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Abstract Studies on the modeling of the coupled dy-
namics of infectious diseases at both the population
level (the epidemic process or between-host dynamics)
and at the cell level (the early viremia or within-host
dynamics) are scarce. Most of them deal with these
two processes separately by postulating assumptions
that render them decoupled.

In this work, we present a new model that allows
the two dynamic processes to explicitly depend on
each other. It is shown that new properties can emerge
from the coupled system and more complex dynamics
may be expected.
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1 Introduction

For infectious diseases, such as HIV infection, two
key processes play important roles in the study of the
host-parasite interaction. One is the epidemic process
that involves disease transmission between hosts, and
the other is the immunological process related to the
virus-cell interaction at the level of an individual host.
Although an increasing number of mathematical mod-
els have been developed to study the transmission dy-
namics of these diseases, most of them treat these two
processes separately. Viral dynamic models (e.g., An-
derson and May [1], De Boer and Perelson [4], Nowak
and May [9, 10], Perelson et al. [11], Perelson and
Nelson [12], Regoes et al. [14], Wodarz [16]) con-
sider the within-host dynamics independent of the in-
teraction at the population level), whereas epidemic
models of population dynamics (e.g., Anderson and
May [1], Thieme [15], and references therein) con-
sider the interaction between susceptible and infected
hosts without an explicit link to the viral dynamics
within hosts (by implicitly assuming that all infectious
hosts have the same constant viral load, and hence the
same infectivity). When the two processes are decou-
pled, the mathematical models are in general easier
to analyze. However, there remain questions that can
only be addressed by using models which explicitly
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Table 1 Biological
quantities and parameter
values used in simulations

Parameter Value Description Reference

Λc 104 cells
time Recruitment rate of uninfected cells [2]

μc 0.01 1
time Death rate of uninfected cells [2]

δc 1 1
time Death rate of infected cells [8]

p 5000 viruses
time·cell Viral production rate [5]

c 23 1
time Clearance rate of free virus [13]

μ 1
70×365

1
time Host natural death rate

Λ 5000μ hosts
time Host recruitment rate

Rv Within-host reproduction number

Rh Between-host reproduction number

Rβ
h “Isolated” host reproduction number

Rv0 = RvN̂ “Isolated” virus reproduction number

R±
ve = Î± Rv0

N̂
“Effective” reproduction number

Rhmax Maximum of Rh for stability

link the two processes. Such questions include: (i) To
what extent does the within-host dynamics influence
the disease dynamics at the population level? (ii) What
is the effect of population dynamics of disease trans-
mission on the viral dynamics at the individual level?
(iii) Will the model predictions regarding the evolu-
tion of virulence and the basic reproduction number
of the pathogen be altered if the two processes are
dynamically linked? Some recent studies have incor-
porated the parasite characteristics within individual
hosts into the between-host dynamics. For example,
Gilchrist and Coombs [7] use a nested model to eval-
uate the direction of natural selection (in the study of
evolution of virulence) at the within- and between-host
levels. In this nested model, the within-host system is
assumed to be independent of the transmission dynam-
ics at the population level.

In this paper, we propose a model with an explicit
linkage between the epidemiological and immunolog-
ical dynamics. This model builds upon the approach of
Gilchrist and Coombs [7] by relaxing the steady-state
assumption for the immune system. A model consid-
ered in [3] also relaxed the steady-state assumption by
incorporating the immunological dynamics and link-
ing the prevalence level of disease to the average vi-
ral load at the within-host level. Their results arise
mainly from numerical computations. To the best of
our knowledge, all existing models that are intended to
couple immunological and epidemiological dynamics

confront the difficulty as to what are the more appro-
priate ways to incorporate epidemiological dynamics
into the within-host cellular process. It is clear that the
prevalence of a disease should play a role in influenc-
ing the pathogen behavior within individual hosts, al-
though the specific mechanism is elusive (see Fraser et
al. [6]).

