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Abstract Most of the currently employed vibration-
based identification approaches for structural damage
detection are based on eigenvalues and/or eigenvec-
tors extracted from dynamic response measurements,
and strictly speaking, are only suitable for linear sys-
tem. However, the inception and growth of damage
in engineering structures under severe dynamic load-
ings are typical nonlinear procedures. Consequently,
it is crucial to develop general structural restoring
force and excitation identification approaches for non-
linear dynamic systems because the restoring force
rather than equivalent stiffness can act as a direct in-
dicator of the extent of the nonlinearity and be used
to quantitatively evaluate the absorbed energy during
vibration, and the dynamic loading is an important
factor for structural remaining life forecast. In this
study, based on the instantaneous state vectors and
partially unknown excitation, a power series polyno-
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mial model (PSPM) was utilized to model the non-
linear restoring force (NRF) of a chain-like nonlinear
multi-degree-of-freedom (MDOF) structure. To im-
prove the efficiency and accuracy of the proposed ap-
proach, an iterative approach, namely weighted adap-
tive iterative least-squares estimation with incomplete
measured excitations (WAILSE-IME), where a weight
coefficient and a learning coefficient were involved,
was proposed to identify the restoring force of the
structure as well as the unknown dynamic loadings
simultaneously. The response measurements of the
structure, i.e., the acceleration, velocity, and displace-
ment, and partially known excitations were utilized
for identification. The feasibility and robustness of the
proposed approach was verified by numerical simu-
lation with a 4 degree-of-freedom (DOF) numerical
model incorporating a nonlinear structural member,
and by experimental measurements with a four-story
frame model equipped with two magneto-rheological
(MR) dampers mimicking nonlinear behavior. The re-
sults show the proposed approach by combining the
PSPM and WAILSE-IME algorithm is capable of ef-
fectively representing and identifying the NRF of the
chain-like MDOF nonlinear system with partially un-
known external excitations, and provide a potential
way for damage prognosis and condition evaluation of
engineering structures under dynamic loadings which
should be regarded as a nonlinear system.

Keywords Nonlinear system identification · Power
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Dynamic loadings · Weighted adaptive iterative
least-squares estimation · Incomplete measured
excitations · MR damper

Abbreviations
PSPM: Power Series Polynomial Model
NRF: Nonlinear Restoring Force
WAILSE-IME: Weighted Adaptive Iterative

Least-Squares Estimation with
Incomplete Measured Excitations.

1 Introduction

Civil infrastructure systems are prone to deterioration
or damage due to several factors, e.g., material fa-
tigue accumulation, strong dynamic loadings includ-
ing earthquake, strong wind and impact, and crack
initiation and growth. For damage detection of en-
gineering structures under dynamic loadings, a num-
ber of vibration-based identification approaches have
been proposed, which are based on the idea of extract-
ing the eigenvalues, mode shapes, and/or their deriva-
tives from the dynamic responses, to identify struc-
tural stiffness describing the location and severity of
structural damage by solving an optimization problem.
An investigation reported by Ghanem and Shinozuka
[1] reviewed the application of a number of system
identification techniques in earthquake engineering.
Furthermore, the thorough reviews of vibration-based
damage identification methods are available from the
publications by Doebling et al. [2], Wu et al. [3],
and Yan et al. [4]. Strictly speaking, most of the cur-
rently employed vibration-based damage detection ap-
proaches are only suitable for linear systems. But the
eigenvalue-based methods are not necessarily wrongly
used to detect possible damage evolution, provided
that they are adopted to track the structural dynam-
ics when damage is not growing under loading con-
ditions which are less severe than those causing new
damage inception and growth. By identifying possible
drifts in eigenvalues and vibration mode shapes, the
eigenvalue-based identification approaches are in prin-
ciple able to understand whether damage is present in
structure. If they are accurate enough, they can also
detect where damage is growing. However, all engi-
neering structures are nonlinear to some extent as the
occurrence of a fault such as crack initiation and de-
velopment, and the looseness and presence of friction

characteristics of structural joints in structural mem-
bers under dynamic loadings will result in nonlinear
behavior. Consequently, the detection of nonlineari-
ties is receiving increased attention and it’s crucial to
develop general nonlinear identification algorithms to
evaluate the current reliability, performance, and con-
dition of the structures for the prevention of potentially
catastrophic events, as well as for the remaining life
estimation as one of the main contents of structural
damage prognosis (DP), which is the future of struc-
tural health monitoring [5].

