
Nonlinear Dyn (2012) 69:495–509
DOI 10.1007/s11071-011-0280-3

O R I G I NA L PA P E R

Global stabilization of 2-DOF underactuated mechanical
systems—an equivalent-input-disturbance approach

Jinhua She · Ancai Zhang · Xuzhi Lai · Min Wu

Received: 13 June 2011 / Accepted: 21 October 2011 / Published online: 4 January 2012
© Springer Science+Business Media B.V. 2011

Abstract This paper presents a new method of glob-
ally stabilizing a non-linear underactuated mechanical
system with two degrees of freedom (DOF). It is based
on the idea of equivalent input disturbance (EID), and
designing the controller requires only the state vari-
ables of position, not velocity. The design procedure
has two steps: (1) Use a global homeomorphic co-
ordinate transformation to convert the original sys-
tem into a new non-linear system. This changes the
problem of stabilizing the original system into one of
stabilizing the new system. (2) Divide the new sys-
tem into linear and non-linear parts and take the non-
linear part to be an artificial disturbance, thereby en-
abling use of the EID approach to globally asymp-
totically stabilize the new system at the origin. The
new method was tested through numerical simulations
on three well-known 2-DOF underactuated mechani-
cal systems (TORA, beam ball, inertia wheel pendu-
lum). The results demonstrate its validity and its supe-
riority over others.
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1 Introduction

An underactuated mechanical system is a system that
has fewer actuators than degrees of freedom (DOF).
Spacecraft, underwater vehicles, mobile robots, sur-
face vessels, and many other systems have this char-
acteristic. Since systems of this type are lighter and
less energy-consuming than fully-actuated ones, they
are used extensively in the fields of aerospace, trans-
portation, and industrial manufacturing; and there is
increasing interest in the problem of controlling their
motion [1–3].

The simplest type of underactuated mechanical sys-
tem is a 2-DOF system with one control input. Exam-
ples include a translational oscillator with rotational
actuator (TORA) [4], a two-link underactuated manip-
ulator [5, 6], a beam–ball system [7], a Furuta pen-
dulum [8], and an inertia wheel pendulum [9]. This
type of system exhibits strong non-linearities. More-
over, since one degree of freedom is passive, a second-
order non-holonomic constraint is usually imposed
[10]. This makes control of such systems a challenging
task.

Over the last couple of decades, a number of meth-
ods have been developed to solve the problem of stabi-
lizing a 2-DOF underactuated system. The most used
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approach is the energy-based (EB) method in [11] that
utilized energy passivity in the design of a stabilizing
controller. It has been applied to many underactuated
mechanical systems [12–14]. In addition, since most
underactuated systems are not full-state feedback lin-
earizable [15], attempts have been made to transform
an underactuated system into a new system that has a
partially linear structure [16–18]. One example is the
partial feedback linearization (PFL) method of [16],
which linearizes one of the actuated or un-actuated
parts and uses a transformation on the control input
to achieve the control objective. But the appearance
of the new control input in both the actuated and un-
actuated parts of the transformed system complicates
the design of a PFL-based control system. The main
feature of both the EB and PFL methods is the require-
ment of designing of a couple of different controllers
and using an integration or switching strategy to coor-
dinate them. As a result, they do not usually guaran-
tee the global stability of the control system. To solve
this problem, the backstepping (BS)-based method of
[19] introduces new variables into the original system.
Although it only requires a single controller to stabi-
lize the system, the control law is very complicated for
two reasons: This method suffers from the problem
of the explosion of terms, and it sometimes requires
the explicit solution of highly nonlinear equations. The
dynamic surface control (DSC) method of [20] over-
comes these shortcomings by using a low-pass filter,
but it lacks theoretical rigor. Other approaches to the
stabilization of a 2-DOF underactuated system include
energy reshaping [21], the construction of fictitious
output [22], and sliding-mode control [23]. However,
all of them require full state information (positions and
velocities) for the design of a control law. This is also
true of the EB, PFL, BS, and DSC methods.

Generally speaking, the position can be accurately
measured with an encoder. However, since velocity is
generally measured with a tachometer, it usually con-
tains noise, which can affect the control performance
of the system. Moreover, the installation of a tachome-
ter increases the cost of the control system. So, it is
meaningful from both practical and theoretical view-
points to stabilize a mechanical system using only po-
sition measurements. For a fully actuated mechani-
cal system, researchers have successfully achieved this
goal by using observer- based design methods (for ex-
ample, [24]). However, this strategy is difficult to ex-
tend to an underactuated system due to the reduction

of the dimension of the control input and the complex-
ity of the dynamics. Devising a method of stabilizing
an underactuated system that relies only on the mea-
surement of positions is still a challenging problem.

