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Abstract The forced non-linear vibrations of an ax-
ially moving beam fitted with an intra-span spring-
support are investigated numerically in this paper. The
equation of motion is obtained via Hamilton’s prin-
ciple and constitutive relations. This equation is then
discretized via the Galerkin method using the eigen-
functions of a hinged-hinged beam as appropriate ba-
sis functions. The resultant non-linear ordinary differ-
ential equations are then solved via either the pseudo-
arclength continuation technique or direct time inte-
gration. The sub-critical response is examined when
the excitation frequency is set near the first natural fre-
quency for both the systems with and without internal
resonances. Bifurcation diagrams of Poincaré maps
obtained from direct time integration are presented as
either the forcing amplitude or the axial speed is var-
ied; as we shall see, a sequence of higher-order bi-
furcations ensues, involving periodic, quasi-periodic,
periodic-doubling, and chaotic motions.
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1 Introduction

The class of axially moving systems are present in
many technological devices and machines compo-
nents. Many examples of these types of systems, such
as textile fibres, paper sheets, band saw blades, mag-
netic tapes, robotic manipulators, and oil pipelines can
be found in civil, mechanical, aerospace, and automo-
tive applications. Most often, this class of the systems
is modelled as either an axially moving string or beam,
which is categorised as gyroscopic systems.

The dynamics of these systems is greatly affected
by the axial speed. This feature is responsible for
the existence of complex mode functions by prevent-
ing standing (stationary) flexural waves, and arising
travelling-waves. At a certain axial speed, known as
critical speed, the first natural frequency of a conser-
vative system vanishes and the stability is lost by a
divergence. The early studies on the dynamics of ax-
ially moving systems [1, 2] focused on the linear as-
pects of the problems, thus mainly on the critical speed
for buckling, natural frequencies, and complex mode
functions.

Beyond the first instability, the amplitude of the vi-
brations or static divergence is large, and hence the
validity of linear theory diminishes [3]. Moreover,
most post-critical bifurcations occur over non-trivial
states (attractors), and can be reliably predicted via
non-linear models. The early studies on this topic by
Mote [3], Naguleswaran and Williams [4], Thurman
and Mote [5], Shih [6], Simpson [7], and Holmes [8],
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Fig. 1 Schematic
representation of a
hinged-hinged axially
moving beam, additionally
supported by a non-linear
spring

for example, considered string and beam models of
the system employing analytic, experimental, and en-
ergetic approaches.

Soon after, in the 1990s, more complete models
of the system started appearing, notably by Wickert
and Mote [9, 10], Wickert [11], Pakdemirli and co-
workers [12–15], Yuh and Young [16], Zhu and Guo
[17], Chakraborty and Mallik [18], Zhang and Zu [19],
and Tan et al. [20]. In a fundamental work by Wickert
and Mote [9], for example, the free and forced dynam-
ics of a linear axially moving continuum was inves-
tigated via the eigenfunction method. This study was
followed and extended in [10] using the Green func-
tion method, and in [11] considering both sub- and
super-critical speed regimes. Also, in a series of pa-
pers by Pakdemirli and co-workers [12–15], a system-
atic research on this topic was conducted using some
perturbation techniques.

Later, these studies were extended by Marynowski
and co-investigators [21–25], who considered sev-
eral dissipation mechanisms; Chen and co-workers
[26–35], who considered string and different beam
models via different analytical and numerical meth-
ods; Pellicano and Vestroni [36]; Suweken and Van
Horssen [37]; and Huang et al. [38]. Recently, in a se-
ries of papers by the author and co-workers [39–50],
the vibration and stability of axially moving systems
were examined. Specifically, these analyses included
several system models: linear, non-linear, energy dis-
sipative, laminated, Euler–Bernoulli, Rayleigh, and
Timoshenko models.

In this paper, a hinged-hinged axially moving
beam, additionally supported by a non-linear spring
[51–54] and subjected to a distributed harmonic ex-
citation, is considered. The non-linear equation of
motion is derived using Hamilton’s principle and
discretized via Galerkin’s technique. The pseudo-
arclength continuation technique [55], along with vari-
able step-size Runge–Kutta method, are employed
to solve the resultant non-linear ordinary differential

Fig. 2 The amplitude-frequency response of the system with
no internal resonances in the driven mode. Bold line and dotted
lines represent the stable and unstable solutions, respectively

equations. The amplitude-frequency response of the
system, as well as bifurcation diagrams of the Poincaré
maps, are obtained, and the attention is focused mainly
on the role of the spring stiffness and location. The
analysis also includes the cases with a three-to-one
internal resonance. The results are illustrated in the
form of bifurcation diagrams of Poincaré maps and
amplitude-frequency responses.

