencer
et al. [21], Dyke et al. [3] implemented this proposed
Bouc–Wen model of MR damper to a three-story steel
frame building model. The second model proposed
in [10, 11, 17, 22] is the LuGre hysteresis model ex-
tracted form the nonlinear friction model. Although
Bouc–Wen model can accurately predict MR damper
dynamics, it is too complex and difficult to use in para-
meter adaptation schemes such as adaptive controllers.
Therefore in this work, the LuGre friction model was
preferred over the Bouc–Wen model.

Nonlinearities and hysteresis dynamics in struc-
tures incorporating semiactive devices have consider-
able effects on the controller performance. On this ac-
count the other challenging issue for systems equipped
with MR damper is the design of appropriate control
laws. Various control algorithms used with the semi-
active devices can be found in the literature. Leit-
mann [13] proposed a control strategy using Lya-
punov’s direct method for controlling ER dampers.
This algorithm is based on reducing the response by
minimizing the rate of change of the Lyapunov func-
tion. A similar approach investigated by McClamroch
and Gavin [14], which is called decentralized bang-
bang control. A Lyapunov function is used to represent
the total vibratory energy in the system. Inaudi [8] pro-
posed modulated a homogenous function algorithm
for control of a variable friction damper. This algo-
rithm is based on updating the normal force at the
frictional interface. Clipped optimal control is pro-
posed by Dyke et al. [3]. This algorithm is to de-
sign a linear optimal controller based on structural re-
sponses. These algorithms were also implemented to
a six-degree-of-freedom structure with multiple MR
dampers by Jansen and Dyke [9]. They concluded
that the Lyapunov controller, clipped optimal con-
troller, and modulated homogenous friction algorithm

reduced the response of structure. Aldemir [1] pro-
posed an optimal semiactive controller for a single-
degree-of-freedom structure with a semiactive tune
MR damper. This semiactive controller minimizes an
integral norm of the main structure accelerations. The
controller performance is compared with passive tuned
mass case. The numerical simulations show that the
performance of MR damper is always better than pas-
sive tuned case. Aldemir and Gavin [4, 5] are also uti-
lized the optimal control to semiactive isolated struc-
tures. Ying et al. [30] proposed a stochastic optimal
controller for ER and MR dampers. Sakai et al. [18]
applied a bilinear H∞ control and an adaptive inverse
control for a semiactive isolated building. Villamizar
et al. [23] investigated the performance of backstep-
ping control for a structure equipped with multiple MR
dampers. Cetin et al. [2] proposed an adaptive con-
trol scheme for a single-degree-of-freedom structure.
Song et al. [20] proposed an adaptive semiactive con-
trol strategy for an MR suspension system. A modified
sliding mode control technique for a structural system
was designed by Neelakantan and Washington [15].
Yan and Zhou [26] proposed fuzzy logic and genetic
algorithms for structures using MR damper. This ab-
breviated literature survey only accounts for a small
subset of past research on the modeling and control of
systems with MR damper. Nevertheless, results of all
these studies show that the performance of the con-
trolled system is highly dependent on the choice of
control.

In this paper a novel nonlinear adaptive controller
is proposed for vibration attenuation of structural sys-
tems equipped with MR damper. In the controller de-
sign, parametric uncertainties associated with both the
structure and the semiactive actuator (MR damper)
are considered. Nonlinear filters in conjunction with
Lyapunov-based parameter estimators have been de-
signed to compensate for the parametric uncertainties
of the overall system. The proposed method is then
experimentally validated on a six-floor structure. The
rest of the paper is organized as follows. In Sect. 2,
mathematical models of a six-DOF semiactive struc-
tural system and an MR damper are represented. Sec-
tion 3 shows the general structure of control scheme
and stability analysis. Experimental validation of con-
trol scheme is given in Sect. 4. Finally Sect. 5 provides
concluding remarks.
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2 Mathematical model and problem formulation

A schematic representation of the n-DOF building
equipped with an MR damper considered in this work
is given in Fig. 1. As most such structures, the MR
damper is installed to the ground floor of the build-
ing via a rigid brace. The differential equation of mo-
tion governing the dynamical properties of the given
semiactively controlled n-DOF structural system can
be obtained to have the following form:

