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Abstract A novel method is presented for the iden-
tification of a continuous-time bilinear system from
the input–output data generated by a single exper-
iment with multiple pulses. In contrast to the con-
ventional approach utilizing multiple experiments, the
current work documents the advantage of using a sin-
gle experiment and sets up a procedure to obtain bi-
linear system models. The special pulse inputs em-
ployed by earlier research can be avoided and accurate
identification of the continuous-time system model is
possible by performing a single experiment incorpo-
rating a class of control input sequences combining
pulses with free-decay response. The algorithm pre-
sented herein is more attractive in practice for the iden-
tification of bilinear systems. Numerical examples pre-
sented demonstrate the methodology developed in the
paper.

Keywords Bilinear system identification · Nonlinear
system identification · System realization ·
Experimental dynamical modeling

1 Introduction

Identification of continuous-time systems is a fun-
damental problem with applications in many disci-
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plines of science. Methods for realizing linear time in-
variant models of dynamical systems are well under-
stood [1, 2]. However, much work remains to be done
for identification of continuous-time bilinear systems
which constitute a well structured subclass of nonlin-
ear systems. A class of nonlinear systems can be ap-
proximated by a bilinear system to an arbitrary high
order as needed. The approximation procedure such as
Carleman linearization [3, 4] and Lo’s theorem [5] can
be used to transform a nonlinear system to a different
corresponding bilinear system.

A bilinear system may be described by a linear
time invariant model plus a state and control-input
coupling term [6–9]. Bilinear models become time in-
variant when input values are constant. Bilinear dif-
ferential equations are used to model several physi-
cal systems such as the automobile brake dynamics,
nuclear reactor dynamics, and certain biological pro-
cesses [10]. However, in practice it is quite difficult to
use these models effectively for estimation and control
purposes, owing to the parametric uncertainty associ-
ated with the models. Continuous-time bilinear system
identification provides a solution to this problem by
enabling the determination of bilinear system models
directly from experimental data.

In the past few decades, researchers on bilinear
system identification focused on the relation of the
input–output equation in terms of function series,
such as orthogonal series approach [11], Walsh func-
tions [12, 13], block-pulse functions [14, 15], Cheby-
shev polynomials [16], Legendre polynomials [17],
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Hartley-based modulating functions [18, 19], and
Fock functionals [20, 21]. Juang [22] originated a
comprehensive solution to this classical problem of
bilinear system identification [8, 9]. The drawback of
this solution is that it requires multiple experiments
starting with the system at rest to formulate enough
equations for determination of bilinear system mod-
els. It is quite difficult, if not impossible, to use the
multiple-experiment method for real-time/on-line ap-
plications.

On the other hand, there is also recent work in
discrete-time bilinear state-space model identification.
Phan and Celik [23] tried to convert the discrete-
time bilinear system into an equivalent linear model
where the input excitation could be a random sig-
nal. Unfortunately, the two types of models (i.e.,
continuous-time and discrete-time bilinear models)
are not equivalent in the sense that there does not
exist any definite connection to convert back and
forth between them. At the present stage of devel-
opment, continuous-time bilinear system identifica-
tion and discrete-time bilinear system identification
remain two separate tracks. Nevertheless, bilinear sys-
tem identification requires some kind of discrete-time
model in the parameter-estimation process due to its
digital nature of data measurement. Ekman and Lar-
son [24] introduced an integral approach in which
the continuous-time bilinear system given in state-
space form was approximately transformed via in-
tegration operations into a discrete-time regression
model. The model parameters in the discrete-time re-
gression model is thereafter estimated using the prin-
ciple of separable nonlinear least-squares. Note that
there is no definite connection between the conven-
tional discrete-time bilinear model and the discrete-
time regression model.

In this paper, we develop a method similar to the
original one [22] without the requirement of multi-
ple experiments. The Single Experiment with Multi-
ple Pulses (SEMP) method requires only a single ex-
periment using multiple pulses with free-decay in be-
tween. Note that a single experiment with a single
pulse is insufficient to identify the input/output behav-
ior of bilinear systems [25]. The SEMP method sig-
nificantly advances the original approach toward the
real-time/on-line applications, which is shown as fol-
lows.

