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Abstract We develop a method to compute the Lya-
punov spectrum and Lyapunov dimension, which
is effective for both symmetric and unsymmetric
vibro-impact systems. The Poincaré section is cho-
sen at the moment after impacting, and the six-
dimensional Poincaré map is established. The time
between two consecutive impacts is determined by
the initial conditions and the impact condition, hence
the Poincaré map is an implicit map. The Poincaré
map is used to calculate all the Lyapunov expo-
nents and the Lyapunov dimension. By numerical
simulations, the attractors are represented in the pro-
jected Poincaré section, and the Lyapunov spectrum is
obtained. The multi-degree-of-freedom vibro-impact
system may exhibit complex quasi-periodic attractors,
which can be characterized by the Lyapunov dimen-
sion.
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1 Introduction

The Lyapunov exponents measure the exponential
rates of divergence or convergence of nearby orbits
of an attractor in the state space, and are the most
precise tool for identification of the character of mo-
tion in a dynamical system [1–4]. Wolf et al. [5]
developed a method based on tracing the evolution
of an initial sphere of small perturbation to a nom-
inal trajectory, and Lyapunov exponents were ob-
tained by the average rate of the logarithmic stretch
of the ellipsoidal principal axes. Eckmann and Ruelle
[6, 7] analyzed an algorithm for computing Lyapunov
exponents from an experimental time series based
on the QR methods. Brown and Bryant [8] exam-
ined the question of accurately determining the Lya-
punov exponents of the dynamical system, and showed
that it is advantageous to use local neighborhood-to-
neighborhood mappings with higher-order Taylor se-
ries, rather than just local linear maps. Lu et al. [9]
developed a method of Lyapunov vectors to com-
puting Lyapunov exponents of continuous systems.
A novel method for estimating Lyapunov exponents
from a time series in the presence of additive noise
corruption was presented in [10]. A new method was
presented to calculate the Lyapunov spectrum of dy-
namical systems based on the time evolution of ini-
tially small disturbed copies (“clones”) of the mo-
tion equations in [11]. Stefański and Kapitaniak [12]
studied the estimation of the dominant Lyapunov ex-
ponent of non-smooth systems on the basis of maps
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synchronization. It is also shown that for the non-
smooth system, the calculation of Lyapunov expo-
nents is not straightforward, and the required lin-
earized equations have to be supplemented by cer-
tain transition conditions at the instants of disconti-
nuities [13]. For systems with impact, several methods
for the calculation of Lyapunov exponents have been
proposed [14–18].

One intrinsic characteristic of attractors is their di-
mensions. The dimension of a limit set measures the
amount of information necessary to specify points
within it accurately. The dimensions of the attractor
can give a lower bound on the number of state vari-
ables needed to describe the dynamics on the attrac-
tor, and can be used to quantify the complexity of
an attractor. The Lyapunov spectrum is closely re-
lated to the fractal dimension of the associated at-
tractor. In [19, 20], a relationship between the Lya-
punov exponents of a map with a strange attractor
and the dimension of the strange attractor was con-
jectured, and the Lyapunov dimension of an attractor
was defined by Kaplan and Yorke. In [21], this con-
jecture was numerically tested with use of several dif-
ferent maps by Russell et al., and the result shows that
the conjecture was verified to within the obtained ac-
curacy. Some relations between dimensions and Lya-
punov exponents were obtained rigorously by Ledrap-
pier in [22].

In [23], a method of calculating all the Lya-
punov exponents was proposed for a three-degree-
of-freedom vibro-impact system with symmetric two-
sided rigid constraints. The Poincaré map of the sys-
tem has symmetry property, and can be expressed as
the second iteration of another unsymmetric implicit
map. Based on the QR method, this unsymmetric im-
plicit map is used to calculate all the Lyapunov expo-
nents. However, this method can only be applied for
other vibro-impact systems with symmetry, because
the unsymmetric implicit map exists only in the sym-
metric vibro-impact system.