In this study, we categorized 2-DOF underactuated
systems into three types and developed a new non-
linear control method that uses only positional infor-
mation to globally asymptotically stabilize them at the
origin. Our method is based on the idea of equivalent
input disturbance (EID), which was first presented in
[25] to deal with disturbance rejection in a linear servo
system. This study extends the concept to the stabiliza-
tion of 2-DOF underactuated non-linear mechanical
systems. The design procedure has two steps: (1) Use
a global homeomorphic coordinate transformation to
transform the system into a new nonlinear system that
is easier to handle. (2) Divide the new system into a
linear and a non-linear part, take the non-linear part
to be an artificial disturbance, and use the EID-based
approach to compensate for that disturbance so as to
globally stabilize the new system at the origin.

The rest of this paper is organized as follows. Sec-
tion 2 presents a dynamic model of a 2-DOF underac-
tuated system. Section 3 describes a coordinate trans-
formation for the original underactuated system. Sec-
tion 4 explains the design of an EID-based stabilizing
control law. Section 5 presents some numerical exam-
ples for three typical 2-DOF underactuated systems.
Finally, Sect. 6 presents some concluding remarks.

2 System modeling

Let q1 and q2 be the configuration variables for
the un-actuated and actuated parts, respectively, of
a 2-DOF underactuated mechanical system; and let
q = [q1, q2]T . Choose the Lagrangian of the system to
be

L(q, q̇) = 1

2
q̇T M(q)q̇ − P(q) (1)

where q̇ = dq/dt , P(q) is the potential energy of the
system, and M(q) ∈ R

2×2 is a positive-definite sym-
metric inertia matrix. The general form of M(q) is

M(q) =
[
m11(q) m12(q)

m21(q) m22(q)

]
(2)
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The dynamic equation is obtained from the Euler–
Lagrange equations:

d

dt

[
∂L(q, q̇)

∂q̇1

]
− ∂L(q, q̇)

∂q1
= 0 (3a)

d

dt

[
∂L(q, q̇)

∂q̇2

]
− ∂L(q, q̇)

∂q2
= τ2 (3b)

where τ2 is the control input applied to variable q2,
which is for the actuated part. We rewrite (3a)–(3b) in
the general form

M(q)q̈ + C(q, q̇) + G(q) =
[

0
τ2

]
(4)

where C(q, q̇) = [C1(q, q̇),C2(q, q̇)]T is the combi-
nation of the Coriolis and centrifugal forces; G(q) =
[G1(q),G2(q)]T contains the effects of gravity and
elasticity; and

G(q) = ∂P (q)

∂q
(5)

Note that, for an underactuated system, the number of
control inputs is less than the number of generalized
coordinates. As a result, many underactuated systems
are not full-state feedback linearizable (FL), and some
are not even small-time locally controllable (STLC)
[26]. This characteristic of the system is revealed by
the zero term on the right side of (3a), which indicates
that there are no exogenous control signals input on the
subsystem (3a). As pointed out in [10], this second-
order differential equation is not integrable when the
term G(q) is not constant. Some researchers call (3a)
a second-order non-holonomic constraint to make this
point clear.

We categorize underactuated systems into three
types according to the characteristics of the inertia ma-
trix. When the inertia matrix is constant, we have the
first class:

(1) An underactuated system with constant inertia
matrix (USCIM), that is, M(q) = M0. An exam-
ple of a 2-DOF USCIM is an inertia wheel pendu-
lum.

When the inertia matrix is not constant, the con-
figuration variables that appear in it are called shape
variables. The classifications for this type are based on
whether the shape variable is for the actuated or the
unactuated part:

(2) An underactuated system with a shape variable
for the actuated part (USSV-A), that is, M(q) =
M(q2). Examples include an acrobot and a TORA.

(3) An underactuated system with a shape variable for
the unactuated part (USSV-U), that is, M(q) =
M(q1). Examples include a beam–ball system, a
pendubot, a rotating pendulum, and a cart pendu-
lum.

This study considered the problem of globally sta-
bilizing these three kinds of systems under the as-
sumption that only the position, q , is known.