2 Basic formulation

This section will first describe the continuous-time bi-
linear system equations together with the simple but
efficient observations of using constant input to sim-
plify the system originally introduced by Juang [22].
Then it is followed by a subsection introducing the ba-
sic equations used to identify the bilinear system.

2.1 System equations

Let x be the state vector of n×1, Ac the state matrix of
n × n, u the input vector of r × 1, Bc the input matrix
of n× r . The bilinear state equation in the continuous-
time domain is expressed by

ẋ = Acx +
r∑

i=1

Ncixui + Bcu (1)

where Nci (i = 1,2, . . . , r) is the n × n weighting ma-
trix of the couple term xui between the state vector
x and ith input ui in the input vector u of length r .
The bilinear system of (1) can also be formulated by a
more compact representation as the following

ẋ = Acx + Ncu ⊗ x + Bcu (2)

where the symbol ⊗ means the Kronecker product and

Nc = [Nc1 Nc2 · · · Ncr ] (3)

is the bilinearity matrix of n × nr . The corresponding
measurement equation is

y = Cx + Du (4)

where y is the output measurement vector of m × 1,
C is the output matrix of m × n, and D is the direct
transmission matrix of m × r .

For a specific constant input u = wi where i is an
arbitrary integer to represent a specific choice for the
constant input vector u, the bilinear system of equa-
tions (2) becomes

ẋ = (Ac + Ncwi ⊗ In)x + Bcwi (5)

where In is identity matrix of n × n. The vector wi is
a constant input vector of r × 1 of the designed r × s

constant pulse input matrix

W = [w1 w2 · · · ws ]. (6)
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Each quantity wi, i = 1,2, . . . , s, represents a pulse
vector applied at several designated sampling points
to create free decay responses. The matrix W must be
of the rank r , obviously s ≥ r , and it is rich enough so
that all the system modes can be excited and observ-
able.

The discrete-time model of the system for u(k) =
wi is

x(k + 1) = Āix(k) + b̄i , i = 1,2, . . . , s (7)

with the measurement equation

y(k) = Cx(k) + Du(k) (8)

where the quantities Āi and b̄i are determined by

Āi = e(Ac+Ncwi⊗In)Δt , (9)

b̄i =
∫ Δt

0
e(Ac+Ncwi⊗In)τ dτBcwi. (10)

The quantity Δt is the sampling time.
If the input signal vanishes, the system of (2) re-

duces to the simple form

ẋ = Acx. (11)

Its discrete-time model is

x(k + 1) = Ax(k) (12)

where

A = eAcΔt (13)

and the corresponding measurement equation is also
reduced to

y(k) = Cx(k). (14)

The continuous bilinear system matrices, Ac,Bc,

C,D, and Nc are embedded in the discrete equations
(7), (8), (12), and (14). Equations (7) to (14) are used
as the basis of the identification procedure to be de-
scribed.

2.2 Preliminary equations for identification

With the help of (7), (8), (12), and (14), the state re-
sponse for a pulse over a single time period

(k + 1)Δt > t ≥ kΔt is

x(k) = Ax(k − 1),

x(k + 1) = Āix(k) + b̄i ,

x(k + 2) = Ax(k + 1),

x(k + 3) = A2x(k + 1),

...

x(k + �) = A�−1x(k + 1),

(15)

along with the measurements equations

y(k) = Cx(k) + Du(k),

y(k + 1) = Cx(k + 1) = C
(
Āix(k) + b̄i

)
,

y(k + 2) = CAx(k + 1),

y(k + 3) = CA2x(k + 1),

...

y(k + �) = CA�−1x(k + 1)

(16)

where � is an integer indicating the data length of the
free decay which is large enough for identification of
the system and will be defined later. Note that (16) is
valid only for a single pulse. When a second pulse is
applied at the end of the period, i.e., at k + �, the last
measurement equation for y(k + �) becomes the same
as the first equation with k replaced by k + �. For the
pulse responses of (15) and (16), it is easy to identify
the quantities C, A, x(k + 1) and all the states after
x(k + 1) without the knowledge of x(k).

