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Abstract This paper presents the necessary and suf-
ficient optimality conditions for the Euler–Lagrange
fractional equations of fractional variational problems
with determining in which spaces the functional must
exist where the functional contains right and left frac-
tional derivatives in the Riemann–Liouville sense and
the upper bound of integration less than the upper
bound of the interval of the fractional derivative. In or-
der to illustrate our results, one example is presented.
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1 Introduction

Fractional calculus is one of the generalizations of the
classical calculus. Several fields of application of frac-
tional differentiation and fractional integration are al-
ready well established, some others have just started.
Many applications of fractional calculus can be found
in turbulence and fluid dynamics, stochastic dynami-
cal system, plasma physics and controlled thermonu-
clear fusion, nonlinear control theory, image process-
ing, nonlinear biological systems, astrophysics, etc.
(for more details, see [12, 13, 15, 16, 20–22, 24–27,
33] and the references therein).

Real integer variational calculus plays a significant
role in many areas of science, engineering and applied
mathematics. Having this in mind, in recent years,
there has been a growing interest in the area of frac-
tional variational calculus and its applications which
include classical and quantum mechanics, field theory,
and optimal control (see [1–17, 19, 20, 23–32, 34–
36]). However, many problems are still open in this
field, and in the future, therefore, further research is
necessary in this direction.

For example, in the previous work the authors
were determining the Euler–Lagrange equations with-
out determining the space of the Lagrangian function.
In [8, 9], the authors determine the conditions on the
spaces of the Lagrangian, but in [9] the conditions are
not sufficient to satisfy the conditions required by the
fractional integration by parts (see [37]), and in [8] the
conditions are very strong.
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In this manuscript, we develop the theory of frac-
tional variational calculus further by proving the nec-
essary and sufficient optimality conditions with deter-
mining the space in which the Lagrangian must exist
which will be seen as a refinement of what is given
in [8, 9].

We consider for α,β ∈ (0,1) and −∞ < a < b <

∞, the following functional

J (y) =
∫ B

a

L
(
t, y(t), R

a D
α

t y(t), R
t D

β

b y(t)
)
dt,

a < B < b. (1)

We find the necessary and sufficient optimality condi-
tions.

This paper is organized as follows:
In Sect. 2, we give the principal definitions used

in this paper. In Sect. 3, the necessary optimality con-
ditions are proved for the problem (1) for any arbi-
trary B < b. Sufficient conditions are given in Sect. 4
and some examples are given in Sect. 5 to illustrate
our main results. Finally, our conclusions are given in
Sect. 6.

2 Preliminaries

Here we give the standard definitions of left and right
Riemann–Liouville fractional integral and Riemann–
Liouville fractional derivatives (see [22, 27, 33, 37]).

Definition 2.1 If f (t) ∈ L1(a, b), the set of all in-
tegrable functions, and α > 0 then the left and right
Riemann–Liouville fractional integrals of order α, de-
noted respectively by aI

α
t and t I

α
b , are defined by

aI
α
t f (t) = 1

�(α)

∫ t

a

(t − τ)α−1f (τ) dτ, (2)

t I
α
b f (t) = 1

�(α)

∫ b

t

(τ − t)α−1f (τ) dτ. (3)

Definition 2.2 For α > 0 the left and right Riemann–
Liouville fractional derivatives of order α, denoted re-
spectively by R

a Dα
t and R

t Dα
b , are defined by

R
a Dα

t f (t)

= 1

�(n − α)
Dn

∫ t

a

(t − τ)n−α−1f (τ) dτ, (4)

R
t Dα

b f (t)

= 1

�(n − α)
(−D)n

∫ b

t

(τ − t)n−α−1f (τ) dτ, (5)

where n is such that n − 1 < α < n and D = d
dt

. If α

is an integer, these derivatives are defined in the usual
sense R

a Dα
t := Dα , R

t Dα
b := (−D)α , α = 1,2,3, . . . .

We use in our proofs the fractional integration by
parts which is satisfied for Lipschitz spaces Hλ

p and

H̃ λ
p which are defined as follows (see [37]):

Definition 2.3 We say that f (x) ∈ Hλ
p = Hλ

p([a, b]),
where 0 < λ ≤ 1, if f (x) ∈ Lp(a, b) and wp(f, δ) ≤
cδλ where wp(f, δ) is given by

wp(f, δ) = sup
|t |<δ

{∫ b

a

∣∣f (x) − f (x − t)
∣∣p dx

}1/p

(6)

and it is assumed that f (x) is continued by zero be-
yond the interval [a, b].

Definition 2.4 We define the space H̃ λ
p as Hλ

p without
the zero continuation of a function f (x) beyond [a, b],
i.e.,

H̃ λ
p =

{
f (x) : f (x) ∈ Lp(a, b),

∫ b−δ

a

∣∣f (x + δ) − f (x)
∣∣p dx ≤ cδλp

, δ > 0

}
.

