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Abstract This article deals with the question, to what
extent damping due to nonsmooth Coulomb friction
may affect the stability and bifurcation behavior of vi-
brational systems with self-excitation due to negative
effective damping which—for the smooth case—is re-
lated to a Hopf bifurcation of the steady state.

Without damping due to Coulomb friction, the sta-
bility of the trivial solution is controlled by the effec-
tive viscous damping of the system: as the damping
becomes negative, the steady state loses stability at a
Hopf point. Adding Coulomb friction changes the triv-
ial solution into a set of equilibria, which—for oscil-
latory systems—is asymptotically stable for all values
of effective viscous damping. The Hopf point vanishes
and an unstable limit cycle appears which borders the
basin of attraction of the equilibrium set. Moreover,
the influence of nonlinear damping terms is discussed.

The effect of Coulomb frictional damping may be
seen as adding an imperfection to the classical smooth
Hopf scenario: as the imperfection vanishes, the be-
havior of the smooth problem is recovered.
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1 Introduction

Self-excited vibrations are a common phenomenon in
engineering application and cover a huge variety like
friction induced vibrations [8, 9, 16, 17, 20] chat-
ter of tool machines ([1, 20, 21] for instance), fluid-
structure-interaction problems [3, 11], or oil-whirl of
rotors in fluid bearings (e.g., [4, 13, 27, 28]).

In most cases, the self-excited vibrations arise from
a steady state, when the corresponding trivial solu-
tion loses its stability: thus, the occurrence of these
vibrations is related to a Hopf bifurcation. With regard
to the engineering problems mentioned before, two
main mechanisms leading to instability can be distin-
guished: negative damping and flutter. In the first case,
the basic mechanism is due to a negative effective
damping, resulting from forces with a negative gra-
dient with respect to a velocity coordinate (e.g., [11,
18]). For the investigation of the basic character of this
mechanism, 1 DoF-systems are sufficient. The second
mechanism—usually referred to as flutter, oscillatory
instability, modal interaction, or mode coupling—may
only appear in systems with at least two degrees-of-
freedom. This mechanism is particularly often found
in rotating systems [3, 4, 30] or systems involving fric-
tional contacts between deformable bodies [16]. This
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latter mechanism will be considered in a separate arti-
cle.

Apart from self-excitation, another very common
phenomenon in engineering applications is nonviscous
damping, which often stems from microslip friction
or air-pumping in joints and interfaces between mem-
bers of a system ([2, 26, 29] for instance). As a sim-
ple model, Coulomb friction elements may be used to
model joint damping (e.g., [12, 29]).

This article investigates the effect of dissipation due
to Coulomb friction on steady-state stability and the
bifurcation behavior in a one-dimensional system with
nonlinear viscous damping and self-excitation due to
negative damping. Although such problems can be
found in the context of many practical engineering ap-
plications, there are only extremely few publications
on self excitation in the presence of damping due to
Coulomb damping [31, 32].

As a practical example, a model problem with fric-
tion excitation is considered; however, the results are
not restricted to friction induced vibrations. From an
abstract point of view, the frictional-excitation prob-
lem under discussion yields a Rayleigh-oscillator with
cubic dissipation terms.

2 A 1 DoF model problem: friction induced
self-excitation as an engineering example

In the following, the well-known text book example
of a mass on a belt (cf. [7, 14] for instance) is chosen
to derive a generic equation of motion of a system ex-
hibiting self-excitation due to negative damping. Here,
this basic model is extended by additional nonlinear
damping terms as well as damping due to Coulomb
sliding friction, which may be a simple model to ac-
count for joint damping.

The model problem is outlined in Fig. 1: it con-
sists of a simple mass-spring-damper-system, which
is pressed onto a conveyor belt; between the mass and
the conveyor belt sliding friction is present with a co-
efficient of sliding friction μ which depends on the rel-
ative velocity vrel = v0 − ẋ. The oscillator is subjected
to symmetric nonlinear structural damping.

The equations of motion read

mẍ + d1ẋ + d3ẋ
3 + c(x + x0) + Fμ(vrel) ∈ FR, (1)

FR =
{−R sign(ẋ), |ẋ| > 0

[−R,R], |ẋ| = 0
. (2)

Fig. 1 Model problem: self-excitation due to sliding friction
with a coefficient of sliding friction, which depends on the rela-
tive velocity

Here, FR is the convex set valued force of the frictional
damping element and system (1) is a differential inclu-
sion of Filippov-type. It is assumed that ẋ < v0, so that
in the contact between mass and belt stiction will not
occur.