Let us define the augmented measurement vector as

hk =

⎡

⎢⎢⎢⎣

y(k)

y(k + 1)
...

y(k + α − 1)

⎤

⎥⎥⎥⎦ (17)

where an integer α is introduced to indicate the length
of the vector, then we form the Hankel matrix as

Hk+1

= [hk+1 hk+2 · · · hk+β ]

=

⎡

⎢⎢⎢⎣

C

CA
...

CAα−1

⎤

⎥⎥⎥⎦

× [
x(k + 1) Ax(k + 1) · · · Aβ−1x(k + 1)

]

(18)
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where an integer β is introduced to increase the col-
umn size. The matrix product on the right-hand side
of (18) shows the relationship between the free-decay
system Markov parameters and the discrete-time sys-
tem matrices. Assume that the pair (A,C) is observ-
able such that its corresponding observability matrix
has the rank n if we choose α larger than or equal
to n where n is the number of states. Similarly, the
system is excitable by the state x(k + 1) in the sense
that the controllability-like matrix [x(k + 1),Ax(k +
1), . . . ,Aβ−1x(k + 1)] is of rank n for β ≥ n.

Using the singular value decomposition (SVD) to
decompose the Hankel matrix yields

Hk+1 = Uk+1Σk+1V
T
k+1 (19)

where Σk+1 of n × n is a square matrix containing
n nonzero singular values. The matrix Uk+1 is of di-
mension αm × n and the matrix Vk+1 is of dimension
β × n. The matrix Uk+1 is related to the system matri-
ces C and A by a choice such that

Uk+1 =

⎡

⎢⎢⎢⎣

C

CA
...

CAα−1

⎤

⎥⎥⎥⎦ . (20)

On the other hand, the matrix Σk+1V
T
k+1 is related to

the state matrix x(k + 1) by

Σk+1V
T
k+1

= [
x(k + 1) Ax(k + 1) . . . Aβ−1x(k + 1)

]
.

(21)

Equations (20) and (21) clearly imply that

C = the first m rows of Uk+1 (22)

and

x(k + 1) = the first column of Σk+1V
T
k+1. (23)

Now, truncating the last m (number of outputs) rows
of Uk+1 yields

Uk+1↑ =

⎡

⎢⎢⎢⎣

C

CA
...

CAα−2

⎤

⎥⎥⎥⎦ (24)

and, similarly, deleting the first m rows of Uk+1 gives

Uk+1↓ =

⎡

⎢⎢⎢⎣

CA

CA2

...

CAα−1

⎤

⎥⎥⎥⎦ = Uk+1↑A. (25)

Equation (25) produces the state matrix A by

A = U
†
k+1↑Uk+1↓. (26)

For the identified state matrix to have the rank n, both
(α − 1)m × n matrices Uk+1↑ and Uk+1↓ must also
have the rank n. This implies that α must be chosen
such that (α − 1)m ≥ n, i.e., αm ≥ m + n.

The relation between system matrix (Āi , b̄i ) and
the state x(k) is

x(k + 1) = Āix(k) + b̄i

= the first column of Σk+1V
T
k+1

= U
†
k+1↑hk+1↑ (27)

where hk+1↑ is formed by truncating the last m rows
of hk+1 and the last equality is based on the fact that
Uk+1↑ is of full rank n. Finally, if we apply another
pulse over the time period (k + � + 1)Δt > t ≥ (k +
�)Δt , then the initial state for that pulse is given by

x(k + �) = A�−1x(k + 1) = A�−1U
†
k+1↑hk+1↑. (28)

3 SEMP system identification method

The SEMP method for identifying a continuous-time
bilinear system model incorporates a class of control
input sequences combining pulses with free-decay in
between. The pulse duration is one time step Δt . The
first pulse of input w1 excites the system over the time
period

(k + 1)Δt > t ≥ kΔt; with k = 0 and u = w1.