3 Coordinate transformation

For the non-linear system (4), although the input only
appears on the actuated part, it influences the un-
actuated part due to the coupling of the inertia matrix.
This makes the stabilization of (4) difficult. To make
the analysis and design of the control system easy, we
introduce a coordinate transformation that transforms
the original system into a simple cascade nonlinear
system. Equation (3a) shows that the first derivative of
the term, ∂L(q, q̇)/∂q̇1 , with respect to time is related
only to q and q̇ , but not to q̈ . Based on this property
and the partial feedback linearization method [16], we
have a global coordinate transformation for (4):

T :

⎧⎪⎪⎨
⎪⎪⎩

z1 = q1 + α(q2)

z2 = ∂L(q,q̇)
∂q̇1

= m11(q)q̇1 + m12(q)q̇2

z3 = q2

z4 = q̇2

(6)

where α(·) is a continuous function and α(0) = 0.
Let Γ be the Jacobian matrix of the transformation
from ζ = [q1, q2, q̇1, q̇2]T to z = [z1, z2, z3, z4]T , that
is, Γ = ∂z/∂ζ T . It is easy to show that det[Γ ] =
−m11(q) < 0. So, T is a homeomorphic transforma-
tion. From (6), we obtain the inverse transformation
of T :

T −1:

⎧⎪⎪⎨
⎪⎪⎩

q1 = z1 − α(z3)

q2 = z3

q̇1 = z2−m12(q)z4
m11(q)

∣∣
q1=z1−α(z3),q2=z3

q̇2 = z4

(7)

Combining (3), (4), (5), and (6) yields a new dynamic
equation for a 2-DOF underactuated system in the
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z-state:
⎧⎪⎪⎨
⎪⎪⎩

ż1 = f1(z)

ż2 = f2(z)

ż3 = z4

ż4 = u

(8)

or

ż = f (z) + Bu (9)

where

f1(z) =
[

z2

m11(q)
+
(

dα(q2)

dq2
− m12(q)

m11(q)

)
z4

]∣∣∣∣
ζ=T −1(z)

(10)

f2(z) =
[

1

2
q̇T ∂Mq

∂q1
q̇ − G1(q)

]∣∣∣∣
ζ=T −1(z)

(11)

f (z) = [f1(z), f2(z), z4, 0
]T (12)

B = [0, 0, 0, 1]T (13)

and u is the input of the new system. From (4), we
obtain the relationship between u and τ2:

τ2 = det[M(q)]
m11(q)

u + C2(q, q̇) + G2(q)

− m21(q)[C1(q, q̇) + G1(q)]
m11(q)

(14)

det
[
M(q)

]= m11(q)m22(q) − m12(q)m21(q) > 0

(15)

To make f1(z) simple, we need to choose a different
α(q2) for a different type of a 2-DOF underactuated
system. Specifically, it is suitable to choose

α(q2) =
∫ q2

0

m12(s)

m11(s)
ds (16)

for a USSV-A, and to choose

α(q2) = 0 (17)

for a USSV-U. We can choose α(q2) to be (16) or (17)
for a USCIM.

In addition, we note that the new control input, u,
of the system (8) only drives z4; and (8) is a cascade

nonlinear system. The system structure of (8) is sim-
pler than that of (4). It makes the problem of designing
a controller that stabilizes a 2-DOF underactuated sys-
tem easy to solve.

Since the transformation matrix is non-singular,
ζ = 0 is equivalent to z = 0. That means that global
and asymptotic stabilization of the system (8) at z = 0
guarantees the global and asymptotic convergence of
the system (4) at the origin. In other words, global sta-
bilization control of the system (4) is guaranteed as
long as there exists a control law, u, that globally sta-
bilizes the system (8) at z = 0. The discussion below
focuses on finding such a law.

4 Design of EID-based control law

This section explains how to use the concept of EID to
design a stabilizing controller for the non-linear sys-
tem (8).