Since FR is upper semicontinuous, convex, closed,
and bounded (cf. also Fig. 1) for each initial condi-
tion continuous solutions x(t) exist (cf. [6, 10, 24] for
instance). Uniqueness of the solution depends on the
behavior in the switching plane ẋ = 0 and will be dis-
cussed below.

Assuming small vibration amplitudes, the friction
characteristic μ = μ(vrel) may be expanded into a
Taylor series about v0

μ(vrel) = μ(v0) + ∂μ

∂vrel

∣∣∣∣∣
v0

(
∂vrel

∂ẋ

)
ẋ · · ·

+ 1

2

∂2μ

∂v2
rel

∣∣∣∣∣
v0

(
∂vrel

∂ẋ

)2

· x2 + · · ·

= μ0 + μ1ẋ + 1

2
μ2ẋ

2 . . . . (3)

Now, the dimensionless variables q = x/x0, τ =
ω0t are introduced, where x0 is the static displacement
and ω = c/m is the eigenfrequency of the undamped
linear subsystem. After neglecting all terms of higher
than third order and subtracting the static problem, the
equation of motion in q reads

q ′′ + 2Dq ′ + D2q
′2 + D3q

′3 + q ∈ fR, (4)

fR =
{−r sign(q ′), |q ′| > 0,

[−r, r], |q ′| = 0,
(5)
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Fig. 2 Stability of the
trivial solution for the
smooth problem, i.e. for
vanishing Coulomb friction
(r = 0)

where ()′ denotes differentiation with respect to the
dimensionless time τ . The dimensionless damping pa-
rameters D, D1, D2 and the intensity r of the frictional
damping are defined as

D = d1 + Fμ1

2mω0
, D2 = Fμ2x0

2m
, (6)

D3 = d3ω0x
2
0 + 1

6Fμ3ω0x
2
0

m
, r = R

mω2
0

. (7)

Within this paper, it is assumed that |D| ≤ 1, and
hence the corresponding linear system is oscillatory.

Introducing the state space vector z = (q, v)� sys-
tem (5) can be recast in state space form yielding the
differential inclusion

z′ ∈ f(z) =
[

v

−q − 2Dv − D2v
2 − D3v

3 − fR

]
. (8)

Further details on this model problem can be found
in [7, 14, 22], for instance, recent investigations on the
effect of nonlinear friction characteristics μ(vrel) may
be found in [17, 19].

3 Steady state stability of the smooth subsystem

For r = 0, Equation (5) becomes a smooth nonlinear
problem, which has the steady state (q, q ′) = (0,0). Its
stability can be readily assessed by linearizing about
the steady state and introducing q = Ceλτ . Eventually,
this yields the eigenvalues

λ1/2 = −D ± j. (9)

Obviously, the critical point is at D = 0, where the
steady state (q, q ′) = (0,0) turns unstable as D be-
comes negative. Since at D = 0, vibrations arise from
the asymptotically stable steady state; this critical
point is a Hopf point (cf. Fig. 2).

4 Steady state stability of the non-smooth problem

For r > 0, the problem (5) becomes a nonsmooth non-
linear problem. Steady states with v = q ′ = 0, q ′′ = 0
are now given by the set of equilibria

QS = {(q, v) |q ∈ [−r, r], v = 0} (10)

which is convex and is placed on the q-axis of the
(q, v)-state plane.

With f+ = limv↓0 f, f− = limv↑0 f and n = [0,1]�,

it can be shown that outside the equilibrium set

v = 0 ∧ |q| > r : (
n�f+

) (
n�f+

)
> 0 (11)

holds, while within this set one finds

v = 0 ∧ |q| < r : (
n�f+

) (
n�f+

)
< 0. (12)

From this, it can be inferred that QS is an attrac-
tive sliding mode (although the sliding velocity being
zero). Outside of QS trajectories cross the hyperplane
v = 0 in terms of a transversal intersection (cf. Fig. 3).

As mentioned before, existence of continuous so-
lutions follows from the particular type of the nons-
mooth friction force fR . Since it has been found that
the sliding mode is attractive, uniqueness of the trajec-
tories in forward time is also assured [10, 24].