Our model incorporates not only the dependence
of epidemics on the viral dynamics, but also the de-
pendence of the within-host dynamics on the between-
host dynamics;. Particularly, it allows the within-host
viral load to vary as the epidemic level changes. Our
approach makes it possible to perform a bifurcation
analysis of both the infection-free and the interior
equilibria. We also illustrate our findings using numer-
ical simulations. The model consists of ordinary differ-
ential equations that represent average or mean field
approximations of the true time and spatial scales of
the object of study. An alternative formulation could
involve an infection-age structured model. However,
any attempt in this direction would not only be math-
ematically challenging but also require a multitude of
parameters and, necessarily, data to validate it. Given
the nature of the phenomena at hand, these require-
ments may be very difficult to satisfy. Therefore, the
approach of using simpler models may have advan-
tages over uses of agent based or computational mod-
els that can be very complex while providing very lim-
ited theoretical insights.



A model for coupling within-host and between-host dynamics in an infectious disease 403

2 Model assumptions and construction

Our model is an extension of the “nested model” con-
sidered in Gilchrist and Coombs [7]. We first provide
some background information and the motivation of
our model by discussing a few unique features associ-
ated with the nested model.

2.1 Some background information about the nested
model

The nested model consists of two submodels, one for
the epidemiology at population level, and the other
for the viral dynamics within an individual host. The
between-host system is a standard SI type model,
where S and I denote the numbers of susceptible and
infected (infectious) hosts, respectively. The SI sys-
tem reads

Ṡ = b(S, I ) − β(V )SI − μS,

İ = β(V )SI − μI,
(1)

where b(S, I ) is the recruitment rate of uninfected
hosts (possibly density dependent), μ is the per capita
natural death rate, β(V ) is the transmission rate and
is assumed to be an increasing function of V with
β(0) = 0, and V denotes the viral load in a single in-
fected host. We point out that (1) assumes an identical
transmission rate for all infected hosts, which implies
that the viral load within hosts are the same.

The within-host system in the nested model reads

Ṫ = Λc − kT V − μcT ,

Ṫ ∗ = kT V − (μc + δc)T
∗,

V̇ = pT ∗ − cV,

(2)

where T is the density of uninfected host cells (e.g., T

cells in the case of HIV) susceptible to infection, T ∗ is
the density of productively infected host cells, and V

is the density of free (infectious) virions within a host.
Λc is the rate at which new target cells are created, k is
the infection rate of T cells by an infectious virus, μc

is the per capita background mortality of cells, δc is the
extra per capita cell mortality induced by viruses (viru-
lence), and p and c are the virion production and clear-
ance rates, respectively. All parameters are assumed to
be constant (i.e., density independent). Note that the
mass action law is used in both subsystems. Observe
that although the system at the epidemiological level
(1) is dependent on the variable V from the within-
host system, the cell-virus system (2) does not depend

on the epidemiological level represented by I . This
lack of dependence of (2) on (1) may lead to incon-
sistent outcomes. One example is described below.

If b(S, I ) = Λ, then the total host population
N(t) = S(t) + I (t) → Λ/μ as t → ∞. The asymp-
totic constant Λ/μ will be denoted by N̂ in the re-
mainder of this paper. System (1) always has the
infection-free equilibrium E0 = (N̂,0). Let Ẽ =
(S̃, Ĩ ) (with Ĩ > 0) denote an endemic equilibrium.
When Ẽ exists, the population level of infection is

Ĩ = Λ

μ

(
1 − 1

Rβ(V )
h

)
, (3)

where

Rβ(V )
h = β(V )N̂

μ
(4)

is the basic reproductive number associated with the
between-host system (1) for a given viral load V . It is
easy to see from (3) that Ẽ exists only if Rβ(V )

h > 1

and V > 0. When Rβ(V )
h < 1, E0 is a global attractor,

i.e.,

I (t) → 0 as t → ∞ if Rβ(V )
h < 1. (5)

For the within-host system, whether the virus popu-
lation will go extinct or persist is determined by a sep-
arate set of parameters. If the nontrivial equilibrium
Ũ = (T̃ , T̃ ∗, Ṽ ) (with T̃ ∗ > 0) exists, then the viral
load is

Ṽ = μc

k
(Rv − 1), (6)

where

Rv = Λckp

cμc(μc + dc)

is the basic reproductive number for the within-host
system. It can be shown that Ũ exists and is globally
stable if and only if Rv > 1. Therefore,

V (t) → Ṽ as t → ∞ if Rv > 1.