In this paper, we develop a method based on the
Poincaré map to compute the Lyapunov spectrum,
which is effective for both symmetric and unsym-
metric vibro-impact systems. In Sect. 2, the Poincaré
section of the three degree-of-freedom vibro-impact
system is chosen at the moment after impacting,
and the six-dimensional Poincaré map is established.
In Sect. 3, the Jacobi matrix of the Poincaré map
is deduced analytically. In Sect. 4, the Jacobi ma-
trix of the Poincaré map is used to calculate all

the Lyapunov exponents and the Lyapunov dimen-
sion. In Sect. 5, by numerical simulations, the attrac-
tors are represented in the projected Poincaré sec-
tion, and the Lyapunov spectrum is obtained. The
multi-degree-of-freedom vibro-impact system may
exhibit various complex quasi-periodic attractors,
which can be classified by the Lyapunov dimen-
sion.

2 Mechanical model, Poincaré section and
Poincaré map

A three degree-of-freedom system with symmetric
rigid constraints is shown in Fig. 1. The system has
three masses M1, M2, and M3. M2 and M3 are con-
nected to rigid planes via two linear springs K2 and
K3, and two linear viscous dashpots C2 and C3, re-
spectively. M1 is connected to M2 via linear spring
K1 and linear viscous dashpot C1. The excitations on
three masses are harmonic with amplitudes P1, P2,
and P3. For small forcing amplitudes, the system un-
dergoes simple oscillations and behaves as a linear
system. However, as the amplitudes increased, M3 be-
gins to collide with two stops of M2, and the system
becomes discontinuous and strongly non-linear. The
impact is described by a coefficient of restitution R.
It is assumed that the duration of impact is negligible
compared to the period of the force, and the friction
between M3 and M2 is negligible, also. C1 and C2 are
assumed as proportional damping.

Between any two consecutive impacts, the non-
dimensional differential equations of motion are given
by

Fig. 1 A three-degree-of-freedom vibro-impact system
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um1ẍ1 + 2uc1ζ(ẋ1 − ẋ2) + uk1(x1 − x2)

= uf 1f sin(ωt + τ),

um2ẍ2 + 2(uc1 + uc2)ζ ẋ2 − 2uc1ζ ẋ1

+ (uk1 + uk2)x2 − uk1x1

= uf 2f sin(ωt + τ),

um3ẍ3 + 2uc3ζ ẋ3 + uk3x3

= uf 3f sin(ωt + τ),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where the non-dimensional variables and parameters
are

t = T

√
K3

M3
, ζ = C3

2
√

K3M3
,

ω = Ω

√
M3

K3
, f = P3

P0
, umi = Mi

M3
,

uki = Ki

K3
, uci = Ci

C3
, uf i = Pi

P3
, xi = XiK3

P0
,

i = 1,2,3, and P0 = |P1|+ |P2|+ |P3|. The phase an-
gle τ is used only to make a suitable choice for the
origin of time in the calculation.

When M3 impacts the left and the right stops of M2,
the non-dimensional displacements of two masses sat-
isfy |x2 −x3| = h, where h = K3H

P0
. After each impact,

the velocities of M2 and M3 change according to the
impact law:

ẋ2+ = m1ẋ2− + n1ẋ3−,
(2)

ẋ3+ = m2ẋ2− + n2ẋ3−,

where

m1 = um2 − R

1 + um2
, n1 = 1 + R

1 + um2
,

m2 = um2(1 + R)

1 + um2
, n2 = 1 − um2R

1 + um2
.

In (1) and (2), a dot (·) denotes differentiation with re-
spect to the non-dimensional time t . ẋi− and ẋi+ rep-
resent the non-dimensional velocities of Mi before and
after impacting, respectively.