(29)

Equations (15) and (16) describe the pulse response
and measurements, where the free-decay data length �,
denoted by �0, after the first pulse must be selected
such that

�0 > α + β − 1 (30)
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in order to form the Hankel matrix H1 defined in (18).
The last measurement y(α + β − 1) used in forming
the Hankel matrix H1 must be a free decay data, i.e.,
the second pulse is not allowed to apply at the point
α + β − 1, and thus the data length �0 must be larger
than α + β − 1 to avoid the possibility of any force
application at the point.

Given the pulse index j , the other pulses are ap-
plied over the time period

(k + j� + 1)Δt > t ≥ (k + j�)Δt

with k = �0 + (i − 1)(p + 1)� and (31)

u = wi

where

j = (i − 1)(p + 1), (i − 1)(p + 1) + 1, . . . ,

i(p + 1) − 1; i = 1,2, . . . , s. (32)

The integer i is the control input vector index of wi

in the matrix W defined in (6) and p is the assumed
system order. The free-decay data length � is chosen
such that

� > α − 1 (33)

to form the augmented measurement vector hk+1↑ de-
fined in (17). The same reason given for (30) ap-
plies for (31) that no force is allowed to apply at the
point (k + j (α − 1)) to produce a free decay data
y(k + j (α − 1)) to properly form hk+1↑. With the
choice of p = n and s = r , we need at least a total of
(n + 1)r + 1 pulses for the SEMP method to identify
the bilinear system.

3.1 Step 1: Identification of C and Ac

The initial step begins with the time index k = 0 and
the first pulse of input vector u = w1 to excite the sys-
tem. The resulting pulse response is then used to iden-
tify the matrices C, A and

x(1) = the first column of Σ1V
T
1 (34)

directly from (22), (26), and (27). The continuous-time
state matrix is calculated with the help of (13) as

Ac = 1

Δt
log(A), (35)

and the state vector at k = �0 is estimated by (28) as

x(�0) = A�0−1x(1) = A�0−1U
†
1↑h1↑ (36)

which will be used as the initial condition for the next
step. It is important to note that the same observability
matrix U1↑ is used to keep the identification results on
the same coordinate [22].

3.2 Step 2: Identification of Āi and b̄i

The second step starts with shifting the time index k

to �0 and using the same pulse vector w1 to excite the
system at the periods defined in (31) to generate a total
of p + 1 pulse responses between the pulse periods.
With the pulse response data available, an application
of (27) produces

Ā1x(k) + b̄1 = U
†
1↑hk+1↑,

Ā1x(k + �) + b̄1 = U
†
1↑hk+�+1↑,

...

Ā1x(k + p�) + b̄1 = U
†
1↑hk+p�+1↑

(37)

where hk+1↑, . . . , hk+p�+1↑ are formed by truncating
the last m rows of hk+1, . . . , hk+p�+1, respectively, de-
fined in (17) containing free-decay response data, x(k)

is obtained by (36) in the previous step, and

x(k + j�)

= A�−1x
(
k + (j − 1)� + 1

)

= A�−1U
†
1↑hk+(j−1)�+1↑; j = 1,2, . . . , p. (38)

Rewrite (37) in matrix form as
[
Ā1 b̄1

]
X1 = Y1 (39)

where

X1 =
[
x(k) x(k + �) . . . x(k + p�)

1 1 . . . 1

]
,

Y1 =
[
U

†
1↑hk+1↑ U

†
1↑hk+�+1↑ . . . U

†
1↑hk+p�+1↑

]
.

(40)

The matrices Ā1 and b̄1 can then be determined by
[
Ā1 b̄1

] = Y1 X †
1 . (41)

Note that the matrix X1 must have the rank n + 1 in
order to obtain a least-squares solution for Ā1 and b̄1.
It implies that the integer p must be equal to or greater
than the number of states n, i.e., p ≥ n. This step is
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completed by computing the initial condition for the
next experimental step using (36) for j = p + 1,

x
(
k + (p + 1)�

) = A�−1x(k + p� + 1)

= A�−1U
†
1↑hk+p�+1↑. (42)

Now set k = �0 + (i − 1)(p + 1)� and continue the
experiment by repeating the above process, i.e., by ex-
citing the system with the other input vector sequence
wi for i = 2,3, . . . , s, to compute all the discrete-time
model parameters Āi ’s and b̄i ’s.