First, we divide the right side of (9) into linear and
nonlinear parts, take z1 and z3 to be the outputs of the
system, and rewrite the dynamics of the system as

{
ż = Az + Bu + δ

y = Cz
(18)

where

A = ∂f (z)

∂z

T
∣∣∣∣
z=0

=

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

aij = ∂fi(z)

∂zj

∣∣∣∣
z=0

(19)

C =
[

1 0 0 0
0 0 1 0

]
(20)

and δ := Φ(z) = f (z) − Az. From (8), (10), and (18),
we know that y = 0 is equivalent to z = 0. Combining
(10), (11), and (19) yields

⎧⎪⎨
⎪⎩

a11 = a13 = 0, a22 = a24 = 0, a12 = 1
m11(0)

a14 = [ dα(q2)
dq2

− m12(q)
m11(q)

]∣∣
q=0, a21 = − ∂G1

∂q1

∣∣
q=0

a23 = [ ∂G1
∂q1

dα(q2)
dq2

− ∂G1
∂q2

]∣∣
q=0

(21)
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Fig. 1 Configuration of EID-based control system

A simple calculation gives us

C(sI4 − A)−1B =
[

N1(s)
Δ(s)

N2(s)
Δ(s)

]
(22)

where I4 is a 4 × 4 identity matrix, and

⎧⎨
⎩

Δ(s) = s2[s2 − a12a21]
N1(s) = a14s

2 + a12a23

N2(s) = s2 − a12a21

(23)

So, the Smith–MacMillan canonical form of the ratio-
nal fraction matrix C(sI4 − A)−1B is [1/Δ(s),0]T .
Thus, the system (A,B,C) has no zero. In addition,
from (19), (20), and (21), we have

O =
[

C

CA

]
=

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 a12 0 a14

0 0 0 1

⎤
⎥⎥⎦

Clearly, (C,A) is observable. In this study, we make
the assumption
[
m12(q)

m11(q)

∂G1(q)

∂q1
− ∂G1(q)

∂q2

]∣∣∣∣
q=0

�= 0 (A1)

It is not difficult to verify that (A,B) is controllable if
and only if (A1) holds.

Now, we take the nonlinear part, δ, to be an artificial
state-dependent disturbance of the system (18). Since

(A,B,C) is controllable and observable, and since it
has no zero on the imaginary axis, as discussed in [25],
there always exists an EID, de , on the control input
channel; and we can write the plant as

{
ż = Az + B(u + de)

y = Cz
(24)

where the EID, de, produces the same effect on the
output as δ does. In other words, the output of (24) is
the same as that of (18). Note that we abuse the nota-
tion a bit and use the same variable, z, for the state of
(18) and that of (24). This should not cause confusion.

The EID-based control system for (18) that we con-
structed (Fig. 1) consists of four parts: the plant, an
EID estimator, a state-feedback controller, and a state
observer. How to design the last three parts is ex-
plained below.

4.1 Design of EID estimator

This subsection describes the design of an estimator
that produces an estimate of de in a real-time fashion.

A full-order Luenberger state observer is used to
estimate the state of the plant (24):

˙̂z = Aẑ + Bû + L(y − Cẑ) (25)

where û = u + de and L is the observer gain that sta-
bilizes A − LC (see Sect. 4.3 regarding the design).
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Taking the error state to be


z = ẑ − z (26)

and substituting it into (24) yields

˙̂z = Aẑ + Bu + Bde + (
ż − A
z) (27)

We find a 
d that satisfies


ż − A
z = B
d (28)

Combining (27) and (28) yields

˙̂z = Aẑ + B
(
u + d̂e

)
(29)

where

d̂e = de + 
d (30)

From (25) and (29), we have

B
(
u + d̂e − û

)= L(y − Cẑ) (31)

Solving (31) yields a solution for d̂e:

d̂e = BT L(y − Cẑ) + û − u (32)

We take d̂e to be an estimate of the actual EID, de.
To ensure the estimation accuracy, we use a low-pass
filter,

F(s) = 1

T s + 1
(33)

to select the frequency band for the estimate, where
T is the time constant of the filter. The filtered distur-
bance estimate is

d̃e(t) = L−1[F(s)D̂e(s)
]

(34)

where, for any variable θ(t), Θ(s) = L[θ(t)], L[·]
is the Laplace transform, and L−1[·] is the inverse
Laplace transform.

Remark 1 Since A−LC is stable, 
z → 0 as t → ∞.
Equations (28) and (30) show that the estimated EID,
d̂e, asymptotically converges to its actual value, de.

4.2 Design of state-feedback controller

Designing the state-feedback controller for the system
(24) by minimizing

JK =
∫ ∞

0

{
zT (t)Qz(t) + ûT (t)Rû(t)

}
dt (35)

gives us

û = Kf ẑ, Kf = −R−1BT P (36)

where P = P T is a positive solution of the Riccati
equation

AT P + PA − PBR−1BT P + Q = 0 (37)

and Q ≥ 0 and R > 0 are two given matrices. Since
(A,B) is controllable and since the observer (25) is
stable (see next subsection), the linear quadratic regu-
lation (LQR) optimal control law, (36), makes the out-
put of the plant (24) asymptotically converge to zero.
As a result, according to the definition of EID, the con-
trol law

u = û − d̃e (38)

asymptotically stabilizes the output of the plant (18) at
the origin. So, the global, asymptotic stabilization of
the plant (18) at the origin is guaranteed under (38).