Notice that Rv does not depend on either the pa-
rameters or variables associated with the between-host
system (1). It follows that, regardless of any dynamic
changes at the host level, if Rv > 1, then the viral load
within a host will stabilize at the level Ṽ > 0 given in
(6).

Now we consider (1) for a particular case, in which
β(V ) is a linear function of V , i.e.,

β(V ) = β0V, (7)
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where β0 is a constant. Using (7) and substituting Ṽ >

0 (see (6)) into the formula for Rβ(V )
h as given in (4),

we can determine parameter values of β0, δ and N̂ for
which Rβ(V )

h < 1. In this case, I (t) → 0 as t → ∞.

The above observation suggests that if Rβ(V )
h < 1

and Rv > 1, then the nested model predicts that the
between-host dynamics will stabilize at the infection-
free steady state (i.e., Ĩ = 0), while the within-host dy-
namics will stabilize at a steady state with a positive
viral level Ṽ which does not depend on any factors at
the population level.

Some may argue that the above mentioned outcome
is not inconsistent since even though the number of in-
fected hosts is changing, the equilibrium viral load in
a single infected host can still remain at the same level
since viral dynamics should not depend on how many
hosts are infected. This argument may be valid if one
is focusing only on the within-host dynamics of a sin-
gle host on a time scale that is much shorter than the
epidemiological process. However, if the purpose of
coupling the two processes is to study long-term (e.g.,
on the evolutionary, or even ecological time scale) dy-
namics, then multiple generations of host transmission
need to be considered. Therefore, it is more reason-
able to allow the viral dynamics within host to change
over time, as in the work by Coombs, Gilchrist, and
Ball [3], and to be influenced by the selection pressure
from the epidemiological process.

2.2 Coupling the systems

To link the two processes, we need to explore further
the connection between them, especially the effect of
between-host on the within-host dynamics.

We will adopt the SI system (1) for the epidemi-
ological process, and focus on how the cell-virus sys-
tem should depend on I , the prevalence level in the
host population. Our approach is to start with n sys-
tems, each of which governs the viral dynamics of a
single host. These systems will then be used to derive
an ‘average’ system that will describe the average viral
load and cell densities.

In what follows, we round up N̂ = Λ/μ to its
nearest integer value, and look at the full system at
this demographic equilibrium. For each host j (j =
1,2, . . . , N̂ ), let Vj denote the viral load of infected
host, and let Tj and T ∗

j denote the amount of healthy
and infected T cells, respectively. Let Vav, T ∗

av, and
Tav denote the average viral load, average amount of

infected T cells, and average amount of uninfected T
cells, respectively, defined as

Vav = 1

N̂

N̂∑
j=1

Vj , T ∗
av = 1

N̂

N̂∑
j=1

T ∗
j ,

Tav = 1

N̂

N̂∑
j=1

Tj .

(8)

Consider the case when 0 < I < N̂ (i.e., there is
a positive number of infected hosts but not all hosts
are infected). Without loss of generality, assume that
only individuals with indices j = 1,2, . . . , I are in-
fected. That is, Vj > 0 for j = 1,2, . . . , I and Vj = 0
for j = I + 1, . . . , N̂ . For each individual, the within-
host dynamics is described by the following system

Ṫj = Λc − k̂TjVj − μcTj ,

Ṫ ∗
j = k̂TjVj − (μc + δc)T

∗
j ,

V̇j = pT ∗
j − cVj , j = 1,2, . . . , N̂ .