3.3 Step 3: Identification of x(0) and D

The initial condition for the experiment can be simply
determined by substituting Ā1 and b̄1 into (27) as

x(0) = Ā−1
1

[
x(1) − b̄1

]

= Ā−1
1

[
the first column of

(
Σ1V

T
1

) − b̄1
]

= Ā−1
1

[
U

†
1↑h1↑ − b̄1

]
. (43)

Collect the measurement equations for all pulses as

y(0) = Cx(0) + Du(0),

y(�0) = Cx(�0) + Du(�0),

y(�0 + �) = Cx(�0 + �) + Du(�0 + �),

...

y(�0 + np�) = Cx(�0 + np�) + Du(�0 + np�)

(44)

where

np = s(p + 1) − 1. (45)

Form a matrix equation for (44) to yield

DU = D (46)

where

D = [
y(0) − Cx(0) y(�0) − Cx(�0) y(�0 + �) − Cx(�0 + �) · · · y(�0 + np�) − Cx(�0 + np�)

]
(47)

is a matrix of size m × [s(p + 1) + 1] and

U = [
u(0) u(�0) u(�0 + �) . . . u(�0 + np�)

]

(48)

is a matrix of size r ×[s(p +1)+1]. From (7) to (10),
the input vector u is given by

u(0) = w1,

u
(
�0 + (i − 1)(p + 1)� + j�

) = wi,

i = 1,2, . . . , s; j = 0,1, . . . , p.

(49)

The direct transmission matrix can be recovered in the
least-squares sense by using (46) to have

D = D U †. (50)

The matrix U must be of rank r , implying that the in-
teger s is equal to or larger than r , i.e., s ≥ r .

3.4 Step 4: Identification of Nc and Bc

The last step is to compute the n × r matrix Bc and
the weighting/bilinearity matrix Nc associated with
the couple term of the state vector x and the input vec-
tor u. Equation (9) which defines Āi produces

Ac +Ncwi ⊗In = 1

Δt
log(Āi), i = 1,2, . . . , s. (51)

Collect all the above (51) to form the matrix equation
as

Nc W = A (52)

where

W = W ⊗ In (53)

is an rn × sn matrix and

A = [ 1
Δt

log(Ā1) − Ac
1
Δt

log(Ā2) − Ac . . . 1
Δt

log(Ās) − Ac

]
(54)
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is an n × sn matrix. So the bilinearity matrix Nc can
be obtained by taking

Nc = A W †. (55)

Take the conversion from discrete-time to conti-
nuous-time of (10) and define

bci ≡
[
InΔt + 1

2! (Ac + Ncwi ⊗ In)(Δt)2

+ 1

3! (Ac + Ncwi ⊗ In)
2(Δt)3 + · · ·

]−1

b̄i . (56)

We form the matrix equation for the continuous-time
input matrix Bc as

BcW = B (57)

where

B = [bc1 bc2 . . . bcs ] (58)

is an n × s matrix. The continuous-time input matrix
Bc can then be obtained by solving

Bc = BW †. (59)

To this end, we have identified all continuous-time
system matrices Ac , Bc , Nc, C, and D together with
the initial condition x(0) for the bilinear system de-
scribed by (2) and (4) by the SEMP method.

It is worth mentioning that the SEMP method uses
p+2 pulses of w1 and p+1 pulses of w2,w3, . . . ,ws .
The order of these pulses is arbitrary so that one of the
pulses denoted as w1 is used p + 2 times to excite the
bilinear system with free-decay response in between
to obtain the quantities Ac, C, x(0), Ā1, and b̄1, and
the other wi ’s are used p + 1 times each for the rest of
identification.

