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Abstract This letter investigates the synchroniza-
tion of a class of three-dimensional fractional-order
chaotic systems. Based on sliding mode variable struc-
ture control theory and adaptive control technique,
a single-state adaptive-feedback controller contain-
ing a novel fractional integral sliding surface is de-
veloped to synchronize a class of fractional-order
chaotic systems. The present controller, which only
contains a single driving variable, is simple both in de-
sign and implementation. Simulation results for three
fractional-order chaotic systems are provided to illus-
trate the effectiveness of the proposed scheme.
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1 Introduction

Even though fractional calculus is a mathematical
topic with more than 300 years history, its applica-
tion to physics and engineering has attracted lots of
attention only in the recent years. It has been found
that many systems in interdisciplinary fields can be
described by fractional differential equations, such as
viscoelastic systems [1], dielectric polarization [2],
electrode–electrolyte polarization [3], some finance
systems, and electromagnetic wave systems [4]. More-
over, applications of fractional calculus have been re-
ported in many areas such as signal processing [5],
image processing [6], automatic control [7], and robot-
ics [8, 9]. These examples and many other similar sam-
ples perfectly clarify the importance of consideration
and analysis of dynamical systems with fractional-
order models.

Recently, studying fractional-order chaotic systems
has become an active research field. Synchroniza-
tion of fractional-order chaotic systems starts to at-
tract increasing attention due to its potential applica-
tions in secure communication and control processing.
Some approaches have been proposed to achieve chaos
synchronization in fractional-order chaotic systems,
such as PC control [10, 11], nonlinear state observer
method [12, 13], adaptive control [14], unidirectional
linear error feedback coupling [15], sliding mode con-
trol [16], a scalar transmitted signal method [17], etc.
However, in the formulation of the chaos synchro-
nization problem, the proposed controllers in previous
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works in most cases are too complex both in design
and implementation.

In this letter, we design a fractional integral (FI)
sliding surface and propose a single driving vari-
able feedback control approach to synchronize a class
of three-dimensional fractional-order chaotic systems.
The proposed scheme, based on sliding mode variable
structure control theory and adaptive control technique
is simple, global, and theoretically rigorous. To show
a wider applicability of our method, we give illustra-
tions by using three different fractional-order chaotic
systems with numerical simulations to verify the ef-
fectiveness of the proposed synchronization scheme.
The rest of the letter is organized as follows. Section 2
gives the main results. In Sect. 3, three groups of ex-
amples are used to verify the effectiveness of the pro-
posed scheme. The letter is concluded in Sect. 4.

2 Main results

Let a three-dimensional fractional-order chaotic error
system be

Dα
t x = f1(x, z),

Dα
t z = f2(x, z),

(1)

where Dα
t = dα/dtα , 0 < α < 1, x ∈ R2, z ∈ R1

are the state error vectors, f1 and f2 are continu-
ous differential nonlinear functions with f1(0,0) =
f2(0,0) = 0.

To describe the new design and analysis, the fol-
lowing assumption is needed:

Assumption 1 The function f1(x, z) is smooth in a
neighborhood of z = 0, and the subsystem Dα

t x =
f1(x,0) is asymptotically stable about the origin
x = 0 for all x.

Remark 1 System (1) is very general, which contains
almost all fractional-order chaotic error systems.

Remark 2 The vector function f1(x, z) being smooth
in a neighborhood of z = 0, i.e., there are two posi-
tive constants λ0, λ1 such that ‖f1(x, z)−f1(x,0)‖ ≤
λ0|z|, and then ‖x‖1 ≤ λ1|z|. Thus, for chaos error
system (1), there exist two positive numbers p1, p2

and a large enough positive constant λ2 such that

‖f2(x, z)‖ ≤ p1‖x‖1 + p2|z| ≤ p1λ1|z| + p2|z|
≤ λ2|z|.

In order to stabilize the error system (1) to its equi-
librium point x = 0, z = 0, we add the following adap-
tive controller u to the error system (1), so that the
controlled error system (1) is given by

Dα
t x = f1(x, z),

Dα
t z = f2(x, z) + u,

(2)

with

u = −k|z| sign(s), (3)

where s is the FI sliding surface defined as

s = Dα−1
t z +

∫ t

0
cz(τ ) dτ (c > 0), (4)

and k is adapted according to the following update
law:

k̇ = θ |z||s| (θ > 0). (5)

Theorem 1 Starting from any initial values, the con-
trolled error system (3) is asymptotically stable under
the FI sliding surface (4) and updating law (5).