(9)

Λc is the recruitment rate of healthy T cells, k̂ is the
rate at which a T cell becomes infected when contact-
ing an infectious virus, μc is the per capita background
mortality of cells, δc is the viral induced per capita cell
death rate (virulence), and p and c are the viral shed-
ding and clearance rates, respectively. All parameters
are assumed to be the same among the hosts. Note that,
implicitly, the immunological system (8)–(9) depends
on I , the number of infected persons.

To derive an equation for the average Tav, we sum
over the whole population and use (8) and the Tj equa-
tion in (9) to get

Ṫav = 1

N̂

N̂∑
j=1

Ṫj

= Λc − k̂
1

N̂

N̂∑
j=1

TjVj − μcTav

= Λc − k̂
1

N̂

I∑
j=1

TjVj − μcTav, (10)

where the term

I∑
j=1

TjVj

represents the total incidence.
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Since we want to preserve the mass-action law for
the averages, we make the following assumption on
the relation between the total contact rate and the av-
erage contact rate:

I∑
j=1

VjTj = Θ(I)TavVav.

The function Θ depends on the detailed knowledge
of the way in which population level processes affect
the within-host dynamics. Since this knowledge is still
very scarce (for example Fraser et al. [6] where there
is evidence of this connection) we propose here the
simplest linear relation that preserves the mass action
law for the contact rates incorporated in (9):

Θ(I) = θI

where θ is a scaling constant. In this case, the term∑I
j=1 VjTj in (10) can be replaced by θITavVav, i.e.,

I∑
j=1

VjTj = θITavVav.

Expanding the RHS of the above expression, we ob-
tain that

θITavVav = θI

N̂2

(
N̂∑

i=1

ViTi +
N̂∑

i �=j

ViTj

)

= θI

N̂2

(
f (Vi, Ti) +

I∑
i �=j

ViTj

)

where we have defined

f (Vi, Ti) =
I∑

i=1

ViTi.

Let k̂ = θ . Then

k̂

N̂

I∑
j=1

VjTj = θ

N̂
f (Vi, Ti) ≥ θ

N̂

I

N̂
f (Vi, Ti),

and, therefore, we are assuming that the quantity
θI

N̂2

∑I
i �=j ViTj is small enough as to make the sub-

stitution with verges a reasonable approximation.
Thus, from (10), we obtain the following equation

for Tav:

Ṫav = Λc − kITavVav − μcTav,

where

k = k̂θ

N̂
.

Similarly, from the T ∗
j and Vj equations in (9) we get

Ṫ ∗
av = kITavVav − (μc + δc)T

∗
av,

V̇av = pT ∗
av − cVav.

The above gives the following system for the averages:

Ṫav = Λc − kITavVav − μcTav

Ṫ ∗
av = kITavVav − (μc + δc)T

∗
av,

V̇av = pT ∗
av − cVav.

(11)

3 Model analysis and emerging properties

First we consider the case in which the host recruit-
ment rate is a constant b(S, I ) = Λ, and the host in-
fection rate is linear, i.e., β(V ) = β0V where β0 is a
constant. In addition, the analysis below is performed
for the case when θ = 1. In this case, if we drop
the subscript av for average (i.e., T = Tav, T ∗

av = T ∗,
V = Vav) and the subscript in β0 then the coupled sys-
tem is

Ṡ = Λ − βV SI − μS,

İ = βV SI − μI,

Ṫ = Λc − kIT V − μcT ,

Ṫ ∗ = kIT V − (μc + δc)T
∗,

V̇ = pT ∗ − cV .