4 Numerical example

Two numerical examples are used to illustrate the
SEMP method. The first example is the automobile
breaking system described by a second-order differen-
tial equation. The second example is the induction mo-
tor described by a fourth-order differential equation.

4.1 Automobile breaking system

In this subsection, we will identify an automobile dy-
namics system under the major influence of conven-
tional frictional braking and acceleration. Following
the developments of Mohler [10], the friction force of
the automobile brake is nearly proportional to the or-
thogonal force between the rubbing surface and their
relative velocity. The breaking force is modeled by

fb = cbu1ẋ1 (60)

where ẋ1 is the automobile translation velocity, u1 the
brake pedal control force, and cb a positive constant.
Similarly, other frictional forces may be approximated
by

fc = cf ẋ1 (61)

where cf is a positive constant.
Then a summation of inertial force, friction forces,

and normalized engine forces u2 yields the equation
of motion

ẋ1 = x2,

ẋ2 = −cf

m
x2 − cb

m
u1x2 + u2

(62)

where x1 is position, x2 the translation velocity, and m

the mass of the automobile. Rewrite (62) in the form
of the state equations (2) to produce

x =
[
x1

x2

]
; Ac =

[
0 1
0 − cf

m

]
; Bc =

[
0 0
0 1

]
;

(63)

Nc = [Nc1 Nc2 ] =
[

0 0 0 0
0 − cb

m
0 0

]
.

Let the initial condition be x(0) = [1.0 1.0 ]T , and
the parameters cf and cb be chosen as cf = 2m and
cb = 5m where m is the automobile mass. Assume that
the position and velocity are measured directly, and so
assign

C =
[

1 0
0 1

]
(64)

for the measurement equation (4). Also assume that
there exists a direct transmission matrix

D =
[

0.1 0
0 0.1

]
(65)

for the testing purpose.
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The control input signal designed for identification
is

W =
[

1 0
1 1

]
. (66)

Let p = α = β = 3 together with �0 = 5 and � = 2.
The input sequence is shown in Fig. 1, where u1 and
u2 are the sampled inputs at the specific sampling
points, ũ1 and ũ2 are the pulse inputs used in the
excitation/identification procedure with the sampling
time Δt = 0.1. We use both inputs with the pulse
magnitude of one for the first 15 steps, whereas only
the second input with the pulse magnitude of one is

used for the remaining steps. The initial pulse ap-
plied at k = 0 generates five (α + β − 1 = 5) free-
decay response data. All the remaining pulses ap-
plied at k = 6,9,12, . . . produce two (α − 1 = 2)
free-decay response data each. The response shown in
Fig. 2 for the automobile position shows no sign of re-
sponse decaying because it represents the distance of
a moving vehicle. Nevertheless, Fig. 3 shows a clear
sign of velocity decaying during the free-decay peri-
ods.

With the pulse response data in hand, the SEMP
method is applied to produce the following system ma-
trices

Ãc =
[

0.0145 −0.5661
0.0517 −2.0145

]
, B̃c =

[−2.8439 × 10−12 −0.5605
7.4223 × 10−12 1.0641

]
,

Ñc = [
Ñc1 Ñc2

] =
[−0.0667 2.5985 5.2505 × 10−14 −2.0463 × 10−12

0.1267 −4.9333 2.5729 × 10−14 −1.0214 × 10−12

]
,

C̃ =
[−0.5698 −0.3001
−0.0238 0.9272

]
, D̃ =

[
0.1 −1.0217 × 10−11

9.8070 × 10−16 0.1

]
.