Remark 2 Equation (14) shows that the velocity, q̇ , is
necessary to deduce the control input τ2. Since we do
not measure q̇ and since the observer (25) is asymptot-
ically stable, we use (6) and the observer information
to obtain the velocities

q̇1 = ẑ2 − m12(q)ẑ4

m11(q)
, q̇2 = ẑ4 (39)

4.3 Design of state observer

The observer has two functions:

(1) to reproduce the state of the plant, which enables
a state feedback control law to be constructed; and

(2) to produce an EID, which enables the non-lineari-
ties of the plant to be compensated for.

For the observer to carry them out, the observer gain,
L, must be such that the observer converges faster than
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the plant. The method of designing a high-gain ob-
server in [25] is also used in this study. A brief de-
scription of the design procedure is given to make the
paper self-contained.

Consider the dual-system of the linear plant:

{
dzL

dt
= AT zL + CT uL

yL = BT zL
(40)

We introduce the parameterized performance index

JL =
∫ ∞

0

{
ρzT

L(t)QLzL(t) + uT
L(t)RLuL(t)

}
dt (41)

for (40), where QL > 0 and RL > 0 are weighting ma-
trices, and ρ > 0 is a scalar parameter. The optimal
observer gain is

⎧⎪⎨
⎪⎩

L = KT
ρ

Kρ = 1
2R−1

L CS

AS + SAT − SCT R−1
L CS + ρQL = 0

(42)

From (42), we have

(A − LC)S + S (A − LC)T + ρQL = 0 (43)

That means that L designed in (42) stabilizes A − LC

and a larger ρ makes the observer dynamics quicker
[27]. In addition [28],

lim
ρ→∞

[
sI − (A − LC)

]−1
B = 0 (44)

4.4 Stability of EID-based control system

Now, let us consider the stability of the EID-based
control system. Since the dynamics of the high-gain
observer converge much more quickly than those of
the plant, an EID can quickly be estimated. This en-
ables the non-linearities to be quickly compensated
for. Under the condition that the non-linearities are
completely compensated for by the EID, we can take
de = 0 when discussing the stability issue. Combining
(25), (27), and (38) yields


ż = (A − LC)
z + Bd̃e (45)

From (26), (32), and (38), we have

d̂e = −BT LC
z + d̃e (46)

The transfer function from d̃e to d̂e is derived from
(41) and (42):

GL(s) = 1 − BT LC
[
sI − (A − LC)

]−1
B

= BT (sI − A)
[
sI − (A − LC)

]−1
B (47)

The separation theorem [25] and small-gain theorem
[29] tell us that the stability of the whole system is
guaranteed under the following conditions:

C1: A + BKf and A − LC are stable.

C2: ‖GLF‖∞ = sup
ω≥0

σmax
[
GL(jω)F (jω)

]
< 1

where σmax[·] is the maximum singular-value func-
tion.

From (36), (37), and (43), it is easy to verify that
condition C1 is true. In addition, since the left side of
(44) is part of GL(s), for a given filter, F(s), condition
C2 is guaranteed by the L designed in (42) for a large
enough ρ.

5 Numerical examples

We employed the above method to globally stabilize
three kinds of 2-DOF underactuated mechanical sys-
tems: a TORA, a beam–ball system, and an inertia
wheel pendulum. The simulation results demonstrate
the validity of the method. Note that, as shown in (20),
the matrices B and C are the same for all the systems.
So, we only discuss the matrix A below.

5.1 TORA system

A TORA (Fig. 2) consists of a cart and an eccentric ro-
tational proof mass. The cart moves horizontally along
a line and is connected to a wall by a spring. The proof
mass is attached to the cart and is actuated by a DC
motor. q1 is the translational position of the cart, and
q2 is the rotational angle of the proof mass. We assume
that there are no external disturbances on the cart. The
dynamics of a TORA are [30]

M(q2)

[
q̈1

q̈2

]
+
[−m2rq̇

2
2 sinq2

0

]
+
[
kq1

0

]
=
[

0
τ2

]