4.1 Geometric considerations concerning stability of
the equilibrium set

Due to the nonsmoothness of (5) and the set-valued-
ness of (10), the stability of the steady state solutions
can not be assessed via linearization and eigenvalue
analysis about a particular point. However, the defini-
tion of Lyapunov stability does not imply using eigen-
value analysis—but is based on geometric considera-
tions, which only demand for comparing the behavior
of the investigated solution to solutions starting from
within an arbitrarily small δ-vicinity. In order to evalu-
ate this definition, the qualitative behavior of solutions
in the vicinity of QS is analyzed. To this end, the small
strip |v| < a (a 	 1) in the vicinity of the set QS is in-
vestigated. Within this strip, higher order terms in v

may be neglected, yielding

q ′′ + 2Dq ′ + q ≈
{−rsign(q ′), |q ′| > 0,

[−r, r] , |q ′| = 0.
(13)
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Fig. 3 Qualitative sketch of the phase portrait in the vicinity of
the set of steady states QS

Using the linear transformations q̃± = q ± r, it is read-
ily found that within the sliding regimes |v| > 0 the
motion is described by

q̃±′′ + 2Dq̃±′ + q̃± ≈ 0 for v ≷ 0. (14)

Hence, within each sliding regime, the solutions to
(13) are that of a linear oscillator with linear viscous
damping, shifted by r to the left (in upper half-plane)
or to the right (in lower half-plane). The corresponding
flow is outlined in Fig. 3. Assuming an undercritically
damped system (i.e., |D| < 1), it is obvious from this
sketch that for any point p ∈ QS a 0 < δ-region of ad-
missible initial perturbations can be found in order to
keep the perturbations within an ε-region for all times.
A similar reasoning for a frictional oscillator without
damping can already be found in [15].

In this context, it is remarked that with respect to
individual points the set QS is stable but not asymptot-
ically stable. However, if the set QS is seen as a single
geometric object, it is asymptotically stable since the
solution will end at some point p ∈ QS, and hence the
distance to the set QS as a whole converges to zero.

4.2 Analytical stability assessment of the equilibrium
set

Beyond this geometric reasoning, LaSalle’s invari-
ance principle [14, 23]—which can be extended to
non-smooth systems of Filippov-type [25] if they are

Fig. 4 Asymptotic stability of the equilibrium set: (a) Sketch
on LaSalle’s principle. (b) Qualitative outline of V ′

unique in forward time—can be applied to prove
asymptotic convergence of the set QS : Let ϕ be the
flow of a dynamical system and ϕ(t, z0, t0) be a trajec-
tory starting in z0 at time t0, being unique in forward
time. Suppose V (z) ≥ 0 ∈ C 1 being a Lyapunov func-
tion with V (0) = 0. Assume that

Ω
 = {
z |V (z) ≤ 
 ∧ V ′(z) ≤ 0

}
(15)

is a compact set where the evolution of V ′ = ∇V �f ≤
0 under the action of ϕ is negative or zero and that

H = {
z |V ′(z) = 0

} ⊂ Ω
 (16)

is a compact subset where V is stationary (V ′ = 0)
and I ⊂ H is the largest positively invariant subset of
H, i.e. any solution starting in I remains in I . Then
any trajectory starting in Ω
 (i.e. ϕ(t, z0, t0) ∀z0 ∈ Ω
)
converges to I for t → ∞ (cf. Fig. 4a). It may also be
concluded that I must include the datum x = 0.

For the problem under consideration, the invari-
ance principle can be applied since the trajectories are
unique in forward time; the hyperplane v = 0 corre-
sponds to H and the subset QS is the largest invariant
set within H (cf. Fig. 4a). From this, it follows that the
set QS as a whole is asymptotically stable if one can
find an appropriate Lyapunov function V .

Using the total energy V = 1
2q2 + 1

2v2 as Lyapunov
function, one finds for v 	 1

V ′ = ∇V �f = [q, v][v,−q − 2Dv − fR]� + h.o.t.

(17)

≈ −2Dv2 − vfR =
{−2Dv2 − rv signv : |v| > 0

−2Dv2 + rv[−1,1] : v = 0
(18)

= −2Dv2 − r|v|. (19)
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The maximum extent of Ω
 defined by (15) is
found by demanding V ′ ≤ 0 ∀z ∈ Ω
, yielding

v > 0: V ′ = v(2Dv + r) ≤ 0 (20)

→ 0 < v ≤ − r

2D
= 
 and (21)

v < 0: V ′ = v(2Dv − r) ≤ 0 (22)

→ −

r

2D
< v < 0 (23)

as the admissible range of values for v that may be
contained by Ω
. From this, it follows that—for the
chosen Lyapunov function—the basin of attraction A
of QS is at least a circle with radius


 = − r

2D
> 0 (24)

about the origin (cf. Fig. 4b). Please note that this esti-
mate was found using the linearized equations of mo-
tion: Hence, it will only hold if nonlinearities vanish
or if they are of negligible magnitude, e.g., for small
motions in the immediate vicinity of the equilibrium
set. As will be shown later, (24) gives a quite good
conservative estimate of the basin of attraction which
is induced by the dissipation due to the Coulomb fric-
tion. Possible large amplitude limit cycles (e.g., due to
other nonlinearities) will be investigated later.