The phase space of the vibro-impact system is

R6 × S1

= {
x1, y1, x2, y2, x3, y3, t |(x1, y1, x2, y2, x3, y3)

∈ R6, t ∈ S1}, (3)

where S1 is the 2π
ω

circle. The Poincaré section �0 is
chosen at the moment of impacting at the left stop, that
is

�0 = {
(x1, y1, x2, y2, x3, y3, t) ∈ R6 × S1|x2 − x3

= h,yi = ẋi+
}
, (4)

and the section of impacting at the right stop can be
expressed as

�1 = {
(x1, y1, x2, y2, x3, y3, t) ∈ R6 × S1|x2 − x3

= −h
}
. (5)

The Poincaré map P is a composition of following four
sub-maps: (I) P1: The map from the instant after im-
pacting at the left stop (t = t0) to the instant before
impacting at the right stop (t = t1); (II) P2: The map
of impacting at the right stop (t = t1); (III) P3: The
map from the instant after impacting at the right stop
(t = t1) to the instant before impacting at the left stop
(t = t2); (IV) P4: The map of impacting at the left
stop (t = t2). Then we establish the six-dimensional
Poincaré map of the vibro-impact system as follows:

P : �0 �→ �0, P = P4 ◦ P3 ◦ P2 ◦ P1. (6)

3 The Jacobi matrix of the Poincaré map

According to (6), the Jacobi matrix of the Poincaré
map can be computed as

DP = DP4 ◦ DP3 ◦ DP2 ◦ DP1, (7)

where DPi is the linearized matrix of sub-maps Pi .
At the moment of impact, the coordinates x1, x2,

and y1 do not change, and y2, y3 changes according
to (2), then we obtain

DP2 = DP4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 m1 n1 0
0 0 0 m2 n2 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

Since P1 and P3 is two implicit maps, the cor-
responding Jacobi matrixes DP1 and DP3 are cal-
culated according to implicit function theorem. Let
DP1 = [aij ]6×6, the entries of the matrix DP1 are
computed as follows. Subsequently, DP3 is obtained
by the similar way.

The first and the second differential equations of (1)
are coupling, and the eigenfrequencies can be solved
as ω1 and ω2. Taking � as the canonical model matrix,
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and making the change of variables [x1, x2]T = �ξ ,
the first and the second equations of (1) become

Iξ̈ + Cξ̇ + �ξ = F̄ sin(ωt + τ), (9)

where C = 2ζp� = diag[2ζpω2
1,2ζpω2

2], F̄ =
[f̄1, f̄2]T = �TPk,Pk = [uf 1f,uf 2f ]T.

Let ψij denotes the element of � , the general solu-
tion of (1) is given by

x1(t) =
2∑

j=1

ψ1j

(
e−ηj t

(
aj cos(ωdj t) + bj sin(ωdj t)

)

+ Aj sin(ωt + τ) + Bj cos(ωt + τ)
)
,

x2(t) =
2∑

j=1

ψ2j

(
e−ηj t

(
aj cos(ωdj t) + bj sin(ωdj t)

)

+ Aj sin(ωt + τ) + Bj cos(ωt + τ)
)
,

x3(t) = e−η3t
(
a3 cos(ωd3t) + b3 sin(ωd3t)

)

+ A3 sin(ωt + τ) + B3 cos(ωt + τ),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

where ηj = ζpω2
j , ωdj =

√
ω2

j − η2
j , j = (1,2), η3 =

ζ , ωd3 =
√

1 − η2
3, and ai and bi are the integration

constants, Ai and Bi are the amplitude constants:

Aj = (ω2
j − ω2)f̄j

(2ηjω)2 + (ω2
j − ω2)2

,

(11.1)

Bj = −2ηjωf̄j

(2ηjω)2 + (ω2
j − ω2)2

, (j = 1,2)

A3 = (uk3 − um3ω
2)uf 3f

(uk3 − um3ω2)2 + (2uc3ζω)2
,

(11.2)
B3 = 2uc3ζωuf 3f

(uk3 − um3ω2)2 + (2uc3ζω)2
.