(12)

System (12) has at most three biologically feasi-
ble equilibria. The infection-free equilibrium E0 =
(N̂,0, T0,0,0) always exists, where N̂ = Λ/μ and
T0 = Λc/μc are the total host and target cell popu-
lation sizes, respectively, in the absence of infection.
Let Ê = (Ŝ, Î , T̂ , T̂ ∗, V̂ ) denote an interior equilib-
rium (i.e., all components are positive) of the coupled
system. The existence of Ê is determined by relations
involving the following between- and within-host re-
production numbers

Rh = Rβ
hϕ = βϕN̂

μ
, Rv = kpT0

(μc + δc)c
(13)

with

ϕ = μc

k
and Rβ

h = βN̂

μ
.

The quantity 1/ϕ = k/μc gives the number of effec-
tive contacts per viral load per person during the life-
time of a cell and has units of people times viral load.
The factor ϕ in Rh represents the effect of the viral
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load on the force of infection at the host level. Rv

is the basic reproductive number of the virus for the
within-host subsystem.

An important new feature of the coupled system
(12) is that it has multiple endemic equilibria and,
therefore, it can generate more diverse dynamics than
the two subsystems in isolation. The host subsystem
can be decoupled from (12) by taking V constant. On
the other hand, the independent cell-virus system can
be obtained by taking I constant. For the between-host
subsystem, the basic reproductive number is Rβ

h de-
fined in (13). This subsystem has a unique stable inte-
rior equilibrium if Rβ

h > 1 and no interior equilibrium

if Rβ
h < 1.

For the cell-virus subsystem, noticing that k =
k̂θ/N̂ and N̂ = Λ/μ at the disease-free equilibrium,
the basic reproductive number is

Rv0 = k̂θpT0

(μc + δc)c
= RvN̂ .

There is a unique stable interior equilibrium if Rv0 >

1 and no interior equilibrium if Rv0 < 1.
We show below that some of the threshold con-

ditions (in terms of the reproductive numbers and
the number of interior equilibria) for (12) differ from
those obtained by decoupling the between- and within-
host systems.

3.1 Multiple endemic equilibria and bistability

In this section, we state the main results from the
mathematical model. This section is somewhat tech-
nical, but we provide the mathematical proofs in the
supplementary section. Denote an interior equilibrium
by Ê± = (Ŝ±, Î±, T̂±, T̂ ∗±, V̂±) with Î± > 0. Setting
the right-hand side of equations in (12) equal to zero
yields two nontrivial solutions for the components of
Ê±:

Ŝ± = N̂
(
1 − ŷ±

)
, Î± = ŷ±N̂,

T̂± = T0

ŷ±Rv0
, T̂ ∗± = cV̂±

p
, (14)

V̂± = μc

kN̂ŷ±

(
ŷ±Rv0 − 1

)
,

where Rv0 = RvN̂ and ŷ± are the solutions of the
quadratic equation

Rv0y
2 + By + 1 = 0 (15)

with

B = N̂

Rh

− Rv0 − 1. (16)

Explicit formulas for ŷ± are given by

ŷ± = 1

2Rv0

(
− B ±

√
B2 − 4Rv0

)
. (17)

For Ê± to be biologically feasible, we need to show
that ŷ± are real numbers and

Ŝ± > 0, 0 < Î± < N̂, V̂± > 0,

Ŝ± + Î± = N̂ .
(18)

Before we proceed to the statement of our results,
we first define two quantities that play a definitive role
in the existence or lack of existence of interior equilib-
ria. Let

R±
ve = Î±

N̂
Rv0 = 1

2

(
−B ±

√
B2 − 4Rv0

)
, (19)

where B is given in (16). The quantities R±
ve simplify

the mathematical expressions in the corollaries bellow.
Corollary 1 below establishes that the existence of

interior equilibrium points depends on two threshold
conditions:

R−
ve = Î−

N̂
Rv0 > 1 and Rh ≥ F(Rv0), (20)

where R−
ve is as in (19) and we define

F(Rv0) = N̂(√
Rv0 − 1

)2
. (21)

Note that the function F(Rv0) above is unbounded
with the property that

F(Rv0) → ∞ as Rv0 → 1,

pushing Rh to infinity. Since Rh has to be a positive
real number we introduce an upper bound for it, the
maximum value of Rh denoted by Rhmax.