Studies on the modeling and identification of non-
linear mechanical structures have been carried out for
a relatively long time, and much progress has been
made in this area. The first contribution to the iden-
tification of nonlinear structural models can be traced
back to the work by Ibanez [6]. Since then, numerous
methods have been developed due to the highly indi-
vidualistic nature of nonlinear systems [7–9]. Because
nonlinear restoring force (NRF) can be considered as
a direct index describing the extent of nonlinearity,
Masri et al. [10, 11] proposed a fruitful approach,
namely the restoring force surface (RFS) method, to
identify and analyze the nonlinear structural systems
in terms of their internal RFSs by using Chebyshev
polynomial for the expansion of NRFs. Based on the
uses of power series expansions, a relatively simple
nonparametric technique for the identification of non-
linear vibrating systems has been developed by Yang
and Ibrahim [12]. Masri et al. [13, 14] presented a
general data-based approach by utilizing power series
fitting techniques to develop reduced-order nonpara-
metric models in nonlinear multi-degree-of-freedom
(MDOF) systems. Tasbihgoo et al. [15] discussed two
broad classes of nonlinear identification approaches.
One is based on the representation of the system
restoring forces in a polynomial-basis format, and
the other one uses artificial neural networks to map
the complex transformations of the nonlinear MDOF
systems with a nonparametric models. Haroon and
Adams [16] presented a passive time and frequency
domain method to exploit the changes in the nonlin-
ear behavior of a mechanical system to identify dam-
age. More recently, based on Wiener system and the
available input and output measurements, Paduart et
al. [17] proposed a Polynomial Nonlinear State Space
(PNLSS) model to approximate multivariable nonlin-
ear systems. Jamaali et al. [18] presented a novel mod-
eling and identification approach for nonlinear sys-
tems using modal series state space model from the
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input and output measurements. All of these prior sys-
tem identification methods require the measurements
of input being completely available. However, in many
practical situations, either sensors may not be installed
to measure all the external excitations or some exter-
nal excitations are unmeasurable. Moreover, the iden-
tification of unknown dynamic loadings is also a chal-
lenging issue for structural DP which is the future of
structural health monitoring, because loading profile
analysis plays key roles in the remaining service life
estimation [5]. Consequently, it is highly desirable to
develop identification algorithms for both structural
nonlinear behavior and unknown external excitations
in a simultaneous way utilizing structural vibration re-
sponse measurements and incomplete measured exter-
nal excitations.

Wang and Haldar [19] proposed an iterative least-
squares technique with unknown inputs to identify
large structural systems at element level. Li and Chen
[20] proposed a method, called the statistic average
algorithm, to identify the structural parameters un-
der unknown ground motion. Moreover, Chen and Li
[21, 22] proposed an iteration procedure under incom-
plete measured excitations to estimate structural pa-
rameters and the unmeasured excitations. The men-
tioned above methods proposed by Wang and Haldar
[19], Li and Chen [20], as well as Chen and Li [21, 22]
were employed to simultaneously identify the struc-
tural parameters and unknown inputs of linear system.
Modeling and identification of nonlinear nonconser-
vative dissipative system with incomplete inputs is a
challenging problem that has been studied by many
researchers in the past several decades. Mohammad et
al. [23] proposed a direct parameter estimation method
for identifying the physical parameters of linear and
nonlinear MDOF structures with only excitation on a
signal DOF. To eliminate the deficiency of the above
approaches, many investigators extended the identifi-
cation approaches with incomplete input to nonlinear
domain by the use of extended Kalman filter (EKF)
[24–28]. However, a major drawback of these ap-
proaches was that the identification results were easily
unstable, especially for structures with a large number
of unknowns. To improve the accuracy and stability of
the results, an Unscented Kalman Filtering (UKF) pro-
cedure was proposed by Mariani and Ghisi [29] and
employed in softening single degree-of-freedom struc-
tural systems for state tracking and model calibration.

In this study, a nonlinear performance identifica-
tion approach with power series polynomial model

(PSPM) proposed by the authors [30, 31] was ex-
tended to identify both the NRF and unknown dy-
namic loadings of a nonlinear MDOF chain-like
structural system with partially unknown excitations.
Moreover, in the proposed approach, in order to im-
prove the efficiency and accuracy of the proposed ap-
proach, an iterative approach, referred to as weighted
adaptive iterative least-squares estimation with incom-
plete measured excitations (WAILSE-IME), was pro-
posed to identify each coefficient of the polynomial
as well as the unknown loadings by employing ap-
propriate values of weight coefficient and learning co-
efficient, which was originally proposed for a linear
structure [32]. The feasibility and robustness of the
proposed approach was firstly validated numerically
with a 4-DOF model incorporating a nonlinear compo-
nent, and then experimentally on a 4-story steel frame
structure equipped with two actively-controlled MR
dampers which served to simulate nonlinear behav-
ior. The results show that the proposed combination of
the PSPM and WAILSE-IME approach is capable of
effectively representing the NRF and identifying the
unknown dynamic loadings of the nonlinear system
with partially unknown external excitations, and pro-
vide a potential way for damage detection in the form
of NRF and for DP of engineering structures where dy-
namic loading profile analysis plays key roles. In this
study, the nonlinearity is mimicked with MR dampers,
and further study on the performance of the proposed
approach in tracking the evolution of damage of rein-
forced concrete and steel civil engineering structures
under strong excitations such as earthquakes should be
carried out accordingly in the future.