Let the coordinates of the initial map point x∗ ∈ �0

be x∗
1 , y∗

1 , x∗
2 , y∗

2 , y∗
3 , τ ∗. Substituting t = 0 into (10),

we obtain

x∗
i = ψi1(a1 + A1 sin τ ∗ + B1 cos τ ∗)

+ ψi2(a2 + A2 sin τ ∗ + B2 cos τ ∗),
i = 1,2; (12.1)

and

y∗
i = ẋ∗

i

= ψi1(−η1a1 + ωd1b1 + A1ω cos τ ∗ − B1ω sin τ ∗)
+ ψi2(−η2a2 + ωd2b2

+ A2ω cos τ ∗ − B2ω sin τ ∗) i = 1,2, (12.2)

x∗
3 = a3 + A3 sin τ ∗ + B3 cos τ ∗, (12.3)

Besides, since x∗
2 − x∗

3 = h with t = 0, the following
relation holds:

x∗
2 − x∗

3 = ψi1(a1 + A1 sin τ ∗ + B1 cos τ ∗)
+ ψi2(a2 + A2 sin τ ∗ + B2 cos τ ∗)
− (a3 + A3 sin τ ∗ + B3 cos τ ∗)

= h. (12.4)

According to (12.1)–(12.4), the integration constants
can be expressed as the function of the initial condi-
tions:

a1 = Ua1 sin τ ∗ + Va1 cos τ ∗ + Pa1x
∗
1 + Qa1x

∗
2 ,

(13.1)

a2 = Ua2 sin τ ∗ + Va2 cos τ ∗ + Pa2x
∗
1 + Qa2x

∗
2 ,

(13.2)

a3 = Ua3 sin τ ∗ + Va3 cos τ ∗ + Pa3x
∗
1 + Qa3x

∗
2 − h,

(13.3)

b1 = Ub1 sin τ ∗ + Vb1 cos τ ∗ + Pb1x
∗
1 + Qb1x

∗
2

+ Mb1y
∗
1 + Nb1y

∗
2 , (13.4)

b2 = Ub2 sin τ ∗ + Vb2 cos τ ∗ + Pb2x
∗
1 + Qb2x

∗
2

+ Mb2y
∗
1 + Nb2y

∗
2 , (13.5)

b3 = Ub3 sin τ ∗ + Vb3 cos τ ∗ + Pb3x
∗
1 + Qb3x

∗
2

+ Mb3y
∗
1 − η3

ωd3
h. (13.6)

After the moment of impacting at the right stop, let the
initial conditions be x∗

1 , y∗
1 , x∗

2 , y∗
2 , y∗

3 , τ ∗, the integra-
tion constants a1, a2, and b1, b2 are the same expres-
sions shown as (13.1), (13.2), and (13.4), (13.5). How-
ever, because the section of impacting is different, the
expressions a3 and b3 are changed as

a3 = Ua3 sin τ ∗ + Va3 cos τ ∗ + Pa3x
∗
1

+ Qa3x
∗
2 + h, (14.1)

b3 = Ub3 sin τ ∗ + Vb3 cos τ ∗ + Pb3x
∗
1 + Qb3x

∗
2

+ Mb3y
∗
1 + η3

ωd3
h. (14.2)

According to (12.1)–(12.4), the components of map
P1 = [P11 P12 P13 P14 P15 P16 ]T are

P11 = x1(x
∗
1 , y∗

1 , x∗
2 , y∗

2 , y∗
3 , τ ∗)

=
2∑

j=1

ψ1j

[
e−ηj t (aj cosωdj t + bj sinωdj t)

+ Aj sin(ωt + τ ∗) + Bj cos(ωt + τ ∗)
]
, (15.1)
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P12 = ẋ1(x
∗
1 , y∗

1 , x∗
2 , y∗

2 , y∗
3 , τ ∗)

=
2∑

j=1

ψ1j

{
e−ηj t

[
(−ηjaj + ωdjbj ) cosωdj t

− (ωdj aj + ηjbj ) sinωdj t
]

+ Ajω cos(ωt + τ ∗) − Bjω sin(ωt + τ ∗)
}
,

(15.2)

P13 = x2(x
∗
1 , y∗

1 , x∗
2 , y∗

2 , y∗
3 , τ ∗)

=
2∑

j=1

ψ2j

[
e−ηj t (aj cosωdj t + bj sinωdj t)

+ Aj sin(ωt + τ ∗) + Bj cos(ωt + τ ∗)
]
, (15.3)

P14 = ẋ2(x
∗
1 , y∗

1 , x∗
2 , y∗

2 , y∗
3 , τ ∗)