Note that the first inequality in (20) implies that
R+

ve > 1 (always), and that Rv0 > Rve± > 1 if Ê±
exist.

The condition R−
ve = Î−

N̂
Rv0 > 1 indicates that the

within-host dynamics is determined by the within-host
viral reproductive number Rv0 scaled by the fraction
of infected host in the population (Î±/N̂ ). The exis-
tence of interior equilibria for R−

ve > 1 derives from
the assumption that kIV = k̂θIV/N̂ .

Corollary 1 also states that if Ê± exist, then the to-
tal number of infected hosts at equilibrium is limited to
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the interval N̂
Rv0

< Î± < N̂ . However, when the value

of Rv0increases the set of feasible Î± also increases,
implying that high values of Rv0 improve the virus
population survival.

Corollary 2 displays the nature of the stability of all
equilibrium points. When interior equilibria exist one
of them is locally asymptotically stable and the other
unstable. In this case, the DFE is locally asymptoti-
cally stable, thus making the global dynamics of the
system dependent on the initial conditions. When the
interior equilibria do not exist, the only equilibrium is
the disease-free state.

Corollary 1 Let F(Rv0) be the function given in
(21).

(i) If R−
ve > 1, then system (12) has

(a) no interior equilibrium if Rh < F(Rv0);
(b) a unique interior equilibrium if Rh =

F(Rv0);
(c) two interior equilibria if F(Rv0) < Rh ≤

Rhmax.
(ii) If R+

ve ≤ 1, then system (12) has no interior equi-
librium.

(iii) Moreover, if Ê± exist and R−
ve > 1 then

N̂

Rv0
< Î± < N̂ (22)

where Î± = ŷ±N̂ and ŷ± are the positive solu-
tions of the quadratic equation given in (17).

A proof of Corollary 1 can be found in the supple-
mentary material.

Note that the condition Rv0 > 1, required for the
persistence of the virus population when studying only
the dynamics of cell-virus system, is no longer suf-
ficient in the coupled system. This is a consequence
of linking the between- and within-host systems. In
the coupled system, when the isolated within-host re-
productive number Rv0 is greater than one, it is still
possible for the infection to go extinct in the whole
system. This can occur in the following two scenar-
ios: (1) if Rv0 > 1, but R−

ve < 1; (2) if the between-
host reproductive number is not high enough (e.g.,
Rh ≤ F(Rv0)).

Figure 1 shows how the infection level of hosts de-
pends on Rh and Rv0. It illustrates that Ê± exist only
for Rh ≥ F(Rv0), and that the critical value of Rh for
the existence of Ê± is reduced as Rv0 increases (see
Table 1 for parameter values).

Fig. 1 Bifurcation diagram for the interior equilibria Ê± versus
the parameter Rh for various values of Rv0. The solid curves
denote Î+/N̂ and the dashed curves denote Î−/N̂ for different
values of Rv0. The tick label F(Rv0) on the Rh axis represents
the critical value Rh = F(Rv0) for the curve corresponding to
the largest Rv0. To the left of this point, there are no interior
equilibria. Ê± exists only for Rh ≥ F(Rv0). Observe that as
Rv0 increases the critical value of Rh diminishes

3.1.1 Bistability

For parameters in a certain region, both the disease-
free equilibrium E0 and the interior equilibrium Ê+
are locally asymptotically stable at the same time.
Therefore, initial conditions determine whether the
disease will persist or die out. This is clearly a con-
sequence of linking the two processes.