(67)

These identified matrices are similar to the original
matrices given in (63). The similarity may be verified
by checking their eigenvalues as

λ(Ãc) − λ(Ac) =
[−4.4409 × 10−16

1.5543 × 10−15

]
,

λ(Ñc1) − λ(Nc1) =
[

0
−5.0326 × 10−11

]
, (68)

Fig. 1 Sampled and pulse input sequence

λ(Ñc2) − λ(Nc2) =
[

1.0103 × 10−15

−9.6991 × 10−13

]

where λ(·) denotes the eigenvalues of matrix (·). The
difference between true and identified system eigen-
values shows the accuracy of SEMP method. The sin-

Fig. 2 Simulated and measured position of automobile
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Fig. 3 Simulated and measured velocity of automobile

Fig. 4 Relative error of outputs

gular values of the Hankel matrix are

Σ1 = diag
[
3.9807 0.1183 1.9678 × 10−16

]
(69)

implying that the order of the system is n = 2. Using
the identified system with the identified initial condi-
tion x̃(0) = [−2.2920 1.0197 ]T to perform numeri-
cal simulations with the same input sequence shown
in Fig. 1, the simulated outputs ỹ1 and ỹ2 comparing
to the measured (actual) outputs y1 and y2 are shown
in Figs. 2 and 3, and the relative errors are plotted in
Fig. 4.

4.2 Induction motor

The bilinear model of induction motor drives is given
by a fourth-order differential equation [26], which can
be expressed in the form of (2). The state and control
variables are

x = [ φds φqs ids iqs ]T ,

u = [vds vqs ωs ]T
(70)

where φds and φqs are projections of the stator flux,
ids and iqs are projections of the stator current, vds

and vqs are projections of the supply voltage, ωs is the
slip angular frequency. The system matrices are given
by

Ac =

⎡

⎢⎢⎣

0 321.57 −0.312 0
−312.57 0 0 −0.312

98.87 27059 −44.93 2.57
−27059 98.87 −2.57 −44.93

⎤

⎥⎥⎦ ,

Bc =

⎡

⎢⎢⎣

1 0 0
0 1 −7.3

87.3 0 87.8
0 87.3 −53

⎤

⎥⎥⎦ ,

(71)

Nc1 =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , Nc2 =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎤

⎥⎥⎦ ,

Nc3 =

⎡

⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ ,

and the initial condition is x(0) =
[−0.07 0.04 15 47 ]T . Assume that the system matri-
ces of the measurement equation (4) are

C =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ , D =

⎡

⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0

⎤

⎥⎥⎦ . (72)

The first step is to design an input sequence for exci-
tation of the bilinear system. Let the control inputs be
given as

W =
⎡

⎣
1 0 0
1 1 0
1 0 1

⎤

⎦ , (73)
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and α = 2, β = p = 4 with the sampling time Δt =
0.005. Figure 5 shows the input sequence where the
quantities u1, u2, and u3 are the sampled input val-
ues at the designated application points, and the quan-
tities ũ1, ũ2, and ũ3 are the pulses used in the ex-
citation process. The first pulse vector includes all
three inputs, whereas the second and third pulse vec-
tors contain only the second and third inputs, respec-
tively. The first pulse applied at k = 0 generates five
(α +β − 1 = 5) free-decay response data that are used
to identify the state matrix Ac , the output matrix C,
and the observability matrix U1. The remaining pulses
at k = 6,8,10, . . . , produce only one (α − 1 = 1)

free-decay response data each. The resulting pulse re-
sponses shown in Figs. 6 to 10 show a clear response
decaying during the free-decay periods. These remain-
ing pulse responses are used to identify the remaining
system matrices Nc, Bc , and D.

Using the SEMP method, we obtain the identified
initial condition

x̃(0)

= [−67.1845 −6.0376 −3.5100 −5.1913 ]T ,

and the system matrices Ãc , B̃c , C̃, and D̃:

Ãc =

⎡

⎢⎢⎣

−22.2743 251.3680 72.0502 −184.9701
−1.7703 21.8923 −434.6409 39.6915
−4.8607 262.9303 −62.8138 −180.2745
−3.2837 26.4862 −66.7765 −26.6643

⎤

⎥⎥⎦ ,

B̃c =

⎡

⎢⎢⎣

13.8085 −77.3616 170.8562
99.5447 45.5043 606.6941
47.6701 −68.3619 −449.0471
18.5967 −2.5111 440.6662

⎤

⎥⎥⎦ ,

C̃ =

⎡

⎢⎢⎣

0.0005 0.0086 0.0054 −0.0065
−0.0004 0.0054 −0.0105 −0.0014
−0.3331 0.5199 0.7107 0.3368
−0.6689 0.3367 −0.2738 −0.6035