=
2∑

j=1

ψ2j

{
e−ηj t

[
(−ηjaj + ωdjbj ) cosωdj t

− (ωdj aj + ηjbj ) sinωdj t
]

+ Ajω cos(ωt + τ ∗) − Bjω sin(ωt + τ ∗)
}
,

(15.4)

P15 = ẋ3(x
∗
1 , y∗

1 , x∗
2 , y∗

2 , y∗
3 , τ ∗)

= e−η3t
[
(−η3a3 + ωd3b3) cosωd3t

− (ωd3a3 + η3b3) sinωd3t
]

+ A3ω cos(ωt + τ ∗) − B3ω sin(ωt + τ ∗),
(15.5)

P16 = ωt + τ ∗. (15.6)

In (15.1)–(15.6), t is the duration from the moment
impacting at the left stop to that impacting at the right
stop. The time t is the function of initial conditions,
and is determined by the equation x∗

2 − x∗
3 = −h im-

plicitly, which is the condition of impacting at the right
stop. Then we have

G(t, y∗
1 , x∗

2 , y∗
2 , x∗

3 , y∗
3 , τ ∗)

= x2(t) − x3(t) + h

=
2∑

j=1

ψ2j

[
e−ηj t (aj cosωdj t + bj sinωdj t)

+ Aj sin(ωt + τ ∗) + Bj cos(ωt + τ ∗)
]

− [
e−η3t (a3 cosωd3t + b3 sin(ωd3t)

+ A3 sin(ωt + τ ∗) + B3 cos(ωt + τ ∗)
] + h

= 0. (16)

According to (16), we obtain ∂t
∂x∗

1
, ∂t

∂y∗
1

, ∂t
∂x∗

2
, ∂t

∂y∗
2

, ∂t
∂y∗

3
,

∂t
∂τ∗ by the implicit function theorem.

According to (13.1)–(13.6), (15.1)–(15.6), and
(16), aij can be computed as follows by the chain
rule; see Appendix. Subsequently, DP3 is obtained
by the similar way. Therefore, the Jacobi matrix of
the Poincaré map P can be computed as DP = DP4 ◦
DP3 ◦ DP2 ◦ DP1.

4 Computing the Lyapunov exponents and
Lyapunov dimension based on the Poincaré map

Let TP(x∗) = DX∗P denoting the Jacobi matrix of the
Poincaré map P at the initial map point x∗, then

TN
P (x∗) = TP

(
PN−1x∗) · · ·TP(Px∗)TP(x∗) (17)

where Pkx∗ represent the kth iteration of P at the point
x∗. Let �N

j be eigenvalues of the matrix TN
P (x∗), the

Lyapunov exponents can be computed as [6]

λj = lim
N→∞

1

N
ln

∣
∣�N

j

∣
∣, j = 1,2,3,4,5,6. (18)

However, (18) cannot be used to calculate the Lya-
punov exponents directly. The reason for this is that
when the number of iteration of the map P increases,
the components of matrix TN

P (x∗) may become infi-
nite for chaotic attractors and null for periodic attrac-
tors. To avoid the overflow trouble, the QR method, as
a tool of continuous orthogonalization, is applied re-
peatedly to the computation [6, 7]. We are interested
in the matrix product TN

P (x∗). First, TP(x∗) is decom-
posed as

TP(x∗) = Q1R1, (19)

where Q1 is an orthogonal matrix and R1 is up-
per triangular with non-negative diagonal elements.
If TP(x∗) is invertible, this decomposition is unique.
Now let

Tk
s = TP

(
Pk−1x∗)Qk−1, k = 2,3, . . . ,N. (20)

If Tk
s is decomposed as

Tk
s = QkRk, (21)

where Gram–Schmidt orthogonalization method is
used to the decomposition, and Qk is orthogonal and
Rk is upper triangular with non-negative diagonal ele-
ments, then we have

TP
(
Pk−1x∗) = QkRkQ−1

k−1. (22)