2 NRF identification with PSPM and
WAILSE-IME

The starting point of the NRF identification for a gen-
eral n-DOF lumped mass chain-like structural system
is the equation of motion as specified by Newton’s sec-
ond law,

Mẍ(t) + R(x, ẋ,p) = f (t), (1)

where ẍ(t) = the acceleration vector of order n,M =
the constant mass matrix that characterizes the iner-
tia forces, R(x, ẋ,p) = the nonlinear nonconserva-
tive restoring force vector, p = the vector of system-
specific parameters, and f (t) = the directly applied
excitations, respectively.
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When M is a known mass matrix, (1) can be rewrit-
ten as

R(x, ẋ,p) = f (t) − Mẍ(t). (2)

In this study, the NRF between the ith DOF and the
i − 1th DOF of the system is assumed to be expressed
by the PSPM as shown in the following equation:

Ri,i−1(x, ẋ,p) ≈ Ri,i−1(v, s)

≈
k∑

a=0

q∑

b=0

cn
i,i−1,a,bv

a
i,i−1s

b
i,i−1 (a + b �= 0), (3)

where Ri,i−1(x, ẋ,p) is the NRF between the ith DOF
and the i − 1th DOF, vi,i−1 and si,i−1 are relative ve-
locity and relative displacement vectors (i.e., vi,i−1 =
ẋi − ẋi−1, si,i−1 = xi − xi−1), c

n
i,i−1,a,b is the coeffi-

cient of the polynomial, and k and q are integers which
depend on the nature and extent of the nonlinearity
of the system, respectively. Consequently, the equa-
tion of motion corresponding to the ith DOF can be
rearranged as follows:

k∑

a=0

q∑

b=0

cn
i,i−1,a,bv

a
i,i−1s

b
i,i−1

+
k∑

a=0

q∑

b=0

cn
i+1,i,a,bv

a
i+1,i s

b
i+1,i = fi(t) − miẍi(t).

(4)

Since the structural responses are measured for iden-
tification, the terms of va

i,i−1s
b
i,i−1 and va

i+1,i s
b
i+1,i

shown in (4) are known. Hence, (4) can be represented
as

Hi
h×Liθ

i
Li×1 = P i

h×1, (5)

where Hi
h×Li = response matrix composed of the sys-

tem response vectors relating with the ith DOF (i.e.,
va
i,i−1s

b
i,i−1 and va

i+1,i s
b
i+1,i ), θ

i
Li×1 = the unknown

coefficients of the NRF shown in (4) (i.e., cn
i,i−1,a,b

and cn
i+1,i,a,b), the subscript h = the number of sample

points, the subscript Li = the number of the unknown
coefficients relating with the ith DOF, and P i

h×1 = in-
put vector of the ith DOF composed of external exci-
tations and inertia forces at time t .

Similar procedures can be implemented to the re-
maining DOFs. Consequently, for a complete n-DOF
nonlinear system, (5) can be extended as follows:

H(h×n)×LθL×1 = P(h×n)×1, (6)

where H = the complete response matrix, θ = the to-
tally unknown coefficients, the subscript L = the to-
tal number of the unknown coefficients, and P = the
complete input vector which can be expressed as

P = [P(t1) P (t2) · · · P(th)]T , (7)

where P(tk) = [f1(tk)−m1ẍ1(tk) f2(tk)−m2ẍ2(tk)

· · ·fn(tk) − mnẍn(tk)]T , (k = 1,2, . . . , h).

Since the input and output information during the
vibration are all employed for identification, the pro-
posed approach cannot be used to track the nonlinear
behavior in a real time format, but it can be employed
for post-event damage detection. When all of the ex-
ternal excitations and the corresponding dynamic re-
sponses are available, the unknown coefficients shown
in (6) can be obtained by means of any available op-
timization algorithms. For example, the structural pa-
rameters θ̃ can be estimated by the least-squares esti-
mation (LSE) algorithm as follows:

θ̃ = [HT H ]−1HT P. (8)

A major drawback of the traditional LSE is that it re-
quires all external excitations being available. How-
ever, from a practical point of view, it is not always
possible to obtain the complete excitation measure-
ments. When part of the external excitation is unavail-
able, the coefficients shown in (6) cannot be identi-
fied directly by the traditional LSE approach. In this
case, the coefficients of PSPM and the unknown ex-
ternal loadings should be identified simultaneously by
an iterative approach. In this study, an iterative ap-
proach referred to as weighted adaptive iterative least-
squares estimation with incomplete measured excita-
tions (WAILSE-IME) was proposed to simultaneously
identify the NRF which is modeled as a PSPM and the
unknown external loadings.