5 Basins of attraction and periodic solutions

As has been indicated by applying Lyapunov’s direct
method on the linearized problem, the steady state may
have a finite basin of attraction for small amplitudes.
In the following, it will be investigated if large ampli-
tude basins of attraction exist. Since the problem under
consideration is a plane problem, the border of such a
basin of attraction must be a periodic solution.

Moreover, for larger amplitudes, the nonlinear vis-
cous damping terms may become relevant and must be
taken into account.

5.1 Approximating the attractor of the equilibrium
set for the piecewise linear system

In a first step, periodic motions for the piecewise lin-
ear system (i.e., D2 = 0, D3 = 0) in the vicinity of
the equilibrium set QS are investigated by stitching
the piecewise solutions together. This periodic limit

Fig. 5 Qualitative analysis of the dynamics in the phaseplane:
(a) Smooth system (r = 0). (b) Nonsmooth system (r > 0)

Fig. 6 Construction of a periodic trajectory for the piecewise
linear system: A± are the boundaries of the attractor A in the
upper/lower halfplane

cycle will border the basin of attraction of the equilib-
rium set. The corresponding results hold if nonlinear
viscous damping terms are not present or are negligi-
ble.

As mentioned before, the phaseportraits in the up-
per and lower half of the (q, v)-plane correspond to
those of the smooth system (r = 0), where the upper
half is shifted by r to the left and the lower half is
shifted by r to the right (cf. Fig. 5b and Fig. 6). For
D < 0 and r = 0, the solutions are spirals of increas-
ing amplitude about the origin—hence, periodic solu-
tions do not exist (cf. Fig. 5a). However, shifting the
upper and lower half-planes by ±r can bring the end-
points of two unstable half-orbits together, which may
produce a new periodic solution. Moreover, it is obvi-
ous that this periodic solution must have an amplitude
that is larger than r since any motion starting within a
circle of radius r would be trapped by the attractive set
(10) of steady states and, therefore, cannot be periodic.

The basic idea is outlined in Fig. 6: introducing the
shift transformation q̃± = q ∓ r (and, therefore, q̃− =
q̃+ + 2r) the solutions in the upper and lower half-
plane read

q̃± = A±e−Dτ cosωdτ + B±e−Dτ sinωdτ, (25)
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ṽ± = q̃ ′± = −(A±D − B±ωd)e−Dτ cosωdτ (26)

− (B±D + A±ωd)e−Dτ sinωdτ, (27)

where ωd = √
(1 − D2) is the natural frequency of the

damped system and A±, B± are integration constants.
The time for one entire cycle would be Tp = 2π

ωd
. For

the problem under consideration, a solution starting
within one of the halfplanes immediately at the hy-
perplane v = 0 will reach the hyperplane again after
T = 1/2Tp .

In order to construct periodic solutions, motions
starting at the hyperplane v = 0 are considered. As-
sume a trajectory starting at τ = 0 at (−c,0+) with
respect to the (q̃+, v)-system: For these initial condi-
tions, the unknown integration constants for the mo-
tion in the positive halfplane read

A+ = −c, B+ = −cD/ωd. (28)

The corresponding constants for the negative plane are
easily determined using symmetry. After τ = T , the
trajectory reaches the hyperplane again at

q+(T ) = ce
−D π

ωd . (29)

Periodic trajectories will be found if q+(T ) = 2r + c

holds and from this follows:

c = 2r

e−Dπ/ωd − 1
. (30)

With this, the border of the attractor A is given by the
parametric curves

A± =
{[

qA = r

(
∓1 ∓ 2

e−Dπ/ωd − 1
e
− D

ωd
ϕ

cosϕ

∓ 2D

ωd(e−Dπ/ωd − 1)
e
− D

ωd
ϕ

sinϕ

)∣∣∣∣∣
(31)

vA = ±
(

r
2(D2 + ω2

d)

ωd(e−Dπ/ωd − 1)
e
− D

ωd
ϕ

sinϕ

)]
,

ϕ = 0..π

}

in the (q, v)-system.

The maximum extent of this basin of attraction
along q is

Aq = r + c = r

⎛
⎝e

−Dπ√
1−D2 + 1

e
−Dπ√
1−D2 − 1

⎞
⎠ (32)

and after some calculus the corresponding maximum
extent along v is found as

Av = r
2e−Dπ

√
1 − D2(e

− Dπ√
1−D2 − 1)

× e
− D√

1−D2
arctan

√
1−D2
D

× sin

(√
1 − D2 + arctan

√
1 − D2

D

)
. (33)

5.2 First-order approximations for the equilibrium
attractor and for periodic motions of large
amplitude

For higher amplitudes, the nonlinearities can no longer
be neglected: Since exact analytical solutions to the
nonlinear problem are not known, approximations for
periodic motions must be found.