According to (19) and (22), we obtain

TN
P = QN RNRN−1 · · ·R1. (23)
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Let λk
ii be diagonal elements of the upper triangular

matrix Rk , and λN
ii be diagonal elements of the upper

triangular matrix product RNRN−1 · · ·R1, we have

λN
ii =

N∏

k=1

λk
ii , (24)

and the Lyapunov exponents can be computed as [6,
7]

λi = lim
N→∞

1

N
lnλN

ii , (25)

where the Lyapunov exponents are ranked from large
to small as

λ1 ≥ λ2 ≥ · · · ≥ λ6. (26)

Let K be the largest integer such that λ1 + · · · +
λK ≥ 0, the Lyapunov dimension as defined by Kaplan
and York [14] is

DL = K +
∑K

i=1 λi

|λK+1| , (27)

where
K∑

i=1

λi ≥ 0,

K+1∑

i=1

λi < 0. (28)

If no such K exists, as is the case for a fixed point, DL

is defined to be 0.

5 Numerical analysis

5.1 Attractors, Lyapunov exponents, and Lyapunov
dimension

The vibro-impact system with system parameters: n =
1, ζ = 0.0008, ζp = 0.0009, R = 0.8, h = 0.05, um1 =
0.8, um2 = 1.5, um3 = 1.0, uk1 = 0.8, uk2 = 0.9,

uk3 = 1.0, uf 1 = 1, uf 2 = 0.6, uf 3 = 1.0, has been
chosen for analysis, and the forcing frequency ω is
taken as a control parameter. The Lyapunov expo-
nents and Lyapunov dimension are computed, and are
shown in the Table 1. The corresponding attractors
shown in the projected Poincaré section (x2, y2) are
represented in Fig. 2. With ω = 2.6790 and 2.6715,
the largest Lyapunov exponents equal to zero, indicat-
ing that the attractors of the Poincaré map are quasi-
periodic, as shown in Fig. 2(a) and (d), respectively.
With ω = 2.6770 and 2.6760, the largest Lyapunov ex-
ponents are negative, indicating that the attractors of
the Poincaré map are periodic, as shown in Fig. 2(b)
and (c), respectively. Figure 2(b) exhibits period 5-5
fixed points, and Fig. 2(c) exhibits period 10-10 fixed
points. With ω = 2.6660 and 2.6620, the largest Lya-
punov exponents are positive, indicating that the at-
tractors of the Poincaré map are chaotic, as shown in
Fig. 2(e) and (f), respectively. With ω = 2.6790 and
2.6715, the Lyapunov dimensions are 1, implying that
the projected Poincaré section exhibits a one-torus in
the two cases.

With ω = 2.6760, 2.6715, and 2.6620, the con-
vergent series of the Lyapunov exponents are rep-
resented in Fig. 3. The iteration times (N) of the
Poincaré map is 30,000. It is shown that for the pe-
riodic attractors and quasi-periodic attractors, the con-
vergency of the Lyapunov exponents is good; see
Fig. 3(a), (b) (the convergent series of the periodic
attractor) and Fig. 3(c), (d) (the convergent series of
the quasi-periodic attractor). However, for the chaotic
attractor, the curves of the convergency series of
the Lyapunov exponents is rough obviously, imply-
ing the convergency of the Lyapunov exponents of
the chaotic attractor is not so good; see Fig. 3(e)
and (f).

Table 1 The Lyapunov exponents, Lyapunov dimension, and the type of attractors of the Poincaré map

ω Fig. name λ1 λ2 λ3 λ4 λ5 λ6 Attractor DL

2.6790 2(a) 0.0000 −0.0059 −0.0356 −0.0356 −0.2328 −0.6014 Quasi-periodic 1

2.6770 2(b) −0.0043 −0.0160 −0.0175 −0.0278 −0.0429 −0.8019 Periodic 0

2.6760 2(c) −0.0043 −0.0058 −0.0247 −0.0252 −0.0415 −0.8088 Periodic 0

2.6715 2(d) 0.0000 −0.0032 −0.0242 −0.0243 −0.0660 −0.7929 Quasi-periodic 1

2.6660 2(e) 0.0158 0.0000 −0.0225 −0.0259 −0.0654 −0.8046 Chaotic 2.7022

2.6620 2(f) 0.0375 0.0000 −0.0218 −0.0263 −0.0713 −0.8219 Chaotic 3.5970
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Fig. 2 Attractors shown in
the projected Poincaré
section (x2, y2).
(a) ω = 2.6790:
quasi-periodic,
(b) ω = 2.6770: periodic,
(c) ω = 2.6760: periodic,
(d) ω = 2.6715:
quasi-periodic,
(e) ω = 2.6660: chaotic,
(f) ω = 2.6620: chaotic