(48)
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Fig. 2 Model of TORA

where

M(q2) =
[

m1 + m2 m2r cosq2

m2r cosq2 m2r
2 + J

]

m1 is the mass of the cart, m2 is the mass of the proof
mass, r is the rotary radius of the proof mass, J is the
moment of inertia of the proof mass, k is a spring con-
stant, and τ2 is the control torque that drives the proof
mass. It is not difficult to verify that Assumption (A1)
is satisfied for (48). Clearly, the TORA is an example
of USSV-A. We have taken

α(q2) =
∫ q2

0

m2r cosv

m1 + m2
dv = m2r

m1 + m2
sinq2

in the transformation T in (6). Then T becomes

T :

⎧⎪⎪⎨
⎪⎪⎩

z1 = q1 + m2r
m1+m2

sinq2

z2 = (m1 + m2)q̇1 + m2rq̇2 cosq2

z3 = q2

z4 = q̇2

(49)

It transforms the system (48) into

⎧⎪⎪⎨
⎪⎪⎩

ż1 = z2
m1+m2

ż2 = −kz1 + λ sin z3, λ = km2r
m1+m2

ż3 = z4

ż4 = u

(50)

From (19), (21), and (48), we have

A =

⎡
⎢⎢⎣

0 1
m1+m2

0 0
−k 0 λ 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

δ =

⎡
⎢⎢⎣

0
λ(sin z3 − z3)

0
0

⎤
⎥⎥⎦

(51)

Consider the TORA system

{
m1 = 4.9 kg, m2 = 0.1 kg, r = 0.8 m
J = 0.064 kg · m2, k = 350 N/m

(52)

The design parameters for (33), (35), and (41) were
chosen to be

{
Q = I4, R = 0.01, T = 0.2
QL = I4, RL = 1000I2, ρ = 108 (53)

Then, using the functions lqr, eig, and norm in
MATLAB yields

Kf = [359.5550 5.1169 −15.7542 −11.4677
]

(54)

L =
[

158.1524 60.8661 0.0009 −0.0005
0.0009 2.8007 158.6131 158.1139

]T

(55)

Eigenvalues of (A + BKf )

= −9.9549,−1.0020,−0.2554 ± 8.3736i (56)

Eigenvalues of (A − LC)

= −157.6313,−157.6097,−1.0032,−0.5213
(57)

‖GLF‖∞ = 0.8354 < 1 (58)

In [30, 31], the variables

⎧⎪⎨
⎪⎩

xd =
√

m1+m2
J+m2r

2 q1, θ = q2, υ =
√

k
m1+m2

t

ε = m2r√
(J+m2r

2)(m1+m2)
, U = m1+m2

k(J+m2r
2)

τ2

(59)
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Fig. 3 Simulation results for TORA

were introduced to simplify the description of a
TORA. That gives us
⎧⎨
⎩

dxd

dυ
= dxd

dt
dt
dυ

= m1+m2√
k(J+m2r

2)
q̇1

dθ
dυ

= dθ
dt

dt
dυ

=
√

m1+m2
k

q̇2

(60)

To compare our results with theirs, these variables
were also used in our simulations. We took the initial
condition of the simulations to be
[
q1, q2, q̇1, q̇2

]T
=
[√(

J + m2r2
)
/(m1 + m2),0,0,0

]T
(61)

Fig. 4 Simulation results for TORA for the case where m1 is
10% smaller than its nominal value, m2 and J are 10% larger
than their nominal values, and there is white noise (peak value:
±0.05) in the measured q

From (52), (59), (60), and (61), we obtain ε = 0.1 and

[xd, θ, dxd/dυ, dθ/dυ]T = [1,0,0,0]T

which were used in [30, 31]. Figure 3 shows the time
responses of xd, θ,U , and the filtered EID, d̃e. The re-
sults show that the settling time is about 15 s, and the
largest value of U is about 0.6 Nm. In contrast, the set-
tling time is longer than 25 s in [30] and over 35 s in
[31], and the largest value of U is greater than 6 Nm
in [30] and greater than 3 Nm in [31]. Moreover, both
of those methods require q and q̇ to design the control
law. So, our method requires fewer measurement vari-
ables and smaller control torques, and yields a faster
response.

To verify the robustness of our method, we carried
out simulations with parameter uncertainties for the
designed control system. Figure 4 shows the results
for the case where m1 is 10% smaller than its nominal
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Fig. 5 Model of beam–ball system

value, m2 and J are 10% larger than their nominal val-
ues, and there is white noise (peak value: ±0.05) in the
measured q . Clearly, the system is stable when there
are parameter uncertainties and measurement noise,
and our control strategy is practical.