(7)

From Definition 2.3 and Definition 2.4, we note that
Hλ

p ⊂ H̃ λ
p . Hλ

p and H̃ λ
p are Banach spaces under the

following norms:

‖f ‖
H̃ λ

p
= ‖f ‖p

+ sup
0<δ<b−a

δ−λ

{∫ b−δ

a

∣∣f (x + δ)

− f (x)
∣∣p dx

}1/p

(8)

and

‖f ‖Hλ
p

= ‖f ‖
H̃ λ

p

+ sup
0<δ<b−a

δ−λ

{(∫ a+δ

a

+
∫ b

b−δ

)

× ∣∣f (x)
∣∣p dx

}1/p

. (9)

Lemma 2.5 The fractional integration by parts in
Riemann–Liouville derivatives
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∫ b

a

f (x)
(R

a
Dα

x g
)
(x)dx

=
∫ b

a

g(x)
(R

x
Dα

b f
)
(x)dx, 0 < α < 1, (10)

is valid for the functions

f (x) ∈ H̃ λ
p , g(x) ∈ Hλ

q , λ > α,

1/p + 1/q ≤ 1 + α. (11)

3 Necessary optimality conditions

To develop the necessary conditions for the extremum
of (1), assume y∗(t) is the desired function which
makes the value of the given functional a minimum
or maximum (most commonly a minimum), let ε ∈ R,
and define a family of curves y(t) = y∗(t) + εη(t).
Since R

a Dα
t and R

t D
β
b are linear operators, we get (1)

in the form

J (ε) =
∫ B

a

L
(
t, y(t) + εη(t), R

a Dα
t y + εR

a Dα
t η,

R
t D

β
b y + εR

t D
β
b η

)
dt. (12)

By differentiating both sides with respect to ε and set-
ting dJ

dε
= 0, we get

∫ B

a

[
∂L

∂y
η + ∂L

∂R
a Dα

t y

R
a Dα

t η

+ ∂L

∂R
t D

β
b y

R
t D

β
b η

]
dt = 0. (13)

Now for ∂L
∂R

a Dα
t y

∈ H̃ λ
p ([a,B]), ∂L

∂R
t D

β
b y

∈ Hλ
p([a, b]) ∩

Hλ
p([B,b]), with λ > max{α,β} and p > max{ 1

1+α
,

1
1+β

}. For any η ∈ Hλ
q ([a,B]) ∩ H̃ λ

q ([a, b]) ∩
H̃ λ

q ([B,b]) with 1/p + 1/q ≤ min{1 + α,1 + β}, we
get by fractional integration by parts that
∫ B

a

∂L

∂R
a Dα

t y

R
a Dα

t η dt =
∫ B

a

ηR
t Dα

B

(
∂L

∂R
a Dα

t y

)
dt

(14)

and
∫ B

a

∂L

∂R
t D

β
b y

R
t D

β
b η dt

=
∫ b

a

∂L

∂R
t D

β
b y

R
t D

β
b η dt −

∫ b

B

∂L

∂R
t D

β
b y

R
t D

β
b η dt

=
∫ b

a

ηR
a D

β
t

(
∂L

∂R
t D

β
b y

)
dt

−
∫ b

B

ηR
BD

β
t

(
∂L

∂R
t D

β
b y

)
dt. (15)

Thus, we get

0 =
∫ B

a

η

(
∂L

∂y
+ R

t Dα
B

(
∂L

∂R
a Dα

t y

)

+ R
a D

β
t

(
∂L

∂R
t D

β
b y

))
dt

+
∫ b

B

η

(
R
a D

β
t

(
∂L

∂R
t D

β
b y

)

− R
BD

β
t

(
∂L

∂R
t D

β
b y

))
dt. (16)

And where η is arbitrary, taking η(t) = 0 for t ∈
[B,b], we get

∂L

∂y
+ R

t Dα
B

(
∂L

∂R
a Dα

t y

)
+ R

a D
β
t

(
∂L

∂R
t D

β
b y

)
= 0,

t ∈ [a,B]. (17)

Taking η(t) = 0 for t ∈ [a,B], we get

R
a D

β
t

(
∂L

∂R
t D

β
b y

)
− R

BD
β
t

(
∂L

∂R
t D

β
b y

)
= 0, t ∈ [B,b].

(18)

Thus we have the fractional Euler equations for our
problem in the forms (17) and (18).

Note that by a simple calculation we can write (18)
in the form

d

dt

(∫ B

a

(t − s)−β

�(1 − β)

∂L

∂RD
β
b−y

dt

)
= 0, t ∈ [B,b].