5.2 Characterizing quasi-periodic attractors by the
Lyapunov dimension

Because of the complexity of the dynamics, the multi-
degree-of-freedom vibro-impact system can exhibit
complex quasi-periodic attractors, and approach chaos
subsequently [24–29]. Here, we can characterize the
various quasi-periodic attractors in vibro-impact sys-
tems by the Lyapunov dimension.

As an example, the system parameters (2): n = 1,
ς = 0.015, ζp = 0.005, ω = 2.842, R = 0.8, h = 0.09,
um1 = 0.9, um2 = 3, um3 = 1.0, uk1 = 0.9, uk2 =
1.25, uk3 = 1.0, uf 1 = 1.2, uf 2 = 1.8, uf 3 = 1.0, is

considered. When the iterating times increase succes-
sively, the projected Poincaré section will approach
two different quasi-periodic attractors in turn. When
the iterating times is 50,000, the projected Poincaré
section approaches a circle, as shown in Fig. 4(a).
However, when the iterating times increases, the cir-
cle becomes unstable, and converges upon a torus at
last, as shown in Fig. 4(b). Figure 4(c) plots the last
50,000 map point after 200,000 iterates.

As another example, the vibro-impact system with
system parameters (3): n = 1, ζ = 0.0016582, ζp =
0.008, ω = 3.88, R = 0.8, h = 0.08, um1 = 0.76764,
um2 = 2, um3 = 1.0, uk1 = 1, uk2 = 1, uk3 = 1.0,
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Fig. 3 The convergent
series. (a) and (b) The
convergent series of all the
Lyapunov exponents with
ω = 2.6760, (c) and (d) The
convergent series of all the
Lyapunov exponents with
ω = 2.6715, (e) and (f) The
convergent series of all the
Lyapunov exponents with
ω = 2.6620

Table 2 The Lyapunov exponents, Lyapunov dimension, and the type of attractors of the Poincaré map

Fig. name λ1 λ2 λ3 λ4 λ5 λ6 Attractor DL

4(c) 0.0000 0.0000 −0.0007 −0.0016 −0.5017 −0.5017 two-torus 2

5 0.0000 0.0000 0.0000 0.0000 −0.5008 −0.5008 four-torus 4

uf 1 = 2, uf 2 = 1, uf 3 = 1.0, is considered. The pro-
jected Poincaré section exhibits a torus, as shown in
Fig. 5.

The Lyapunov exponents and the Lyapunov dimen-
sion are computed as the Table 2. For the two cases,
the largest Lyapunov exponents are all equal to zero,

indicating that the attractors shown in the projected
Poincaré section are quasi-periodic. For the attractor
shown in Fig. 4(c), there are two zero Lyapunov expo-
nents, hence the Lyapunov dimension is 2, indicating
that the torus shown in Fig. 4(c) is a two-torus. How-
ever, for the attractor shown in Fig. 5, there are four
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Fig. 4 Attractor shown in
the projected Poincaré
section (x1, y1); (a) iterate
50,000 times, (b) iterate
200,000 times, (c) plot the
last 50,000 map point after
200,000 iterates

Fig. 5 Attractor shown in the projected Poincaré section
(x2, y2)

zero Lyapunov exponents, hence the Lyapunov dimen-
sion is 4, indicating that the torus shown in Fig. 5 is a
four-torus.