When the external excitations are partially un-
known, the total external excitations can be assumed
to be composed of the known forces (fK ) and the un-
known forces (fU ), which is unavailable

f = [fK fU ]T . (9)

Accordingly, the input vector shown in (7) can be re-
arranged as

P = [PK PU ]T , (10)

where PK = fK − MKẍK,PU = fU − MUẍU , the
subscripts K and U = subset consisting of the DOFs
on which the known excitations are applied, and the
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DOFs on which the unknown excitations are applied,
respectively.

Consequently, the estimated input vectors on the
j th iteration are composed of two corresponding parts
and shown below:

P̃ j = [
P̃

j
K P̃

j
U

]T
, (11)

where the symbol “∼” indicates the estimated values,
superscript j means the j th iteration, and subscript
K and U are defined above. During the iteration pro-
cess, the above estimated input matrix shown in (11)
is firstly updated by replacing P̃

j
K with known PK as

shown below:

P̂ j = [
PK P̃

j
U

]T
, (12)

where the symbol “∧” indicates updated values at the
j th iteration.

Subsequently, in this study, in order to further ac-
celerate the convergence behavior, the increment of
the estimated unknown external excitations at the pre-
vious two iterations is employed to re-update the un-
known part (P̃ j

U ) as shown in (13) at the j th iteration,

P̄ j = [
PK P̄

j
U

]T
, (13)

in which

P̄
j
U = P̃

j
U + γ

(
P̃

j−1
U − P̃

j−2
U

)
, (14)

where the symbol “−” indicates the re-updated values,
and γ is a learning coefficient taking a value within
[0,1). Since the estimated values of the unknown ex-
ternal excitation at the previous two iterations are uti-
lized, the re-updated procedure shown in (14) starts
from the third iteration. To accelerate the convergence
and to assure the stability of the iterative approach, the
learning coefficient employed here can take variable
values. At the beginning of the iteration, the learning
coefficient can take a relatively larger value to accel-
erate the iteration and it can take a smaller value in
the following iteration procedure to assure the stabil-
ity of the approach because the estimated unknown ex-
citation time series will be getting close to the actual
values accompanying with the iteration procedure. For
simplicity, in this paper, the learning coefficient takes
the value of γ /j .

Furthermore, a weight positive definite matrix
shown in (15) is employed to improve the efficiency
and accuracy of the identified results,

W =
[
αI 0
0 βI

]
, (15)

in which I = identity matrix, and α,β = weight co-
efficients (α ∈ [1,+∞), β ∈ (0,1]). The dimension of
αI and βI depends on the dimension of PK and PU

defined before, respectively. Because the weight coef-
ficient of α is corresponding to the known excitation
of PK which is more reliable information than the un-
known excitation to be identified, it is reasonable to
take the value larger than 1. Accordingly, the weight
coefficient of β corresponding to the unknown excita-
tion of PU , it takes the value smaller than 1. Based on
the principle of least-squares, the objective function of
the estimated system is improved by using the weight
matrix, and thus the LSE algorithm shown in (8) can
be rearranged as

θ̃ = [
HT WH

]−1
HT WP̄ . (16)

The basic concept of the proposed approach can be
described in the following steps in which the symbol
“∼,” “∧,” and “−,” and the superscript j are defined
before:

(a) Build the response matrix H , set the values of the
weight coefficients and learning coefficient, arbi-
trarily assign the initial value of the unknown exci-
tation force for all time steps, i.e., fU(t) = η (η ∈
R), and form the initial input matrix named P̄

j

0 .

(b) According to (16) and the re-updated inputs P̄
j

0 ,
estimate the system parameters θ̃ j .

(c) Using the estimated system parameters θ̃ j found
in step (b), solve for the estimated inputs P̃

j

1 =
[P̃ j

K,1P̃
j

U,1]T according to (6).

(d) According to (12), obtain the updated inputs P̂
j

1 =
[PK P̃

j

U,1]T .

(e) If j > 2, based on P̂
j

1 , obtain P̄
j

1 through (13)–
(14); if j ≤ 2, it is unnecessary to re-update the
inputs, hence let P̄

j

1 = P̂
j

1 directly.

Calculate the error between P̄
j

1 and P̄
j

0 as ej =
‖P̄ j

1 − P̄
j

0 ‖1 which ‖ • ‖1 is the 1-norm. The 1-norm
of a vector is defined as the summation of the abso-
lute value of each component. If the error is lower than
an acceptable threshold, i.e., ej ≤ ε, the procedure is
complete; otherwise let P̄

j+1
0 = P̄

j

1 , and repeat steps
(b) through (e).

The flowchart of the approach is shown in Fig. 1
and helps to illustrate the procedure.