5.2 Beam–ball system

A beam–ball system (Fig. 5) consists of a ball that rolls
along a beam and an actuator that tilts the beam to
move the ball. Let q1 be the position of the ball, and q2

be the angle of the beam. The dynamics of the beam–
ball are

M(q1)

[
q̈1

q̈2

]
+
[ −mq1q̇

2
2

2mq1q̇1q̇2

]
+
[

mg sinq2

mgq1 cosq2

]

=
[

0
τ2

]
(62)

M(q1) =
[
mλ 0
0 mq2

1 + J2

]

where λ = 1 + J1/mr2,m is the mass of the ball, r

is the radius of the ball, J1 is the moment of inertia
of the ball, J2 is the moment of inertia of the beam,
g (= 9.80665 m/s2) is the gravitational constant, and
τ2 is the torque applied to the beam. It is easy to verify
that Assumption (A1) is satisfied for (62).

Since the beam–ball system is an example of
USSV-U, we take α(q2) = 0 in (6) and obtain the fol-
lowing coordinate transformation for (62):

z1 = q1, z2 = mλq̇1, z3 = q2, z4 = q̇2 (63)

It converts the system (62) into

⎧⎪⎪⎨
⎪⎪⎩

ż1 = z2
mλ

ż2 = −mg sin z3 + mz1z
2
4

ż3 = z4

ż4 = u

(64)

Table 1 Mechanical parameters of beam–ball

m [kg] r [m] J1 [kg·m2] J2 [kg·m2]

0.05 0.01 2 × 10−6 0.02

Equations (19), (21), and (62) yield

A =

⎛
⎜⎜⎝

0 1
mλ

0 0
0 −β −mg 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ,

δ =

⎛
⎜⎜⎝

0
−mg[sin z3 − z3] + mz1z

2
4

0
0

⎞
⎟⎟⎠

(65)

The mechanical parameters of the beam–ball in
[32] (Table 1) were used for simulations. And the de-
sign parameters were chosen to be
{

Q = I4, R = 0.05, T = 0.1
QL = 0.5I4, RL = 100I2, ρ = 108 (66)

That produced

Kf = [4.4721 80.5763 −24.8381 −8.3472
]
(67)

L =
[

360.6255 353.5535 −0.0024 −0.0021
−0.0024 −0.2431 354.0530 353.5534

]T

(68)

Eigenvalues of (A + BKf )

= −4.3362,−2.1044,−0.9534 ± 1.5888i (69)

Eigenvalues of (A − LC)

= −353.0516,−353.0516,−14.5964,−1.0014
(70)

‖GLF‖∞ = 0.9116 < 1 (71)

For the initial condition

[
q1, q2, q̇1, q̇2

]T = [0,π/3,0,0]T (72)

Fig. 6 shows the simulation results. The filtered EID,
d̃e is also shown in the figure.

The settling time of the beam–ball system is about
10 s, which is as good as that in [33], in which both
the position and velocity are required. However, the
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Fig. 6 Simulation results for beam–ball system

largest control input in Fig. 6 is less than 1 Nm, while
it is greater than 3 Nm in [33]. Clearly, our method re-
quires fewer measurement variables and a lower con-
trol torque than [33] does.

For the designed control system, we studied the
problem of robustness through simulations. Figure 7
shows the results for the case where m and J1 are 10%
larger than their nominal values, J2 is 10% smaller
than its nominal value, and there is white noise (peak
value: ±0.1) in the measured q . The results show that
the EID-based strategy is effective even under these
conditions.

Fig. 7 Simulation results for beam–ball system for the case
where m and J1 are 10% larger than their nominal values, J2 is
10% smaller than its nominal value, and there is white noise
(peak value: ±0.1) in the measured q

Fig. 8 Model of inertia wheel pendulum

5.3 Inertia wheel pendulum

An inertia wheel pendulum (Fig. 8) consists of a pen-
dulum with a rotating uniform inertia wheel attached
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Table 2 Parameters of inertia wheel pendulum

m1 [kg] L1 [m] l1 [m] m2 [kg] J1 [kg·m2] J2 [kg·m2]

0.02 0.125 0.063 0.3 47 × 10−6 32 × 10−6

to the end. The wheel is actuated by a motor and spins
about an axis parallel to the axis of rotation of the pen-
dulum. The joint at the base is unactuated. The pen-
dulum is controlled by means of the coupling torque
produced by rotation of the wheel. q1 and q2 are the
angular positions of the pendulum and wheel, respec-
tively. The dynamics of the system are [34]