For the first case, the convergent series of λ1,2,3,4

and λ5,6 are shown in Fig. 6(a) and (b), respectively.
The convergent series exhibit remarkable non-smooth
characteristics before 50,000 iterates; this is because
that the Poincaré section of the vibro-impact system
approaches a unstable one-torus at first, as shown in
Fig. 4(a). However, with the increasing of the iterate

times, this final attractor is a two-torus, as shown in
Fig. 4(c).

6 Conclusions

For the vibro-impact system, the Poincaré section
can be chosen at the moment after impacting, and
the six-dimensional Poincaré map can be established.
The time between two consecutive impacts is deter-
mined by the initial conditions and the impact con-
dition, hence the Poincaré map is an implicit map.
The Poincaré map can be used to determine all the
Lyapunov exponents and the Lyapunov dimension. By
numerical simulations, the attractors are represented
in the projected Poincaré section, and the Lyapunov
spectrum is obtained. The multi-degree-of-freedom
vibro-impact system may exhibit various complex
quasi-periodic attractors, which can be classified by
the Lyapunov dimension. The method for computing
the Lyapunov exponents and the Lyapunov dimen-
sion is effective for both symmetric and unsymmetric
vibro-impact systems.
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Fig. 6 The convergent
series of the Lyapunov
exponents with the second
system parameters:
(a) λ1,2,3,4, (b) λ5,6
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Appendix

Jacobi matrix elements

ai1 = ∂P1i

∂a1

∂a1

∂x∗
1

+ ∂P1i

∂b1

∂b1

∂x∗
1

+ ∂P1i

∂a2

∂a2

∂x∗
1

+ ∂P1i

∂b2

∂b2

∂x∗
1

+ ∂P1i

∂a3

∂a3

∂x∗
1

+ ∂P1i

∂b3

∂b3

∂x∗
1

+ ∂P1i

∂t

∂t

∂x∗
1
,

ai2 = ∂P1i

∂a1

∂a1

∂y∗
1

+ ∂P1i

∂b1

∂b1

∂y∗
1

+ ∂P1i

∂a2

∂a2

∂y∗
1

+ ∂P1i

∂b2

∂b2

∂y∗
1

+ ∂P1i

∂a3

∂a3

∂y∗
1

+ ∂P1i

∂b3

∂b3

∂y∗
1

+ ∂P1i

∂t

∂t

∂y∗
1
,

ai3 = ∂P1i

∂a1

∂a1

∂x∗
2

+ ∂P1i

∂b1

∂b1

∂x∗
2

+ ∂P1i

∂a2

∂a2

∂x∗
2

+ ∂P1i

∂b2

∂b2

∂x∗
2

+ ∂P1i

∂a3

∂a3

∂x∗
2

+ ∂P1i

∂b3

∂b3

∂x∗
2

+ ∂P1i

∂t

∂t

∂x∗
2
,

ai4 = ∂P1i

∂a1

∂a1

∂y∗
2

+ ∂P1i

∂b1

∂b1

∂y∗
2

+ ∂P1i

∂a2

∂a2

∂y∗
2

+ ∂P1i

∂b2

∂b2

∂y∗
2

+ ∂P1i

∂a3

∂a3

∂y∗
2

+ ∂P1i

∂b3

∂b3

∂y∗
2

+ ∂P1i

∂t

∂t

∂y∗
2
,

ai5 = ∂P1i

∂a1

∂a1

∂y∗
3

+ ∂P1i

∂b1

∂b1

∂y∗
3

+ ∂P1i

∂a2

∂a2

∂y∗
3

+ ∂P1i

∂b2

∂b2

∂y∗
3

+ ∂P1i

∂a3

∂a3

∂y∗
3

+ ∂P1i

∂b3

∂b3

∂y∗
3

+ ∂P1i

∂t

∂t

∂y∗
3
,

ai6 = ∂P1i

∂a1

∂a1

∂τ ∗ + ∂P1i

∂b1

∂b1

∂τ ∗ + ∂P1i

∂a2

∂a2

∂τ ∗ + ∂P1i

∂b2

∂b2

∂τ ∗

+ ∂P1i

∂a3

∂a3

∂τ ∗ + ∂P1i

∂b3

∂b3

∂τ ∗ + ∂P1i

∂t

∂t

∂τ ∗ .
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