Since the coefficients of PSPM are determined by
the proposed WAILSE-IME approach as discussed be-
fore, the NRFs of the system can be obtained accord-
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ing to (3). Moreover, the unknown external excita-
tion is also identified simultaneously by the iteration.
The feasibility and robustness of the proposed NRF
and external excitation identification approach is vali-
dated numerically with a MDOF nonlinear model and
experimentally with a 4-story frame structural model
equipped with a nonlinear structural member in the
following sections.

3 Numerical validation of the proposed approach
with PSPM and WAILSE-IME

To illustrate the accuracy of the proposed approach
under discussion, without loss of generality, a 4-DOF
nonlinear lumped mass chain-like structure shown in
Fig. 2 is considered as a numerical example. Each
lumped mass of the model is associated with one hor-
izontal DOF. The properties of the structure are as-
sumed to be mi = 10 kg, ki = 1 × 105 N/m, and
ci = 100 N·s/m (i = 1,2,3,4). In order to mimic the
nonlinearity, an MR damper, which is widely used as
a typical energy dissipation device in civil engineering
structures, is introduced and installed on the 2nd floor
of the numerical model as shown in Fig. 2.

MR damper is a typical nonlinear member and
many numerical models have been proposed to de-
scribe their mechanical behavior in parametric or non-
parametric forms [33–35]. In this study a modified
Dahl model, which can capture many commonly ob-
served types of hysteretic behavior of MR dampers, is
employed [36]. The modified Dahl model is given by
the following equations:

Fn = K0y + C0ẏ + FdZ + f ′
0, (17)

Ż = σ ẏ · (1 − Z · sgn(ẏ)), (18)

where K0 = the stiffness coefficient, C0 = the viscous
damping coefficient, Fd = the adjustable coulomb
friction, f ′

0 = the initial force, σ = the coefficient
used to control the shape of the hysteretic curve, y =
the displacement of the damper, and Z = a dimen-
sionless of hysteretic parameter which describes the
coulomb friction. In this example, the following val-
ues for the MR damper model are used: K0 = 50 N/m,
C0 = 399 N·s/m, Fd = 34.85 N, f ′

0 = 0 N, and σ =
50000 s/m.

To form the PSPM shown in (3), the following ba-
sis vectors, which represent the system responses, are
selected,

Fig. 1 Flowchart for iterative approach with incomplete mea-
sured excitation

Fig. 2 4-DOF nonlinear numerical model with MR damper

Basis vectors

= {v1,0, v2,1, v3,2, v4,3, s1,0, s2,1, s3,2, s4,3}, (19)

where vi,i−1 and si,i−1 are relative velocity and rel-
ative displacement between DOF i and DOF i − 1.
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Fig. 3 The response
measurements of the
nonlinear system

It should be noted that v1,0 and s1,0 here respectively
mean the relative velocity and relative displacement
between the 1st DOF and the base. Selecting values
for the order k + q = 3 of the basis functions in (3) re-
sults in the following basis function including 9 power
series for the nonlinear restoring force Ri,i−1 between
the ith DOF and the i − 1th DOF:

Power seriesi,i−1

= {
vi,i−1, si,i−1, v

2
i,i−1, vi,i−1si,i−1,

s2
i,i−1, v

3
i,i−1, v

2
i,i−1si,i−1, vi,i−1s

2
i,i−1, s

3
i,i−1

}
,

(i = 1,2,3,4). (20)

In this numerical study, the 4th DOF of the structure is
excited horizontally by a normally distributed random
force with a mean of 0 N and a standard deviation of
600 N. The corresponding response time histories of
the model are calculated by the Newmark-β method
and shown in Fig. 3.

The external excitation applied on the 4th floor is
assumed to be unknown. Since there are no forces
on the 1st, 2nd, and 3rd floor, the external excitations
on these floors can be reasonably assumed to be zero
and be considered as known information for identifi-
cation. The weight coefficients of α and β , and learn-
ing coefficient γ are set to be 10, 0.1, and 0.8, respec-
tively. The dynamic responses of the numerical model

at 800 sampling points from 0s to 4s are used. The
NRF of the system is expressed by PSPM of which
coefficients are identified by the proposed WAILSE-
IME approach. Since each coefficient is determined,
the NRF of each floor can be easily obtained accord-
ing to (3) and shown in the following equations:

R1,0 = 9.96 × 104 × s1,0 + 101.57 × v1,0 − 1.44

× 104 × s2
1,0 − 248.18 × s1,0v1,0 − 2.81

× v2
1,0 + 2.49 × 106 × s3

1,0 − 3.21 × 103

× s2
1,0v1,0 + 962.18 × s1,0v

2
1,0 − 2.09 × v3

1,0,

(21a)