Proof The FI sliding surface is defined by (4). For the
existence of the sliding mode, it is necessary and suf-
ficient that

s = Dα−1
t z +

∫ t

0
cz(τ ) dτ = 0 (6)

and

ṡ = Dα
t z + cz = 0. (7)

Therefore, the following sliding mode dynamics
can be obtained as

Dα
t z = −cz. (8)

Obviously, if the design parameter c > 0, the stabil-
ity of (8) is surely guaranteed, that is, limt→∞ z = 0.
According to Assumption 1, we have limt→∞ x = 0.
Hence,

lim
t→∞x = 0, lim

t→∞ z = 0. (9)

In what follows, the proposed adaptive control
scheme will be proved to be able to derive the
controlled error system (3) onto the sliding surface
s(t) = 0.
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Consider the following Lyapunov function candi-
date:

V (t) = 1

2
s2 + 1

2θ
(k − k∗)2 (k∗ > λ2). (10)

Taking the derivative of V (t) with respect to time, one
has

V̇ (t) = sṡ + (k − k∗)k̇/θ

= s
(
Dα

t z + cz
) + (k − k∗)k̇/θ

= s
(
f2(x, z) − k|z| sign(s) + cz

)
+ (k − k∗)|z||s|

≤ λ2|z||s| − k|z||s| + (k − k∗)|z||s|
= −(k∗ − λ2)|z||s| ≤ 0. �

According to Lyapunov stability theory,
limt→∞ s = 0. Furthermore, according to (9), the slid-
ing mode is asymptotically stable. It clearly shows that
the controlled error system (3) can be stabilized with
the single controller u = −k|z| sign(s).

3 Applications

This section of the paper presents three illustrative ex-
amples to demonstrate the effectiveness of the pro-
posed synchronization scheme. MATLAB software is
used in this simulation.

Example 1 Consider the fractional-order Arneodo’s
system [18]

Dα
t x1 = x2,

Dα
t x2 = x3,

Dα
t x3 = ax1 − bx2 − cx3 − dx3

1 ,

(11)

where a = 5.5, b = 3.5, c = 1, d = 1, and x1, x2, x3

are state variables. Let system (11) be master system.
Then, the slave system with variable y is given as

Dα
t y1 = y2,

Dα
t y2 = y3,

Dα
t y3 = ay1 − by2 − cy3 − dy3

1

(12)

and the error system (e = y − x) is as follows:

Dα
t e1 = e2,

Dα
t e2 = e3,

Dα
t e3 = ae1 − be2 − ce3 − d

(
x2

1 + x1y1 + y2
1

)
e1.

(13)

It is easy to see that if e1 = 0, the following two-
dimensional subsystem of system (13),

Dα
t e2 = e3,

Dα
t e3 = −be2 − ce3

is asymptotically stable about the origin e2 = 0, e3 = 0
for all e2, e3. Therefore, if we let x = (e2, e3)

T , z =
e1, system (13) satisfies Assumption 1, and thus, the
controlled error system (13) is

Dα
t e1 = e2 − k|e1| sign(s),

Dα
t e2 = e3,

Dα
t e3 = ae1 − be2 − ce3 − d(x2

1 + x1y1 + y2
1)e1

(14)

i.e., the controlled slave system (12) is

Dα
t y1 = y2 − k|e1| sign(s),

Dα
t y2 = y3,

Dα
t y3 = ay1 − by2 − cy3 − dy3

1 ,

(15)

where s = Dα−1
t e1 + ∫ t

0 ce1(τ ) dτ = 0, and k̇ =
θ |e1||s| (θ > 0).

According to Theorem 1, the controlled error sys-
tem (14) can be stabilized, i.e., the master system (11)
can synchronize the slave system (15) with a single
controller.

To confirm the validity of the above conclusion, we
give numerical simulations with the following choices
of the initial conditions: x(0) = (1,−1,1)T , y(0) =
(−1,1,−1)T , and k(0) = 0, c = 3, α = 0.9, θ = 1.
The numerical results are illustrated in Figs. 1 and 2.
Figure 1 shows that the error system e = y − x is sta-
bilized to origin asymptotically as t → ∞, that is to
say, the master system (11) and the salve system (12)
are synchronized by the above controller. Figure 2 dis-
plays the feedback gain k tends to a positive constant,
while FI sliding surface s converges to zero.
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Fig. 1 The time evolution
of synchronization errors
between two
fractional-order Arneodo
chaotic systems

Fig. 2 The time evolution
of the feedback gain k and
FI sliding surface s

Example 2 The fractional-order unified chaotic sys-
tem [19]

Dα
t x1 = (25a + 10)(x2 − x1),

Dα
t x2 = (28 − 35a)x1 + (29a − 1)x2 − x1x3,

Dα
t x3 = x1x2 − (a + 8)x3/3,

(16)

where a ∈ [0,1]. When a = 0.8, system (16) becomes
the fractional-order Lü system; when a = 1, it is the
fractional-order Chen system. Let system (16) be the
master system, then, the slave system with variable y

is given as

Dα
t y1 = (25a + 10)(y2 − y1),

Dα
t y2 = (28 − 35a)y1 + (29a − 1)y2 − y1y3,

Dα
t y3 = y1y2 − (a + 8)y3/3

(17)

and the error system (e = y − x) is as follows:

Dα
t e1 = (25a + 10)(e2 − e1),

Dα
t e2 = (28 − 35a)e1 + (29a − 1)e2

− x1e3 − y3e1,

Dα
t e3 = x1e2 + y2e1 − (a + 8)e3/3.