It is easy to verify that the infection-free equilib-
rium E0 is always locally asymptotically stable (see
supplementary material). The stability of interior equi-
libria Ê± is more difficult to prove. We have obtained
some results by using the time scale argument, which
assumes that the within-host dynamics occurs on a
faster time scale than the between-host dynamics. The
same assumption has also been made in Gilchrist and
Coombs [7]. Under this assumption (together with the
assumption that Ê± exist), we can first solve for the
quasisteady states of the cell-virus sub-system from
the T ,T ∗, and V equation in (12), which will be func-
tions of I and S. These quasisteady states can then be
substituted in the I and S equation to study the sta-
bility of the SI subsystem. The stability result is de-
scribed below.
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Fig. 2 Time plot of the solutions (the I (t) component) of (12).
It shows that solutions may converge to either the interior equi-
librium Ê+ or the trivial equilibrium depending on the ini-

tial condition. This suggests that Ê+ is l.a.s. and Ê− is unsta-
ble. Parameter values used in simulations are selected such that
Rh > F(Rv0)

Fig. 3 Time plot of the
solutions (V (t) component)
of (12), for different values
of the initial condition. It
shows that whereas I is
increasing, the maximal
value for V is decreasing.
Parameter values used in
simulations are selected
such that Rh > F(Rv0)

Corollary 2 Let R−
ve > 1 (or equivalently Î−

N̂
Rv0 >

1) and let the condition (i)(c) in Corollary 1 hold, un-
der which (12) has two interior equilibria Ê±. Then

(i) Ê− is always unstable;
(ii) Ê+ is always locally asymptotically stable

A proof of Corollary 2 can be found in the sup-
plementary material. We remark that although the lo-
cal stability for Ê± is obtained by assuming that the
within-host dynamics occur on a faster time scale,
our numerical simulations of the full system (12), as
shown in Fig. 2 suggest that the stability results hold
in general. Figure 3 illustrates that solutions can con-
verge to either E0 or Ê+, depending on the initial con-
dition, and that Ê− is unstable.

The implications of the bistability are twofold. The
first implication is that whether the infections will per-

sist or die out cannot be completely determined by ei-
ther subsystems alone. More specifically, the disease
extinction depends on the threshold condition Rh <

F(Rv0) (see Fig. 1), which involves both between-
host property (Rh) and within-host property (Rv). The
second implication is that the assumption on the de-
pendence of the within-host force-of-infection on the
between-host level of infection (kIV ) may need to be
further explored. Other forms can be considered to ex-
amine the robustness of the bistability.

4 Discussion

The model presented here has the distinctive property
that the infection rates β and k are linear functions
of the viral load V and prevalence I , respectively. Al-
though a saturating function might be considered more
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Fig. 4 Plots of F(Rv0) = N̂/(
√

Rv0 − 1)2 (the solid curve)
and G(Rv0) = N̂/(Rv0 + 1) (the dashed curve), and the three
regions in the (Rv0, Rh) plane separated by these curves. These
regions determine the properties of the solutions ŷ± = Î±/N̂ of
(15). � = B2 − 4Rv0 is the discriminant of (15) and B is given
in (16). Figure (A) illustrates that Rv0 = 1 is an asymptote for

F(Rv0) from both sides. It is indicated (by the signs of B and
�) that there are no real solutions in Region I; two positive so-
lutions in Region II with R±

ve > 1 (V̂± ≤ 0 for R±
ve ≤ 1); and no

positive solutions in Region III. Figure (B) is an enlarged ver-
sion of (A) for the subregion of II in which interior equilibria
Ê± exist

realistic, we note that the dependence on I or V is
more important at low level of infection when the cou-
pling of within- and between-host dynamics is most
relevant. When the system is near the endemic equilib-
rium, β and k are largely independent of V and I ; and
thus, the coupling of the two systems becomes weaker.

Our model provides two threshold quantities, Rv

(or Rv0) and Rh, which correspond to the within-host
and between-host dynamics, respectively. The mag-
nitudes of these quantities can jointly determine the
prevalence of an infection. This is a direct conse-
quence of the coupling of the two processes. The de-
pendence of disease outcomes on Rv and Rh is illus-
trated in Fig. 4.