R2,1 = 1.01 × 105 × s2,1 + 1.01 × 103 × v2,1 + 2.51

× 104 × s2
2,1 + 482.62 × s2,1v2,1

− 32.59 × v2
2,1 − 1.07 × 106 × s3

2,1

− 1.81 × 104 × s2
2,1v2,1

+ 1.13 × 103 × s2,1v
2
2,1 − 1.45 × 103 × v3

2,1,

(21b)

R3,2 = 1.00 × 105 × s3,2 + 100.01 × v3,2 + 2.12

× 10−10 × s2
3,2 − 1.37 × 10−11 × s3,2v3,2

− 1.38 × 10−13 × v2
3,2 − 7.71 × 10−7 × s3

3,2

+ 5.35 × 10−9 × s2
3,2v3,2 − 3.64 × 10−10
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Fig. 4 The identified
NRFs: (a) on the 1st floor,
(b) on the 2nd floor, (c) on
the 3rd floor, (d) on the 4th

floor

× s3,2v
2
3,2 + 8.79 × 10−13 × v3

3,2,

(21c)

R4,3 = 1.00 × 105 × s4,3 + 100.00 × v4,3 + 1.34

× 10−9 × s2
4,3 − 1.87 × 10−11 × s4,3v4,3

+ 3.57 × 10−14 × v2
4,3 + 2.22 × 10−7 × s3

4,3

− 8.09 × 10−9 × s2
4,3v4,3 − 1.27 × 10−11

× s4,3v
2
4,3 − 5.96 × 10−13 × v3

4,3.

(21d)

Based on the above established PSPM of NRF, the
extent and characteristics of the nonlinearity can be
represented more clearly in three-dimensional graphs.
Figure 4 illustrates the relationship between the iden-
tified NRFs and relative displacement as well as rela-
tive velocity. From these graphs, it is obvious that the
restoring force surface is obviously nonplanar on the
2nd floor and is very close to a plane on the remaining
floors. The cornerstone of linear theory is linear su-
perposition principle which means three-dimensional
plot of the restoring force of linear system is a flat sur-
face. If the system behaves nonlinearly, the restoring
force surface will not be planar any more [9]. Conse-

quently, it is easy to conclude that the nonlinear com-
ponent (i.e., MR damper) is located on the 2nd floor.

Moreover, based on the proposed method, the un-
known excitations can be simultaneously obtained for
the example given. The identified excitation applied
on the 4th DOF of the numerical model is plotted in
Fig. 5(a) as dashed curves, whereas the solid curves
are the corresponding actual one for comparison. For
clarity of comparison, only a segment from 2 to 3 sec is
presented, and the relative error between the identified
excitation and the actual one in percentage is shown
in Fig. 5(b). Here, the relative error is defined by the
following equation:

e(t)(%) = Fid(t) − Fac(t)

Fac(t)
× 100, (22)

where Fid(t) means the identified force at time in-
stant t , and Fac(t) means the actual force at time in-
stant t . It’s clear from Fig. 5(a–b) that the relative error
is very close to zero and the identified excitation has
a good agreement with the actual value. Furthermore,
in order to show the convergence of the proposed ap-
proach, the summation of the absolute difference be-
tween the identified force and the measurement at the
j th iteration (i.e., ej previously defined) is also plotted
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Fig. 5 The comparison of
the external excitation:
(a) partial comparison of
the identified excitation
with the corresponding
actual one, (b) the relative
error, (c) the convergence of
the error of the identified
force during the iteration

in Fig. 5(c). From Fig. 5(c), it can be seen that the er-
ror of the identified unknown force can be stably con-
verged to the defined tolerance within a very limited
iterations.

The NRF is provided by the elastic restoring force,
the damping effects of the structure, and the nonlin-
ear member force (e.g., MR damper force in this ex-
ample). Consequently, in practice, it is usually diffi-
cult to validate the accuracy of the identified NRFs di-
rectly because it is impossible to measure the restoring
force. However, it is possible to obtain the NRF pro-
vided by the nonlinear structural member such as the
MR dampers in this simulation to validate the identi-
fied NRFs to some extent. The MR damper force in
this example can be determined by subtracting the lin-
ear elastic restoring force and damping force provided
by the structure itself from the identified total restoring
force shown in (21a)–(21d). The identified hysteretic
force provided by the MR damper for each floor of the
structure is shown in Fig. 6. In order to evaluate the ac-
curacy of the identified MR force, the simulated MR
force determined by its numerical model (i.e., (17)–
(18)) is also shown in Fig. 6. Note that identical am-
plitude scales are applied to all the plots.

From Fig. 6, it is easily observed that the MR
damper is located on the 2nd floor due to the MR
damper forces on the remaining floors being very close
to zero. Moreover, it is obvious that the identified MR
force has good agreement with the simulated one from
Fig. 6(b). These findings mean the MR damper can
be accurately located and the MR force can be identi-
fied efficiently by the proposed approach. Based on the
identified results and the discussion mentioned before,
it is obvious that the proposed PSPM and WAILSE-
IME approach is capable of efficiently identifying the
NRF of the nonlinear numerical model and accurately
identifying the unknown external excitations simulta-
neously.