As mentioned before, the nonsmooth problem (5) is
of Filippov-type and due to the particular form of the
discontinuous force (convex, upper-semicontinuous)
and the fact that the discontinuity produces an attrac-
tive sliding mode, existence, and uniqueness of con-
tinuous solutions is assured [24]. In general, a con-
tinuous periodic solution can be approximated by a
Fourier-series. Therefore, assuming solutions which
are at least near-periodic, one may try the solution ap-
proaches

q = A0 +
N∑

k=1

Ak cos(kητ + ϕk), (34)

v = q ′ =
N∑

k=1

−Akkη sin(kητ + ϕk). (35)

This solution approach can be interpreted as a trans-
formation to the new variables (Ak,ψk), where ψk =
kητ + ϕk is the kth phase. These new variable may
evolve on a slow time scale.



On the effect of nonsmooth Coulomb friction on Hopf bifurcations in a 1-DoF oscillator 607

Differentiation yields

q ′′ =
N∑

k=1

−Akkη
(
kη + ϕ′

k

)
sin(kητ + ϕk)

− A′
kkη sin(kητ + ϕk). (36)

In order to obtain compact solutions and moti-
vated by the behavior of the small amplitude solutions
(cf. Fig. 7) which tends toward a mostly harmonic
limit cycle a first-order series will be used (N = 1).
Moreover, since (5) is an autonomous system, the
choice of the time datum is arbitrary, and hence the
phase difference ϕ1 can be eliminated. Eventually, this
yields the solution approach

q = A0 + A cosητ, q ′ = −Aη sinητ, (37)

q ′′ = −A′η sinητ − Aη2 cosητ (38)

which is the classical Van-der-Pol-transformation.
Inserting (38) into (5), weighting by 1, sinητ and

cosητ and integrating over one cycle yields a system
of algebraic equations for the unknowns A0, A, and η.
In doing so, it has been used that the trajectories cross
the hyperplane v = 0 in terms of a transversal intersec-
tion. At these crossings, the friction force for v = 0 is
finite, nonimpulsive and the time on the hyperplane is
a single instant, and hence the corresponding singleton
integrals vanish. Eventually, the equations yield

η = 1, (39)

A0 = −D2

2
A2, (40)

A′ = −4r

π
− 2DA − 3

4
D3A

3. (41)

6 Results

In the following, the steady state stability as well as the
bifurcation behavior of (5) will be discussed. Since for
the smooth problem the steady state stability is con-
trolled by the linear viscous damping, the parameter
D will be chosen as bifurcation parameter. Among the
remaining parameters r , D2, D3, the parameter r will
play a prominent role since it controls the transition
between the smooth and the nonsmooth problem.

Fig. 7 Basin of attraction for r > 0: D = −0.4, D = −0.7,
D = −0.999

6.1 Stability of steady states, equilibria sets, and
local basins of attraction

For r = 0, Equation (5) becomes a smooth problem,
which has the steady state point qS = (0,0). As the ef-
fective viscous damping D changes its sign at D = 0,

a Hopf Bifurcation occurs: for D > 0 the steady state
is asymptotically stable, while for D < 0 it is unstable.

As has been shown, adding Coulomb friction of in-
tensity r to the problem (5) will turn the single steady
state point into the set QS of equilibrium solutions. For
r ↓ 0, the problem (5) converges toward the associated
smooth problem, and consequently the set QS degen-
erates to the single steady state point qS = (0,0)� (see
Fig. 15).

For the piecewise linear description—which is
valid if the nonlinear damping terms either vanish or
are of minor importance due to small amplitudes—
the attractor is described by the curve (31), which can
be compactly characterized by the maxima (32), (33).
Due to the (piecewise) linearity and the periodicity
condition, the amplitudes are proportional to the inten-
sity r of the Coulomb friction. Figure 7 shows basins
of attraction for three different values of D < 0.
Figure 8 outlines the maximal displacement Aq and
velocity Av of the basin of attraction as function of D

and displays the corresponding projection of the equi-
librium set QS .