M

[
q̈1

q̈2

]
+
[−m0 sinq1

0

]
=
[

0
τ2

]
(73)

where

M =
[
m11 m12

m21 m22

]
=
[
m1l

2
1 + m2L

2
1 + J1 + J2 J2

J2 J2

]

m0 = (m1l1 + m2L1) g

m1 is the mass of the pendulum, L1 is its length, J1 is
its moment of inertia, l1 is the distance from the first
joint to the center of mass of the pendulum, m2 is the
mass of the wheel, J2 is its moment of inertia, and
τ2 is the control torque applied to the wheel. Clearly,
Assumption (A1) is satisfied for (73).

The inertia wheel pendulum is an example of US-
CIM. We took α(q2) = 0 in (6) and chose the coordi-
nate transformation to be

T :

⎧⎪⎪⎨
⎪⎪⎩

z1 = q1

z2 = m11q̇1 + m12q̇2

z3 = q2

z4 = q̇2

(74)

That gives the dynamics of the system in the z-state

⎧⎪⎪⎨
⎪⎪⎩

ż1 = 1
m11

z2 − m12
m11

z4

ż2 = m0 sin z1

ż3 = z4

ż4 = u

(75)

Combining (19), (21), and (73) yields

A =

⎛
⎜⎜⎝

0 1
m11

0 −m12
m11

m0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ,

δ =

⎛
⎜⎜⎝

0
m0[sin z1 − z1]

0
0

⎞
⎟⎟⎠

(76)

We used the inertia wheel pendulum system in [35]
(Table 2) and chose the design parameters to be
{

Q = 0.5I4, R = 0.5, T = 0.5
QL = 0.05I4, RL = 105I2, ρ = 108 (77)

That yielded

Kf = [302.3073 5477.5583 1.0000 −15.5057
]

(78)

L =
[

21.8639 3.7307 −0.0004 0.0112
−0.0004 −0.0112 4.0044 3.5355

]T

(79)

Eigenvalues of (A + BKf )

= −6.8871 ± 0.0292i,−0.8660 ± 0.4999i (80)

Eigenvalues of (A − LC)

= −10.9320 ± 17.2798i,−2.6902,−1.3142 (81)

‖GLF‖∞ = 0.8336 < 1 (82)

For the initial condition
[
q1, q2, q̇1, q̇2

]T = [π,0,0,0]T (83)

Fig. 9 shows the simulation results as well as the fil-
tered EID, d̃e. It is clear that our method makes the
system quickly converge to the origin, regardless of
the state. The control performance is as good as those
reported in [9]; but that method requires measurements
of both q and q̇ , and it does not guarantee the conver-
gence of q2.
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Fig. 9 Simulation results for inertia wheel pendulum

In addition, we considered the robustness of the
control system when parameter uncertainties and mea-
surement noise are present. Figure 10 shows the sim-
ulation results for the case where m1, l1, and J1 are
10% larger than their nominal values, m2 and J2 are
10% smaller than their nominal values, and there is
white noise (peak value: ±0.1) in the measured q . It is
clear that the EID-based strategy is still effective under
these conditions.

Fig. 10 Simulation results for inertia wheel pendulum for the
case where m1, l1, and J1 are 10% larger than their nominal
values, m2 and J2 are 10% smaller than their nominal values,
and there is white noise (peak value: ±0.1) in the measured q

6 Conclusion

This paper presents a new method of stabilizing a
2-DOF underactuated mechanical system that is based
on the concept of EID. It has the advantage of requir-
ing only positional information for the design of a con-
trol law. To globally asymptotically stabilize a system
at the origin, we utilize the general momentum associ-
ated with the variables of the unactuated part and carry
out a homeomorphic global coordinate transformation
on the system, thereby converting it into a new one that
is easy to handle. This changes the problem of stabiliz-
ing the original system into one of stabilizing the new
system. Then an EID-based control law is designed
that globally asymptotically stabilizes the new system
at the origin. This method was applied to the control
of three well-known 2-DOF underactuated mechanical
systems: a TORA, a beam–ball system, and an inertia
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wheel pendulum. Simulations demonstrated the valid-
ity of the method and its superiority over others.

In addition, it is easy to generalize our method to
the stabilization of an n-DOF (n ≥ 3) underactuated
mechanical system.
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