4 Experimental validation

To illustrate the application of the proposed method in
conjunction with a real structure, a 4-story steel frame
model structure shown in Fig. 7 is employed. The
structure is 0.3 m × 0.4 m in plan and 1.2 m in height.
The cross section of the columns is 30 mm × 5 mm,
and the thickness of the floor plates is 10 mm. All
joints are connected by bolts. The mass distribution
of the structure is measured by electronic balance,
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Fig. 6 The MR damper
force: (a) on the 1st floor,
(b) on the 2nd floor, (c) on
the 3rd floor, (d) on the 4th

floor

Fig. 7 Nonlinear
multistory frame structure
with MR dampers and
vibration test setup

and can be approximately set to be m1 = m2 = m3 =
12.94 kg and m4 = 12.59 kg.

Two MR dampers with an input current of 0.2 A
were installed on the 4th floor to induce a nonlinear
hysteretic restoring force to the model structure. Dif-
ferent from the random excitation employed in the nu-
merical simulation, an impact hammer was employed
to excite the 3rd floor of the structure. The correspond-
ing acceleration and displacement responses were di-
rectly measured with a sampling frequency of 1.024
Hz and shown in Fig. 8. The velocity of the structure
was obtained by numerical integration from the mea-
sured acceleration. Even though the impact force was
measured, it was assumed to be unknown during the
NRF identification and was identified by the proposed
approach. Moreover, the identified MR damper force
was compared with the measurement.

Similar to the numerical example, let the sum of
the integers k and q of the PSPM given in (3) be equal
to 3. The weight coefficients of α and β , and learning
coefficient γ are also set to be 10, 0.1, and 0.8, respec-
tively. Based on the time-domain information of the
system’s responses, the NRFs of the nonlinear struc-
ture as well as the unknown impact force were deter-
mined. The identified NRFs are shown as follows:

R1,0 = 1.32 × 105 × s1,0 + 29.78 × v1,0

+ 1.53 × 106 × s2
1,0 − 1.86 × 105

× s1,0v1,0 − 153.68 × v2
1,0

− 2.09 × 108 × s3
1,0 + 2.46 × 107

× s2
1,0v1,0 − 3.55 × 105

× s1,0v
2
1,0 + 354.45 × v3

1,0, (23a)
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Fig. 8 The response
measurements of the
nonlinear structure

R2,1 = 1.38 × 105 × s2,1 + 36.29 × v2,1

+ 2.85 × 106 × s2
2,1 − 4.99 × 103

× s2,1v2,1 + 98.29 × v2
2,1

− 3.62 × 109 × s3
2,1 + 3.05 × 107

× s2
2,1v2,1 − 5.22 × 105

× s2,1v
2
2,1 + 316.88 × v3

2,1, (23b)

R3,2 = 1.43 × 105 × s3,2 + 37.79 × v3,2

− 7.28 × 105 × s2
3,2 − 2.16 × 104

× s3,2v3,2 − 469.44 × v2
3,2

+ 6.62 × 109 × s3
3,2 + 9.42 × 106

× s2
3,2v3,2 + 4.62 × 105

× s3,2v
2
3,2 + 353.49 × v3

3,2, (23c)

R4,3 = 1.41 × 105 × s4,3 + 432.55 × v4,3

− 9.14 × 105 × s2
4,3 + 8.28 × 104

× s4,3v4,3 + 139.93 × v2
4,3

+ 2.49 × 1010 × s3
4,3 − 6.31 × 107

× s2
4,3v4,3 − 5.67 × 105

× s4,3v
2
4,3 + 3.55 × 103 × v3

4,3. (23d)

Figure 9 shows the relationship between the iden-
tified NRFs and the interstory displacement and inter-
story velocity of the nonlinear model structure. From
Fig. 9(d), it is clear that the restoring force of the 4th

floor is obvious nonlinear. Even the NRF surfaces of
the remaining three floors are not an ideal plane, their
nonlinearity is not obvious when compared with it of
the 4th floor. The NRF surfaces of the remaining three
floors are approximately planar implies that their be-
havior under excitation is close to a linear substruc-
ture. Consequently, it can get a conclusion that the MR
damper should be placed on the 4th floor.

Moreover, the unknown external excitation applied
on the 3rd floor was determined simultaneously by the
proposed approach. The identified impact force and
the corresponding errors by comparing with the mea-
sured value are both shown in Fig. 10. For comparison,
the measurement of the excitation in the test is also
shown in Fig. 10. Note that identical amplitude scales
are employed for ease of comparison. Moreover, the
power spectral density of the measured force is plot-
ted in Fig. 10 as well. It can be seen from Fig. 10 that
the identified excitation is close to the measured value
and the corresponding error is relatively very small. It
means that the proposed approach is capable of identi-
fying the unknown inputs with acceptable accuracy in
the real model structure.