⎤

⎥⎥⎦ ,

D̃ =

⎡

⎢⎢⎣

0.0011 −0.0008 −0.0007
0.0056 −0.0045 −0.0039
0.5754 −0.4448 −0.3914
0.3295 −0.2713 −0.2307

⎤

⎥⎥⎦ × 10−11,

(74)

and the bilinearity matrices Ñc1, Ñc2, and Ñc3

Ñc1 =

⎡

⎢⎢⎣

0.0001 −0.0007 0.0142 −0.0262
0.0005 −0.0770 −0.1078 0.1137

−0.0002 −0.1147 −0.0888 0.1024
−0.0002 −0.1183 −0.0956 0.1404

⎤

⎥⎥⎦

× 10−8,

Ñc2 =

⎡

⎢⎢⎣

0.3817 −0.5957 −0.8142 −0.3859
0.1064 −0.1660 −0.2270 −0.1076
0.0150 −0.0235 −0.0321 −0.0152
0.1815 −0.2833 −0.3873 −0.1835

⎤

⎥⎥⎦ ,

Ñc3 =

⎡

⎢⎢⎣

0.3808 −0.0382 −0.6742 0.4320
−0.4672 −0.1786 −1.0480 0.0433
−0.1240 0.7817 −0.0150 −0.5896
−0.6264 −0.4120 0.1695 −0.1872

⎤

⎥⎥⎦ .

(75)

The maximum difference of eigenvalues of Ac and
Nci ’s between the original and identified system is
1.2544 × 10−5, and so the identified system matrices
are similar to the original ones. Using the identified
initial state and system matrices with the same input
sequence shown in Fig. 5 to perform numerical sim-
ulations, the simulated outputs ỹ1, ỹ2, and ỹ3 and the
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Fig. 5 Sampled and pulse input sequence

Fig. 6 Simulated and measured φds

Fig. 7 Simulated and measured φqs

Fig. 8 Simulated and measured ids

Fig. 9 Simulated and measured iqs

Fig. 10 Relative error of outputs
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measured (actual) outputs y1, y2, and y3 are shown
in Figs. 6 to 9, and the relative errors are plotted in
Fig. 10. These simulation results demonstrate good
correspondence between the identified and actual out-
put responses.

5 Concluding remarks

We have presented an identification process for deter-
mination of a continuous-time bilinear model using a
single experiment with a sequence of pulse inputs and
free decay. The period of free decay between pulses
depends on the size of Hankel matrix for determina-
tion of the system matrices describing the linear por-
tion of a bilinear system. Experiments may be per-
formed continuously with multiple inputs simultane-
ously, but waiting time is not required for the system
to decay completely as the multiple experiments do.
The identification method can be started anytime due
to the capability of identifying system initial condition
that makes it appropriate for real-time/on-line applica-
tions.

Simulation results illustrate the validity of the pro-
posed method for identification of a continuous-time
bilinear system. Simulation studies have also revealed
that a valid choice of pulse and free-decay responses
is important for the identification results. Some direc-
tions of continued research can be addressed in the fu-
ture. One study is to extend the identification method
to a general class of observable and reachable bilin-
ear systems such as removing the observability re-
quirement for the linear part of the bilinear systems.
Another study is the further investigations of proper
choice of input signals.
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26. Aganović, Z., Gajić, Z.: Linear Optimal Control of Bilin-
ear Systems. Lecture Notes in Control and Information Sci-
ences, vol. 206. Springer, London (1995)


	Continuous-time bilinear system identification using single experiment with multiple pulses
	Abstract
	Introduction
	Basic formulation
	System equations
	Preliminary equations for identification

	SEMP system identification method
	Step 1: Identification of C and Ac
	Step 2: Identification of Ai and bi
	Step 3: Identification of x(0) and D
	Step 4: Identification of Nc and Bc

	Numerical example
	Automobile breaking system
	Induction motor

	Concluding remarks
	References