Msẍ + Csẋ + Ksx = −Hf − MsLẍg, (1)

where ẍ(t), ẋ(t), and x(t) ∈ �n×1 are the floor ac-
celeration, velocity, and displacement vectors, respec-
tively, Ms ∈ �n×n is the positive definite mass matrix,
Cs ∈ �n×n is the damping matrix, Ks ∈ �n×n is the
stiffness matrix, f (t) is the control force input pro-
duced by the MR damper applied only to the ground
floor via the location vector H = [1 0 . . . 0]T ∈ �n×1,
and, finally, ẍg is the earthquake acceleration excita-
tion with the vector L = [1 1 . . . 1]T ∈ �n×1 defining
the influence of the earthquake excitation. Note that
the dynamical model of (1) is formed by considering
only the horizontal motion of the floors, the vertical
and torsional motions are neglected for the ease of pre-
sentation. Also the displacement vector is explicitly
defined as x = [x1 x2 . . . xn]T with xi representing
the ith floor motion.

The control force input to system of (1) is injected
via an MR damper consisting of a hydraulic cylinder
which houses a piston, a magnetic circuit, an accu-
mulator, and MR fluid containing micron-sized mag-
netically polarizable ferrous particles (illustrated in
Fig. 2). The damper piston contains damper coil and
annular flow channels. The flow properties of MR flu-
ids depend on magnetic field that is generated by input
voltage in a magnetic coil installed at rod head. As dis-
cussed in the Introduction of the work, in order to de-
scribe the dynamic behaviors of MR dampers, several
models have been proposed [10, 11, 17, 22]. In this
work, similar to that of [22], the governing equation
of the force produced is expressed using the LuGre-
based model in the following form:

f = σaz + σ0zv + σ1ż + σ2ẋ1 + σbẋ1v, (2)

ż = ẋ1 − a0|ẋ1|z, (3)

where σa,σb, and σi , i = 0,1,2, are scalar actuator
parameters, x1(t) is the position of the ground floor

Fig. 1 The schematic representation of the structural system

Fig. 2 Schematic of MR damper

where the damper is mounted, z(t) is an internal state
with the dynamics given in (3), and v(t) is the con-
troller input yet to be defined.

Unfortunately, due to the uncertain loading condi-
tions, the system parameters of (1) are not precisely
known; moreover, the model of (2)–(3) is merely a pre-
diction of the semiactive damper, and extensive field
tests are required to acquire the exact values of these
parameters, which in practice is not always possible.
Therefore the control problem presented here is to de-
sign the voltage input v(t) of (2) which will ensure the
absorbing of vibratory energy in a structure despite the
inherent nonlinear characteristic of the actuator and
parametric uncertainties of both the MR damper and
structural system. To this end, combining (2) and (3),
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we obtain the dynamics of the actuator as

f = σaz + σ0zv − σ1a0|ẋ1|z
+ (σ1 + σ2)ẋ1 + σbẋ1v, (4)

which can be written in the following compact form:

f = ρ1θ1 + ρ2θ2, (5)

where the auxiliary vectors ρ1(z, v, ẋ1) and ρ2(v, ẋ1),
and the uncertain parameter vectors θ1 and θ2 are ex-
plicitly defined as

ρ1 = [
z zv −|ẋ1|z

]
, ρ2 = [

ẋ1 ẋ1v
]
,

θ1 = [
σa σ0 σ1a0

]T
, θ2 = [

σ1 + σ2 σb

]T
.

(6)

Note that as the auxiliary signal ρ1 of (5) contains the
unmeasurable inner state z, an estimate of the input
force from the MR damper would be in the form

f̂ = ρ̂1θ̂1 + ρ2θ̂2, (7)

which can be written as

f̂ = θ̂11ẑ − θ̂13|ẋ1|ẑ + θ̂21ẋ1 + (
θ̂12ẑ + θ̂22ẋ1

)
v. (8)

In (8), ẑ is the estimate of the internal state variable,
and θ̂ij represents a dynamic estimate of θij of (6), yet
to be constructed.