It shows in Fig. 5 that a stable interior equilibrium
exists for (Rv , Rh) in the region above the solid curve
(Region II), while only the DFE exists for (Rv , Rh) in
the region below the dashed curve (Region III). Note
that a virus with large Rv0 can spread in a popula-
tion even for relatively low values of Rh. On the other
hand, when Rv0 is small, the virus may not be success-
ful at the population level. This is because it requires a
very large value of Rh, e.g., larger than the maximum
feasible value Rhmax. We remark that these results are
the consequence of postulating the law of mass action
for the average densities of the variables.

We point out that, under usual assumptions, our
model reduces to either the well-known SI epidemi-
ological model for host population dynamics or the
standard viral dynamics model at the individual host
level. Both sub-models have been studied extensively

Fig. 5 Plot of Rh as a function of Rv0. The disease can persist
only if parameters are such that the point (Rv0, Rh) is above the
curve Rh = F(Rv0) and below Rhmax (the lightly shaded re-
gion). The graph illustrates that when the virus has a high with-
in-host reproduction (Rv0 is large), the disease can persist even
when the between-host reproduction number is small. However,
when Rv0 is small, a very high Rh will be required for the dis-
ease to persist. Moreover, when Rv0 is between (1, Rv min), it is
impossible for the disease to persist even if Rh is high. This is
a “dangerous zone” for the virus (the darker region)

and shown to have standard dynamics. That is, each of
the two submodels has a usual basic reproductive num-
ber that determines whether the infection-free equi-
librium is stable or there is a unique stable endemic
equilibrium. However, when the two submodels are
linked explicitly in both directions, new dynamics may
emerge and threshold conditions can be very different.
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In particular, the establishment of infection may de-
pend on the initial conditions and, therefore, the sharp
threshold condition of classical epidemiological mod-
els imposed by R0 no longer holds.
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Appendix: Stability of the coupled model

In this section we prove the stability of E± for the cou-
pled model.

The Jacobian matrix at E± = (Ŝ±, Î±, T̂±, T̂ ∗±, V̂±),
is

J± =

⎡
⎢⎢⎢⎣

−a1± − μ −μ 0 0 −a2±
a1± 0 0 0 a2±

0 −a3± −a4± − μc 0 −a5±
0 a3± a4± −(μc + δc) a5±
0 0 0 p −c

⎤
⎥⎥⎥⎦ .

where

a1± = μRh

N

(
Rv0ŷ± − 1

)
,

a2± = βN2y±(1 − y±),

a3± = kT̂±V̂±,

a4± = μc

(
Rv0ŷ± − 1

)
,

a5± = T0kN

Rv0
.

(23)

Then, the characteristic polynomial associated to
J± is

(X + μ)
(
X4 + A3X

3 + A2X
2 + A1X + A0

)
where

A3 = a1± + c + δc + μc

(
1 + Rv0ŷ±

)
> 0

A2 = (
a1± + μc Rv0ŷ±

)
(c + δc + μc)

+ a1±μc Rv0ŷ± > 0

A1 =
[ Rhμμc

N
(c + δc + μc)Rv0ŷ± (24)

+ T0kpNμc

Rv0

][
Rv0ŷ± − 1

] − T0kpNμ

Rv0

A0 = T0kpNμμc

Rv0(1 − y±)
ŷ±(2Rv0ŷ± + B)

where B is given in (16). Considering (19) we get
A0 < 0 for E− and A0 > 0 for E+. Hence, E− is al-
ways unstable, the stability for E+ is determined by
sign of A1.

A necessary condition for the stability of E+ is
given by A1 ≥ 0, otherwise we have roots with pos-
itive real part. Now, for E+, A1 = 0 we obtain a
quadratic equation for R+

ve = Rv0ŷ+ which has a pos-
itive real root (larger than 1) that we label RE+ and a
negative real root. Then, we have the result

Lemma When E± exist, E− is always unstable, while
E+ is l.a.s. if R+

ve ≥ RE+ > 1 and A1A2A3 > A2
1 +

A2
3A0, otherwise E+ is unstable.
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