(19)

Thus, we prove

Theorem 3.1 Let y∗ ∈ AC([a, b]) be an extremal of
the functional J (y) in (1), whose Lagrangian L satis-
fies for some λ > max{α,β} and p > max{ 1

1+α
, 1

1+β
}

the conditions:

• L ∈ C1((a, b) × R × R × R);
• ∂L

∂ R
a Dα

t y
∈ H̃ λ

p ([a,B]);
• ∂L

∂ R
t D

β
b y

∈ Hλ
p([a, b]) ∩ Hλ

p([B,b]).
Then y∗ satisfies the Euler–Lagrange equations given
by (17) and (18).
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4 Sufficient conditions

The study of sufficient conditions of optimality for
fractional variational problems was started by
R. Almeida and D. Torres in [5], then many papers
carried the research further (see [6–8, 18, 30]). In this
section, we prove the sufficient conditions that ensure
the existence of a minimum (maximum) of our frac-
tional variational problem. Some conditions of con-
vexity (concavity) are in order.

Definition 4.1 Given a function L = L(t, y, z,u), we
say that L is jointly convex (concave) in (y, z,u) if
∂L
∂y

, ∂L
∂z

, ∂L
∂u

exist, are continuous, and verify the fol-
lowing condition:

L(t, y + y1, z + z1, u + u1) − L(t, y, z,u)

≥ (≤)
∂L

∂y
y1 + ∂L

∂z
z1 + ∂L

∂u
u1 (20)

for all (t, y, z, u), (t, y + y1, z + z1, u+ u1) ∈ [a, b]×
R3.

Theorem 4.2 Suppose that the function L(t, y, z,u)

is jointly convex in (y, z,u). Then every solution y0

of the fractional Euler–Lagrange equations (17)–(18)
provides an extremal of the functional J (y) given
by (1).

Proof Since L is jointly convex in (y, z,u), for any
admissible function y0 + h (where y0(t) is a solution
of the fractional Euler–Lagrange equations (17)–(18)
and h(t) satisfies the conditions satisfied by η(t) used
in proving Theorem 3.1), using integration by parts,
we get

J (y0 + h) − J (y0)

=
∫ B

a

[
L

(
t, y0(t) + h(t), R

a Dα
t y0 + R

a Dα
t h,

R
t D

β
b y0 + R

t D
β
b h

)
− L(t, y0(t),

R
a Dα

t y0,
R
t D

β
b y0

]
dt

≥
∫ B

a

[
∂L

∂y0
h + ∂L

R
a Dα

t y0

R
a Dα

t h

+ ∂L

∂R
t D

β
b y0

R
t D

β
b h

]
dt

=
∫ B

a

h

(
∂L

∂y0
+ R

t Dα
B

(
∂L

∂R
a Dα

t y0

)

+ R
a D

β
t

(
∂L

∂R
t D

β
b y0

))
dt

+
∫ b

B

h

(
R
a D

β
t

(
∂L

∂R
t D

β
b y0

)

− R
BD

β
t

(
∂L

∂R
t D

β
b y0

))
dt

= 0 (21)

which completes the proof. �

5 Example

We shall provide in this section an example in order
to illustrate our main results. Consider the following
problem:

minJ (y) = 1

2

∫ B

0

[
y2(t) + (

R
0 Dα

t y(t)
)2

+ δ
(
R
t D

β

1 y(t)
)2]

, t ∈ [0,1], δ ≥ 0,

y(0) = y0. (22)

For this problem, we get the fractional Euler–Lagrange
equations in the form:

R
t Dα

B

(
R
0 Dα

t y(t)
) + δR

0 D
β
t

(
R
t D

β

1 y(t)
) + y = 0,

t ∈ [0,B] (23)

and

R
a D

β
t

(
R
t D

β

1 y(t)
) − R

BD
β
t

(
R
t D

β

1 y(t)
) = 0,

t ∈ [B,1] = 0, (24)

and where L(y, z,u) = 1
2 (y2 + z2 + δu2) is jointly

convex. Then the solution of (23)–(24) is a global min-
imizer to problem (22). Note that it is difficult to solve
the above fractional equations, for 0 < α < 1, 0 <

β < 1; a numerical method should be used to get an
approximation to the solution.

6 Conclusion

The fractional Euler–Lagrange equations involved
both the left and the right derivative although the La-
grangian contains only one kind of derivatives. This
fact has attracted many researchers because the ob-
tained equations are new from the mathematical point
of view and the classical Euler–Lagrange equations
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are recovered as a particular case. However, the prob-
lem of the surface terms remains one of the hot topics
in this area, and it was attacked from various points of
view. On the other hand, finding the appropriate nec-
essary and sufficient conditions for this problem is still
an open problem, especially when the main idea is to
find appropriate conditions and not very strong ones.
On this line of thought, we gave the space in which the
Lagrangian is contained with an arbitrary upper limit
of the functional, and we presented the necessary and
sufficient conditions for the existence of the optimizer.
Finally, we presented an example in order to illustrate
our results.
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