3 Semiactive adaptive control

3.1 Observer formulation

It is clear from (8) that, in order to formulate the esti-
mated force, we need an observer for the internal state
z(t). Based on the subsequent stability analysis and
assuming that the positive parameter a0 defined in (3)
can be obtained, we designed the following observer
for z(t):

˙̂z = ẋ1 − a0|ẋ1|ẑ. (9)

The dynamics for the observation error defined as z̃ =
z − ẑ, can then be obtained using (3) and (9) as

˙̃z = −a0|ẋ1|z̃. (10)

3.2 Controller formulation and design

Our main control objective is to regulate the displace-
ment vector x(t) of (1) for earthquake hazard mitiga-
tion of a structural system, and in order to provide a
means to quantify the control objective, we define a
filtered version of displacement vector r(t) ∈ �n×1 as
follows [19]:

r = ẋ + αx, (11)

where α ∈ �n×n is a constant, diagonal, and positive
definite gain matrix. It is clear from the definition of
(11) that, regulating r(t) would enable us to regulate
both x(t) and ẋ(t) at the same time. To obtain the dy-
namics of r(t), we take the time derivative of (11) and
premultiply the result by Ms of (1) to obtain

Msṙ = Ms(ẍ + αẋ)

= Yφ − Hf, (12)

where (1) has been utilized, and

Yφ = Msαẋ − Csẋ − Ksx − MsLẍg, (13)

where Y(ẍg, ẋ, x) ∈ �n×3n is the regression matrix
of known and measurable signals, and φ ∈ �3n×1 is
the vector containing the unknown system parameters.
The regression matrix Y(ẍg, ẋ, x) can be explicitly de-
fined to have the following form:

Y = [
YM YC YK

]
(14)

with the auxiliary matrix variables YM,YC, and YK of
proper dimensions defined as

YM = diag
(
α1ẋ1 − ẍg α2ẋ2 − ẍg . . . αnẋn − ẍg

)
,

YC =

⎡

⎢⎢⎢
⎣

−ẋ1 ẋ2 − ẋ1 . . . 0
0 ẋ1 − ẋ2 . . . 0
...

...
. . .

...

0 0 . . . −ẋn

⎤

⎥⎥⎥
⎦

YK =

⎡

⎢⎢⎢
⎣

−x1 x2 − x1 . . . 0
0 x1 − x2 . . . 0
...

...
. . .

...

0 0 . . . −xn

⎤

⎥⎥⎥
⎦

,

(15)

where the notation diag(·) is used to represent a square
matrix having nonzero values only at its diagonal el-
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ements with the given entries. Similarly, φ, the vector
containing the uncertain but constant parameters can
be partitioned as φ = [φM φC φK ]T with

φM = [
m1 m2 . . .mn

]
,

φC = [
c1 c2 . . . cn

]
, (16)

φK = [
k1 k2 . . . kn

]
.

Adding and subtracting the term Hf̂ , to the right-hand
side of (12), then utilizing (5) and (8), the open-loop
dynamics for r(t) can be obtained to have the follow-
ing form:

Msṙ = Yφ + Hχ − Hux − Hρ2θ̃2

− H
(
θ11z − θ̂11ẑ + θ12vz

− θ̂12vẑ − θ13|ẋ1|z + θ̂13|ẋ1|ẑ
)
, (17)

where the auxiliary variables χ and ux are explicitly
defined as

χ = (−θ̂11ẑ + θ̂13|ẋ1|ẑ − θ̂21ẋ1
)
,

ux = (
θ̂12ẑ + θ̂22ẋ1

)
v.

(18)

Based on the subsequent stability analysis and con-
troller formulation, we require the signal Hux to have
the form

Hux = Kr + Hχ + Y φ̂

+ H
(−θ̂11ζ1 − θ̂12ζ2v + θ̂13|ẋ1|ζ3

)
. (19)

Utilizing this, the control input voltage to MR damper
is derived as

Hv = Kr + Hχ + Y φ̂ + H(−θ̂11ζ1 + θ̂13|ẋ1|ζ3)

θ̂12ẑ + θ̂22ẋ1 + θ̂12ζ2
,

(20)

where K is a constant positive definite diagonal con-
trol gain matrix, φ̂(t), θ̂21(t), θ̂22(t), θ̂11(t), θ̂12(t), and
θ̂13(t) are the dynamic estimates of the unknown but
constant system and MR damper parameters updated
according to

˙̂
φ = ΓφYT r,

˙̂
θ2 = −Γ2ρ

T
2 HT r,

˙̂
θ11 = −γ1(ẑ + ζ1)H

T r, (21)

˙̂
θ12 = −γ2v(ẑ + ζ2)H

T r,

˙̂
θ13 = γ3|ẋ1|(ẑ + ζ3)H

T r,

where Γφ , Γ2 are positive definite, diagonal, adapta-
tion gain matrices with proper dimensions, and γi with
i = 1,2,3 are positive scalar adaptation gains. Also ζ1,
ζ2, and ζ3 are auxiliary filters designed to be updated
according to the following formulations:

ζ̇1 = −a0|ẋ1|ζ1 − HT r,

ζ̇2 = −a0|ẋ1|ζ2 − vHT r, (22)

ζ̇3 = −a0|ẋ1|ζ3 + |ẋ1|HT r.