If the nonlinear damping terms may not be ne-
glected (e.g., for larger amplitudes), (39)–(41) can be
used as first-order approximants A to describe the am-
plitudes. Since these approximations have been found
via a Galerkin-like procedure—i.e., minimization of
the weighted residual, using a first order harmonic ap-
proach for the solution—they represent some kind of
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Fig. 8 Maximal extents of the attractor of the equilibrium set
QS , normalized with the friction intensity r : (a) Maximal ex-
tent along the displacement axis. (b) Maximal extent along the
velocity axis

Fig. 9 Basin of attraction A—characterized by Aq and Av—in
comparison to the amplitude A of the first-order harmonic ap-
proximation (for example, r = 0.1)

average solution. In particular, it is found that A is in
between Aq and Av as the basin of attraction shrinks
for D ↓ −1. On the other hand, as the basin of attrac-
tion grows for D ↑ 0 A, the amplitudes Aq and Av of
displacement and velocity tend toward the same value.
Hence, the approximation A given by (39)–(41) may
be used for large amplitudes as well as—in an average
sense—for small amplitudes to characterize the size of
the basin of attraction: Fig. 9 gives a comparison.

6.2 Limit cycles and basin of attraction

Equations (39)–(41) allow to calculate the mean value
A0 as well as the amplitude A of a harmonic approx-
imation of possible periodic motions. Seeking for sta-
tionary amplitudes A′ = 0, Equation (41) becomes a

cubic algebraic equation for A:

0 = 4r

π
+ 2DA + 3

4
D3A

3. (42)

Although this equation could still be solved analyti-
cally for A (e.g., using Cardano’s method [5]), the re-
sults are rather cumbersome and do not allow for an
obvious physical interpretation of the parameters.

For this reason, in the following mainly numeri-
cal results will be presented. However, some particular
points and asymptotes are given in analytical form in
order to characterize the solution curves and provide
more physical insight.

6.2.1 Characteristic points & asymptotes

The theory of cubic equations can be exploited to find
characteristic points of the amplitude curve: using the
determinant

Δ = −4a3 − 27b2 (43)

where a = 8
3

D
D3

and b = 16
3π

r
D3

, the following cases
can be distinguished:

Δ > 0 → 3 real roots (44)

Δ = 0 → 3 real roots

(two belong to a double root) (45)

Δ < 0 → 1 real root, 2 complex roots. (46)

From these roots, only real-valued nonnegative ones
are reasonable stationary amplitudes of periodic mo-
tions. Further analysis yields

Δ = 1

3

(
16

3D3

)2
[
−8D2

(
D

D3

)
−

(
9

π

)2

r2

]
. (47)

Thus, since D2
3 > 0, D2 > 0, the sign of Δ—and,

therefore, the number of solutions—is determined by
the sign of bracketed term.

Three different scenarios of physical meaningful
amplitudes A > 0 can be distinguished (cf. Fig. 10):

• D3 > 0: two amplitudes A > 0 for D < DF , no sta-
tionary amplitude for D > DF

• D3 = 0: one amplitude for D ≤ 0 (i.e., DF = 0), no
amplitude for D > 0

• D3 < 0: one amplitude A > 0 for all values of D.
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For D3 > 0, the real double root appearing for Δ =
0 marks the border between the region of three and the
region of one stationary solution. This border is found
at

DF = −1

2
3

√(
9

π

)2

r2D3, (48)

where the index F indicates that this point belongs to
a fold bifurcation of the amplitude. Moreover, deter-
mining D = D(A) from (42) and solving dD

dA
= 0 for

A yields the corresponding amplitude

AF = 3

√
8

3π

r

D3
. (49)

If two solution branches exist, they meet at the fold
point F = (DF ,AF ); its position DF , and hence the
number of possible amplitude branches is outlined in
Fig. 11.

For the case D3 < 0, the fold point F does not ex-
ist: for these cases, the point Z = (0,AZ) where the
solution branches crosses the ordinate can be used to
characterize the solution curves. Here, AZ is given by

AZ = 3

√
− 16

3π

r

D3
. (50)

Fig. 10 Possible stationary amplitudes A depending on D and
D3: only positive solutions A ≥ 0 are physically meaningful
(non-hatched area)

Assuming small amplitudes and Coulomb friction,
which is of the same order of magnitude as the linear
part, an approximation to (42) can readily be found.
For O( 2r

π
) = O(|DA|) and A2 	 | 2D

3D3
|, one finds

A1 ≈ − 2r

πD
> 0. (51)

For D3 = 0, only one solution branch exists and this
equation is the exact solution for any value of A >

0. For D3 �= 0, this equation gives an asymptote for
solutions with small amplitude A2 	 | 2D

3D3
|.

Equation (51) gives A1 ≈ −0.6 r
D

while Lya-
punov’s direct method yielded 
 = −0.5 r

D
: Obviously,

the latter is a very good conservative estimate of the
basin of attraction.