As mentioned before, the NRF of a real structure
is usually difficult to be measured directly. To inves-
tigate the reliability of the identified NRFs, the per-
formance of the MR damper is separated from the
total NRFs, and compared with the measurements of
the MR damper force. To accomplish this, another dy-
namic test is carried out on the corresponding linear
system, where the MR dampers are removed, to get
the linear restoring force (LRF). Without loss of gen-
erality, the excitation is applied on the 2nd floor of the
linear structure. Let k + q = 1, based on the PSPM
and WAILSE-IME approach and the corresponding re-
sponse measurements, the LRFs of the linear system
are obtained as:

R1,0
l = 1.31 × 105 × s1,0 + 21.11 × v1,0, (24a)

R2,1
l = 1.45 × 105 × s2,1 + 25.81 × v2,1, (24b)

R3,2
l = 1.38 × 105 × s3,2 + 34.19 × v3,2, (24c)

R4,3
l = 1.41 × 105 × s4,3 + 32.96 × v4,3. (24d)

Noting that the identified coefficients of the si,i−1 and
vi,i−1 terms stand for the stiffness and damping coef-
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Fig. 9 The identified
NRFs: (a) on the 1st floor,
(b) on the 2nd floor, (c) on
the 3rd floor, (d) on the 4th

floor

Fig. 10 The comparison of
the excitation: (a) the
identified excitation, (b) the
measured excitation, (c) the
errors, (d) the spectral of
the measured force
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Fig. 11 The MR damper
force: (a) on the 1st floor,
(b) on the 2nd floor, (c) on
the 3rd floor, (d) on the 4th

floor

ficients of the linear system while k + q = 1. By com-
paring the corresponding coefficients in (23a)–(23d)
with them in (24a)–(24d), it can be found that there
are no significant changes in these coefficients except
the damping coefficient of the 4th floor. Based on the
identified total NRFs and the LRFs provided by the
structure itself, the nonlinear hysteretic force by the
MR dampers can be given by the following equation:

Fn = Ri,i−1 − Rl
i,i−1, (i = 1,2, . . . , n), (25)

where Fn is the nonlinear hysteretic force provides by
the MR dampers in this case. According to (25), the
MR dampers force of each floor can be determined
and plotted in Fig. 11. For comparison, the measured
MR damper force during the vibration is also shown
in Fig. 11. Note that the identified MR forces are in
the horizontal direction. However, because the force
gauges as shown in Fig. 7 is diagonal, the component
in horizontal direction of the measured MR damper is
the value to be compared with the identified results.

The purpose to carry out vibration test on the corre-
sponding linear structure is to extract the MR damper
force and to compare it with the measurements. In a
real situation, a newly built structure can be regarded
as the linear system whose parameters can be identi-
fied by any available modal analysis and identification
approaches.

It is obvious that the MR dampers are not placed
on the 1st, 2nd , and 3rd floor because the identified
MR forces on these floors are relatively small. Fig-
ure 11(d) shows the comparison between the identified
MR damping force with the measured value. It can be
concluded that the proposed method provides a rea-
sonably accurate identification of the NRF and LRF in
the real model structure, both qualitatively and quan-
titatively, even the part of the external excitations are
unknown.

5 Concluding remarks

In this study, an improved method by combining the
PSPM and WAILSE-IME approach involving a learn-
ing coefficient and a weight matrix is proposed to iden-
tify the NRF as well as the unknown dynamic load-
ings of nonlinear chain-like MDOF structural system.
The feasibility and robustness of the proposed method
is validated via numerical simulation with a 4-DOF
system incorporating a parametric MR model, and via
an experiment with a 4-story steel frame structure
equipped with two actively-controlled MR dampers.
Results show that the proposed approach is capable of
simultaneously identifying the NRF and the unknown
inputs, and provides a promising way for the analysis
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of nonlinearity and evaluation of damage severity of
engineering structures under.

An attractive aspect of the proposed approach is
that other than the traditional least-square estimation
requiring the completely known input information for
identification, it does not need the complete external
excitation to be available as shown in the numeri-
cal example and dynamic test. More importantly, the
combination approach can be employed to identify
the NRF of nonlinear system even the external exci-
tations are partially unknown. Moreover, the proposed
approach is also applicable for linear system. Con-
sequently, it provides a potential way for analysis of
system including nonlinear system and linear system,
and for diagnosis of damage in civil engineering struc-
tures. Furthermore, the identified unknown external
excitations can be utilized for the remaining service
life estimation and loading profile analysis for struc-
tural damage diagnosis.
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