Notice that in order to ensure the boundedness of the
control signal of (19), its denominator has to be artifi-
cially kept away from zero via a projection algorithm.
A block diagram representation of the controller pro-
posed in this work is presented in Fig. 3. Substituting
(19) back into (17), the closed-loop dynamics for r(t)

is obtained as follows:

Msṙ = −Kr + Y φ̃ − Hρ2θ̃2

− H
(
θ11z − θ̂11(ẑ + ζ1)

)

− H
(
θ12vz − θ̂12v(ẑ + ζ2)

)

+ H
(
θ13|ẋ1|z − θ̂13|ẋ1|(ẑ + ζ3)

)
, (23)

where φ̃ and θ̃ij are the used to represent the differ-
ence between the actual and estimates parameters as
follows:

φ̃ = φ − φ̂,

θ̃ij = θij − θ̂ij .
(24)

Adding and subtracting the terms of H(θ11(ẑ +
ζ1)), H(θ12v(ẑ + ζ2)), and H(θ13|ẋ1|(ẑ + ζ3)) to (23)
and rearranging the terms, the closed-loop error dy-
namics can be written in the following advantageous
form:

Msṙ = −Kr + Y φ̃ − Hρ2θ̃2

+ H
(−θ̃11(ẑ + ζ1) − θ11(z̃ − ζ1)

)

+ H
(−θ̃12v(ẑ + ζ2) − θ12v(z̃ − ζ2)

)

+ H
(
θ̃13|ẋ1|(ẑ + ζ3) + θ13|ẋ1|(z̃ − ζ3)

)
. (25)

At this stage we are ready to propose the following
theorem.
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Fig. 3 Block diagram of
overall control scheme

3.3 Stability analysis

Theorem 1 For the semiactively controlled n-DOF
structural system given in (1), the observer–controller
couple described by (20) and (9) with the adaptation
laws of (21) and the filters given in (22) guarantees
asymptotic regulation of the structural system in the
sense that

lim
t→∞(x, ẋ) = 0, (26)

provided that

β = θ̂12ẑ + θ̂22ẋ1 + θ̂12ζ2 (27)

is kept artificially away from zero.

Proof We begin our proof by defining the following
nonnegative function:

V = 1

2
rT Msr + 1

2
z̃2 + 1

2
φ̃T Γ −1

φ φ̃

+ 1

2
θ̃ T

2 Γ −1
2 θ̃2 + 1

2

1

γ1
θ̃2

11 + 1

2

1

γ2
θ̃2

12

+ 1

2

1

γ3
θ̃2

13 + 1

2
θ11(z̃ − ζ1)

2

+ 1

2
θ12(z̃ − ζ2)

2 + 1

2
θ13(z̃ − ζ3)

2. (28)

Taking the time derivative of (28), substituting for
(25), (9), (20), (21), and (22), and cancelling common
terms, we obtain

V̇ = −rT Kr − a0|ẋ1|z̃2

− θ11a0|ẋ1|(z̃ − ζ1)
2

− θ12a0|ẋ1|(z̃ − ζ2)
2

− θ13a0|ẋ1|(z̃ − ζ3)
2, (29)

where the last four terms are always negative, enabling
us to upper bound (29) as

V̇ ≤ −rT Kr. (30)

Due to the structure of (28) and (30), V ∈ L∞ (is
bounded); therefore, r(t), z̃, φ̃, and θ̃ ∈ L∞. Fur-
thermore, from (30) it is straightforward to show that
r(t) ∈ L2 (square-integrable). Using standard signal
chasing arguments, we can show that all of the sig-
nals in the closed-loop system are bounded. We now
use closed-loop error system and the boundedness of
all signals to prove that ṙ(t) and ˙̃z are also bounded
(from (25) and (9), respectively). We can now apply
Barbalat’s lemma [12] to conclude the result given
in (26). �
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Table 1 Identified values of structure