Assuming the damping due to Coulomb friction to
be very small compared to the remaining part of equa-
tion (42), viz. | 2r

πD
| 	 |A + 8D3

3D
A3|, yields

A2 ≈
√

− 8D

3D3
(52)

as an approximation for large amplitudes.

6.2.2 Stationary amplitudes

Using the asymptotes A1, A2 as well as the charac-
teristic points A and Z derived before, the amplitude
curves can conveniently be described.

For vanishing cubic damping (D3 = 0), only one
stationary solution exists, which is given exactly by
(51). As can easily be verified, dA′

dA
|A=A1 > 0 holds,

and hence this amplitude belongs to an unstable limit
cycle. This amplitude gives the border of the basin of
attraction of the equilibrium set QS . Due to the sin-
gularity at D = 0, infinitely small Coulomb friction

Fig. 11 Extent of the basin
of attraction: Equation (48)
defines the border between
parameter combinations,
where the trivial solution is
globally attractive, and
those where the trivial
solution has a finite basin of
attraction, bordered by an
unstable limit cycle
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damping r would be sufficient to stabilize the steady
state for small values of D < 0.

For progressive cubic damping (D3 > 0), a fold
point F appears at (DF ,AF ) (cf. (48) and (49)). For
D < DF , two solution branches exists, which asymp-
totically approach A1 and A2 (given by (51), (52))
as D tends toward D = −1. From (41), it may eas-
ily be concluded that dA′

dA
|A=A1 > 0 and dA′

dA
|A=A2 < 0

and therewith the lower branch A1 is unstable while
the upper one is stable. Obviously, the lower branch
borders the basin of attraction of the equilibrium set,
while the upper one is a second stationary solution
which coexists to the equilibrium set. For D > DF ,

Fig. 12 Schematic amplitude curves including characteris-
tic points and asymptotes: (a) D3 > 0: supercritical solution
curves A, including the asymptotes A1,A2, and the fold-point
(DF ,AF ). (b) D3 < 0: subcritical solution curve A, including
the asymptotes A1,A2 and the zero crossing (0,AZ)

no periodic motions are found and QS is globally at-
tractive. This scenario is depicted in Fig. 12a.

For D3 < 0, only one stationary amplitude exists:
for D < 0, the corresponding curve can be approxi-
mated by A1, while for D > 0 the asymptote A2 pro-
vides a good approximation; the crossing of the ordi-
nate is given by Z = (0,AZ). It can easily be veri-
fied that these stationary amplitudes belong to unsta-
ble limit cycles: thus, they are bordering the basin of
attraction of the equilibrium set. This case is outlined
in Fig. 12b.

6.3 Mean value shift and asymmetry

Once the amplitude A of the first-order approxima-
tion has been determined, the shift of the correspond-
ing mean value can be calculated using (40). Since
A0 ∼ A2, it will play no role for small amplitudes
A 	 1 but may show some effect for larger amplitudes
(cf. Fig. 13).

In the following, asymptotic approximations are
given: Equation (51) can be used as an approximation
for the lower branch of amplitudes: inserting into (40)

Fig. 14 Shift of mean value A0 and corresponding asymptotic
approximations A01, A02. Numerical example for D2 = 0.2,
D3 = 0.5

Fig. 13 Effect of
asymmetric damping D2:
(a) Small amplitudes
(D = −0.7, r = 0.5,
D3 = 0). (b) Larger
amplitudes (D = −0.2,
r = 0.5, D3 = 0)
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Fig. 15 Steady state and
basin of attraction: as r → 0
the equilibrium set QS

degenerates to the single
point qS . Simultaneously,
the basin of attraction (- -)
shrinks to zero size. Note
that the basin of attraction
in the right subpanel holds
only for small amplitudes or
vanishing nonlinear
dissipation

yields

A01 ≈ 2r2

π
D2

1

D
(53)

as an approximation for the mean value shift of the
solution branch A1. For the special case D3 = 0, this
is the only solution and holds exactly.

The upper solution branch (existing for D3 �= 0)
may be approximated by (52) and the corresponding
approximation of the mean value shift reads

A02 ≈ 4D2

3D3
D. (54)

To give an impression, numerical solutions for the
first-order approximation shift A0 as well as the corre-
sponding asymptotes A01, A02 are displayed in Fig. 14
for the example D2 = 0.2 and D3 = 0.5.

6.4 Bifurcation behavior

In the following, above results will be summarized
with respect to the bifurcation behavior. Motivated by
the corresponding smooth system, the effective vis-
cous damping D is chosen as bifurcation parame-
ter. The bifurcation will be investigated by looking at
stationary amplitudes and their stability; the shift of

the mean value will not be considered since it pro-
duces merely a distortion of the phase portrait without
changing the general topology (cf. Fig. 13).