(18)
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Fig. 3 The time evolution
of synchronization errors
between two
fractional-order unified
chaotic systems (a = 1)

It is easy to see that if e2 = 0, the following two-
dimensional subsystem of system (18),

Dα
t e1 = −(25a + 10)e1,

Dα
t e3 = y2e1 − (a + 8)e3/3

(19)

is asymptotically stable about the origin e1 = 0, e3 = 0
for all e1, e3. Therefore, if we let x = (e1, e3)

T , z = e2,
system (18) satisfies Assumption 1, and thus, the con-
trolled error system (18) is

Dα
t e1 = (25a + 10)(e2 − e1),

Dα
t e2 = (28 − 35a)e1 + (29a − 1)e2 − x1e3

− y3e1 − k|e2| sign(s),

Dα
t e3 = x1e2 + y2e1 − (a + 8)e3/3,

(20)

i.e., the controlled slave system (17) is

Dα
t y1 = (25a + 10)(y2 − y1),

Dα
t y2 = (28 − 35a)y1 + (29a − 1)y2 − y1y3

− k|e2| sign(s),

Dα
t y3 = y1y2 − (a + 8)y3/3,

(21)

where s = Dα−1
t e2 + ∫ t

0 ce2(τ ) dτ = 0, and k̇ =
θ |e2||s|(θ > 0).

According to Theorem 1, the controlled error sys-
tem (20) can be stabilized, i.e., the master system (16)

can synchronize the slave system (21) with a single
controller.

For this simulation, we employed the initial con-
ditions x(0) = (1,−1,10)T , y(0) = (−1,1,15)T , and
k(0) = 0, c = 3, α = 0.88, θ = 1. Figure 3 shows that
the error system e = y − x is stabilized to origin as-
ymptotically as t → ∞, i.e., the master system (16)
and the controlled salve system (26) are synchronized
by the above controller. Here and for the remaining
examples, we omit the feedback gain k and FI sliding
surface s for brevity.

Example 3 Consider the fractional-order Chua’s sys-
tem [20]

Dα
t x1 = a

(
x2 + x1 − 2x3

1

7

)
,

Dα
t x2 = x1 − x2 + x3,

Dα
t x3 = −100

7
x2.

(22)

When α = 0.95 and a = 12, the fractional-order
Chua’s system is chaotic. Let system (22) be the mas-
ter system. Then, the slave system with variable y is
given as
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Dα
t y1 = a

(
y2 + y1 − 2y3

1

7

)
,

Dα
t y2 = y1 − y2 + y3,

Dα
t y3 = −100

7
y2

(23)

and the error system (e = y − x) is as follows:

Dα
t e1 = a

(
e2 + 1 − 2(x2

1 + x1y1 + y2
1)

7
e1

)
,

Dα
t e2 = e1 − e2 + e3,

Dα
t e3 = −100

7
e2.

(24)

It is easy to see that if e1 = 0, the following two-
dimensional subsystem of the system (24),

Dα
t e2 = −e2 + e3,

Dα
t e3 = −100

7
e2

is uniformly exponentially stable about the origin e2 =
0, e3 = 0 for all e2, e3. Therefore, if we let x =
(e2, e3)

T , z = e1, system (24) satisfies Assumption 1,
and thus, the controlled error system (24) is

Dα
t e1 = a

(
e2 + 1 − 2(x2

1 + x1y1 + y2
1)

7
e1

)

− k|e1| sign(s),

Dα
t e2 = e1 − e2 + e3,

Dα
t e3 = −100

7
e2,

(25)

i.e., the controlled slave system (23) is

Dα
t y1 = a

(
y2 + y1 − 2y3

1

7

)
− k|e1| sign(s),

Dα
t y2 = y1 − y2 + y3,

Dα
t y3 = −100

7
y2,

(26)

where s = Dα−1
t e1 + ∫ t

0 ce1(τ ) dτ = 0, and k̇ =
θ |e1||s| (θ > 0).

According to Theorem 1, the controlled error sys-
tem (25) can be stabilized, i.e., the master system (22)
can synchronize the slave system (26) with a single
controller.

In the simulation, we choose the initial conditions
x(0) = (0.2,−0.2,0.3)T , y(0) = (−0.1,0.1,−1)T ,
and α = 0.95, c = 1, θ = 1. The numerical results
are illustrated in Fig. 4. It displays that the error sys-
tem e = y − x is stabilized to origin asymptotically

Fig. 4 The time evolution
of synchronization errors
between two
fractional-order Chua
chaotic systems
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as t → ∞, that is to say, the master system (22) and
the salve system (23) are synchronized by the above
controller.

4 Conclusions

In conclusion, we have investigated synchronization
of 3-d fractional-order chaotic systems. We have de-
signed a novel fractional integral (FI) sliding surface
and have proposed a single adaptive controller for
fractional-order chaos synchronization. The present
controller, which only contains a single driving vari-
able, is easy both in design and implementation. Nu-
merical simulations of three fractional-order chaotic
systems verify the effectiveness of the proposed syn-
chronization scheme.
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