M kg C N · s/m K N/m

m1 108 c1 25 k1 109150

m2 113 c2 26 k2 138150

m3 106 c3 27 k3 144090

m4 106 c4 26 k4 151430

m5 98 c5 27 k5 145890

m6 113 c6 31 k6 148570

3.4 Semiactive controller implementation

The input voltage given in (20) can be implemented to
structure as follows:

VMR =
⎧
⎨

⎩

0 if v ≤ 0,

v if 0 < v ≤ Vmax,

Vmax otherwise,
(31)

where Vmax = 4 V is the maximum voltage applied to
MR damper. β is adjusted according to

β =
{

ε if −ε ≤ β ≤ ε,

β otherwise.
(32)

4 Experimental validation

In order to illustrate the effectiveness of the proposed
nonlinear adaptive controller, we constructed an ex-
perimental setup at Machine Theory System Dynam-
ics and Control Laboratory, Yildiz Technical Univer-
sity. A photograph of experimental setup is shown in
Fig. 4, and a schematic representation of the setup
is depicted in Fig. 5. As shown in the figures, the
model used in our experimentations is a single-bay
six-story frame building with steel floors weighing ap-
proximately 107 kg. The floors are bolted in eight
columns which are made of spring steel beams. These
beams are 50-mm wide and 3-mm thick. The interstory
height is 250 mm. In order to obtain an approxima-
tion of the structural parameters, a system identifica-
tion method based on Hilbert transform [28] has been
applied. The parameters obtained are presented in Ta-
ble 1. Note that Cs = αMs + βKs , where α = 0.0265
and β = 0.0001143.

To obtain estimates of the MR damper parame-
ters, we conducted preliminary experiments where the

Fig. 4 A photograph of experimental structure

Fig. 5 Schematic of experimental setup
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force produced by MR damper is measured when ran-
dom displacement inputs are applied. During these ini-

Fig. 6 Velocity input

tial trails, MR damper voltage is set to 2 V. Velocity
input of the experiments is given in Fig. 6, and the
corresponding parameter estimates of MR damper are
given in Table 2. The estimated force and measured
force of MR damper are given in Fig. 7. In addition,
force-velocity and force-displacement results of MR
damper are shown in Fig. 8.

An electromechanically driven shake table is used
to introduce one-dimensional ground acceleration.
dSpace ACE Kit 1103 hardware and software pack-
ages are used for data acquisition and control imple-

Table 2 Experimentally obtained values for the MR damper
parameters

θ̂11 θ̂12 θ̂13 θ̂21 θ̂22

76000 320000 4500 1156.5 315

Fig. 7 Measured and
estimated force of MR
damper

Fig. 8 Characteristics of MR damper
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Fig. 9 Sixth floor
displacement and
acceleration

mentation. For displacement measurements, variety of
sensors including three Waycon linear variable dis-
placement transformers (LVDT) and three Opkon lin-
ear position transducers (LPT) are placed to different
floors of the structure. To measure the force applied the
MR damper during the experiments, a BKjaer force
transducer has been used, and Endevco Model 133 sig-
nal conditioner is placed between the force transducer
and dSpace Kit. Acceleration measurements are ob-
tained using four BKjaer accelerometers and two Dy-
tran accelerometers, and an 8-channel NetdB real-time
analyzer is used for signal processing of acceleration
data.

Four sets of experiments are performed: first, an
uncontrolled (without MR damper), secondly, passive
damper where MR damper is connected to the system
but is left passive (zero volts applied to its terminals),
thirdly, a skyhook controller [6] is implemented to the
system, and lastly the damper is attached and excited
with the proposed adaptive controller. For all exper-
iments, a scaled (70%) NS component of the 1940
El Centro seismic data is used as ground accelera-
tion. The results are compared among the cases uncon-
trolled, the MR damper (passive off), skyhook control,
and proposed adaptive control. For the proposed adap-
tive controller, the controller gains were selected as

K = diag
{
105 1 1 1 1 1

}
,

α = diag
{
1 100 100 100 100 100

}
,

(33)

with the adaptation gains set to

Γφ = diag
{
1.5 × 104 1.5 0.7 0.475 0.365 0.3785

594 75 150 232 468 7 3.65 × 107

1.65 × 105 3.876 × 105 5.55 × 105

2 × 105 0.16575 × 105 }
,

Γ2 = diag
{
26500 18000

}
,

γ1 = 2.35 × 107, γ2 = 6.65 × 107, and

γ3 = 3.5 × 107.