For the smooth system (r = 0), the steady state is
a single point qS of the phaseplane, which changes its
stability as the effective viscous damping changes its
sign: at D = 0 a pair of conjugate complex eigenval-
ues crosses the imaginary axis and a Hopf bifurcation
takes place.

In the presence of nonlinear dissipative terms, sta-
tionary amplitudes may exist: for D3 > 0 the bi-
furcation at D = 0 is a supercritical Hopf bifurca-
tion, and for D3 < 0 the bifurcation at D = 0 is a
subcritical Hopf bifurcation. For the marginal D3 =
0, no stationary amplitudes apart from the steady
state exist. This is a classical Hopf bifurcation for
smooth systems and is outlined in the left subpan-
els of Figs. 15, 16, as well as the upper panel of
Fig. 17.

Adding Coulombian frictional damping (r > 0)
leads to a degeneration of the bifurcation: The station-
ary point qS becomes a set QS of stationary points,
whose width is proportional to r . In particular, this
set is attractive for all values of D. Depending on D

and D3, the basin of attraction is either infinite or fi-
nite: This implies that stability assessments may not
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Fig. 16 Bifurcation scenarios for different values of r and D3: (a) Marginal case D3 = 0. (b) Supercritical bifurcation. (c) Subcritical
bifurcation

Fig. 17 Overview on the
bifurcation behavior

tell whether the steady state is stable or unstable (as
is the usual approach for the corresponding smooth
system), but will rather make sense in the context of
investigating whether particular levels of perturbation
are admissible.

Moreover, the Hopf point vanishes and a new un-
stable limit cycle appears instead, which borders the
basin of attraction of the set QS . This new limit cycle
can be found for D < 0 and is induced by the dissipa-
tion due to the Coulomb friction.
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In the limit r → 0, the set QS degenerates again to
the single steady state point qS and the unstable so-
lution branch (viz. the margin of the basin of attrac-
tion) shrinks to size zero: eventually it merges with qS

in the negative half-axis of D and produces the insta-
bility of qS beyond the Hopf point. Simultaneously,
the fold point F (for D3 > 0) or the zero crossing
Z (for D3 < 0) coalesce with (0,0) in the bifurca-
tion diagram depicted in Fig. 17, giving birth to the
Hopf point H . In this context, the Hopf-point of the
smooth problem can be interpreted as a degenerated
fold point or zero-crossing point of the nonsmooth
problem. The corresponding unfolding is controlled
by the parameter r .

Obviously, the strong impact of frictional damp-
ing of Coulomb type on small amplitudes is related to
the scaling behavior of the corresponding dissipation.
While the dissipation of viscous damping terms scales
quadratically with amplitude, that of Coulomb friction
scales linearly: For this reason, the impact of the latter
terms on limit cycles of small amplitude will be much
stronger than that of the viscous damping terms. This
fact is also reflected by the evolution V ′ of the Lya-
punov function, for which the total mechanical energy
had been chosen (cf. Fig. 4 and (19)).

7 Conclusion and outlook

Within this contribution, the impact of damping due
to Coulomb friction on a simple oscillator exhibiting
self-excitation due to negative damping has been in-
vestigated.

The results could be summarized by the following
conception: Adding frictional damping of Coulomb
type can be seen as adding an imperfection to the clas-
sical Hopf bifurcation scenario, which affects mainly
the small amplitude behavior in the supercritical pa-
rameter range. The large amplitude behavior is mostly
preserved.

Moreover, the steady state point changes into a set
of equilibria. While the steady state point loses its sta-
bility at the critical value of the bifurcation parameter,
the equilibrium set is asymptotically stable for all val-
ues of the bifurcation parameter—but may have a fi-
nite basin of attraction. In the supercritical parameter
range, this basin of attraction is induced by the dissipa-
tion of Coulomb friction terms while—corresponding

to the classical Hopf scenario—in the subcritical pa-
rameter range the basin of attraction can either be finite
(due to nonlinear viscous dissipation terms) or infinite.

The classical Hopf scenario is recovered as r → 0
and can be seen as a special, degenerated case of the
scenario presented here. In the sense of this limit, the
Hopf point of the smooth problem can be interpreted
as limit of the fold point or a zero-crossing point of the
non-smooth problem for r → 0.

From a practical point of view, it is found that the
qualitative question of stability is replaced by the need
to quantify the size of the basin of attraction and de-
cide whether particular perturbations are tolerable or
not.

Further extensions of this work will account for
more detailed and realistic models of joint damping.
In a next step, the influence of dissipation due to
Coulomb friction on flutter-type instabilities in me-
chanical systems will be investigated.
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