(34)

Figure 9 shows the time histories of the sixth floor’s
displacement and acceleration. The corresponding
frequency responses of sixth floor are illustrated in
Fig. 10. The dotted line denotes the uncontrolled case,
the dashed line expresses the passive off case, the
dashdot line depicts the skyhook controller, and the
solid line represents the proposed controller. From
the time histories of top floor, it can be seen that
the displacement peaks around 0.15 m and the accel-
eration peaks at 20 m/s2 in uncontrolled case. The
MR damper reduces the vibration levels of struc-
tural system in both passive off case and controlled
cases. Specifically, adaptive controller provided a
large amount of decrease in the acceleration responses
of the structure.

The parameter estimates of both the structural sys-
tem and the MR damper are presented in Figs. 12–
15. Specifically, Fig. 12 illustrates φi (i = 1,2, . . . ,6)
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Fig. 10 Frequency response sixth floor displacement and acceleration

Fig. 11 Comparison of performance indices

corresponding to the estimates of the mass-related pa-
rameters of the structure, Fig. 13 illustrates φi (i =
7,8, . . . ,12) that are the estimates of the damping
coefficient-related parameters of the structure, Fig. 14
illustrates φi (i = 13,14, . . . ,18) the estimates of the
stiffness coefficients-related parameters of the struc-
ture. Figure 15 shows the estimates of the MR damper
parameters. During the experimental studies, the ini-
tial values of the structural system parameter estimated
were set to

φ̂i (0) = 0, i = 1,2, . . . ,6,

φ̂j (0) = 50, j = 7,8, . . . ,12,

φ̂k(0) = 175000, k = 13,14, . . . ,18,

(35)
Fig. 12 Estimates of mass parameters
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Fig. 13 Estimates of damping coefficients

and the initial values of the MR damper parameter es-
timates were selected as

θ̂1(0) = [
105 4 × 105 3.5 × 105 ]T

,

θ̂2(0) = [
2 × 103 103 ]T

.
(36)

The experimental results were then evaluated with
four different performance indices defined by Ohtori
et al. [16] to validate the effectiveness of the proposed
method. The first two criteria are related with peak lev-
els of vibration and are defined as follows:

J1 = max

{
maxt,i |di(t)|

δmax

}
,

J2 = max

{
maxt,i |ẍi (t)|

|ẍmax
i (t)|

} (37)

Fig. 14 Estimates of stiffness parameters

over the interval i = 1,2, . . . ,6, where J1 is the in-
terstory drift ratio, and J2 means the level accelera-
tion. di(t) and ẍi (t) define the interstory drift and ac-
celeration of the ith story. δmax and ẍmax

i (t) are the
maximum interstory drift and acceleration of the un-
controlled structure, respectively. Note that the heights
of all stories are equal, enabling us to neglected the
term in the first and third criteria apart from the orig-
inal forms. Other two criteria are defined by the norm
forms of J1 and J2 as

J3 = max

{
maxt,i ‖di(t)‖

‖δmax‖
}
,

J4 = max

{
maxt,i ‖ẍi (t)‖

‖ẍmax
i (t)‖

}
.

(38)

Comparison of the performance indices are illustrated
in Fig. 11. As can be viewed, the proposed controller
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Fig. 15 Estimates of MR damper parameters

reduces both displacement and acceleration responses
of the structural system and has the best results in all
performance indices. Specifically, adaptive controller
has a great decrease in peak response value of acceler-
ation. Comparing the passive, skyhook, and controlled
cases in all situations, it can be concluded that the pro-
posed controller is quite effective and suppresses the
vibration of the structural system.

Experimental studies clearly validated that the pro-
posed nonlinear semiactive adaptive controller scheme
reduces not only the displacement but also the accel-
eration responses of the structure.

5 Conclusions

In this study, the design of a nonlinear adaptive con-
troller scheme for the vibration mitigation of a struc-

tural system using a semiactive actuator (an MR
damper) has been presented. The proposed nonlin-
ear controller guarantees asymptotic regulation of the
structural system despite the parametric uncertainties
in the dynamics of the system and the semiactive ac-
tuator. Extensive experimental studies were performed
to validate the effectiveness and the implementability
of proposed nonlinear semiactive adaptive controller
scheme.
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