2 Equation of motion

Shown in Fig. 1 is a general axially moving beam of
length L, with constant density ρ, area moment of in-
ertia I , cross-sectional area A, and Young’s modulus
E, which is travelling at a constant axial speed v. Fur-
thermore, the beam is subjected to a pretension p and
a distributed transverse force F̂ (x, t) = F̂ (x) cos(ωt)

per unit length along the entire span. A spring, with
linear and non-linear stiffness coefficients of k1 and k2
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Fig. 3 The amplitude-frequency response of the system with
no internal resonances in the driven mode for several non-
linearity coefficients v1. The v1 values are indicated on the
curves; c = 0.2, vf = 0.173, μ = 0.04, f1 = 0.0055, fi = 0
(i = 2,3,4,5,6), α = 1.5, γ = 0.3, ξs = 0.3

Fig. 4 The amplitude-frequency response of the system with
no internal resonances in the driven mode for several values
of the forcing amplitude. The f1 values are indicated on the
curves; c = 0.2, vf = 0.173, v1 = 33.526, μ = 0.04, fi = 0
(i = 2,3,4,5,6), α = 1.5, γ = 0.3, ξs = 0.3

respectively, is attached at a distance xs from the left
end of the beam.

The equation of motion is obtained under the fol-
lowing assumptions: (i) the system is modelled as a
non-linear Euler–Bernoulli beam, i.e., rotary inertia
and shear deformation are neglected; (ii) the beam has

Fig. 5 The amplitude-frequency response of the system with
no internal resonances in the driven mode for several axial
speeds. The c values are indicated on the curves; vf = 0.173,
v1 = 33.526, μ = 0.04, f1 = 0.0055, fi = 0 (i = 2,3,4,5,6),
α = 1.5, γ = 0.3, ξs = 0.3

Fig. 6 The amplitude-frequency response of the system with
no internal resonances in the driven mode for several damp-
ing coefficients. The μ values are indicated on the curves.
c = 0.2, vf = 0.173, v1 = 33.526, f1 = 0.0055, fi = 0
(i = 2,3,4,5,6), α = 1.5, γ = 0.3, ξs = 0.3

a uniform cross-sectional area; (iii) the type of non-
linearity is geometric; (iv) the source of non-linearity
in the beam model is due to the stretching effect of the
mid-plane of the beam; (v) the equation is truncated at
third order; (vi) the spring is assumed to be attached to
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Fig. 7 The amplitude-frequency response of the system with
no internal resonances in the driven mode for several stiffness
coefficients of the spring. The α and γ values are indicated
on the curves. c = 0.4, vf = 0.173, v1 = 33.526, μ = 0.04,
f1 = 0.0055, fi = 0 (i = 2,3,4,5,6), ξs = 0.4

Fig. 8 The amplitude-frequency response of the system with
no internal resonances in the driven mode for several spring
locations. The ξs values are indicated on the curves. c = 0.4,
vf = 0.173, v1 = 33.526, μ = 0.04, f1 = 0.0055, fi = 0
(i = 2,3,4,5,6), α = 7.5, γ = 1.5

the centreline of the beam and its force is assumed to
be purely in the transverse direction.

The potential energy of the system has three com-
ponents: the strain energy of the beam πb, of the non-
linear spring, πs, and due to the pretension, πp. The

Fig. 9 The amplitude-frequency response of the system in the
driven and companion modes possessing a three-to-one internal
resonance, i.e., ω2 ≈ 3ω1; (a) the amplitude of driven mode;
(b) the amplitude of the second mode. Bold line and dotted lines
represent the stable and unstable solutions, respectively

potential strain energy of the beam can be expressed
as

πb = 1

2
EA

∫ L

0

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2]2

dx

+ 1

2
EI

∫ L

0

(
∂2w

∂x2

)2

dx, (1)

where u(x, t) and w(x, t) are respectively the longitu-
dinal and transverse displacements. The potential en-
ergy due to the spring force and the pretension is given
by
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Fig. 10 Bifurcation diagrams of Poincaré points for increasing
forcing amplitude on the system. The first and second modes,
respectively, with (a, b) α = 0 and γ = 0, (c, d) α = 0.6 and

γ = 0.12, (e, f) α = 1.5 and γ = 0.3, (g, h) α = 3.0 and γ = 0.6,
(i, j) α = 5.0 and γ = 1.0, (k, l) α = 7.5 and γ = 1.5, and (m, n)
α = 15 and γ = 3.0. The axial speed is set to 0.7

πs =
∫ L

0

(
1

2
k1w

2 + 1

4
k2w

4
)

δ(x − xs) dx, (2)

πp = p

∫ L

0
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(
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)2]
dx, (3)

where δ(x) is the Dirac delta function; (2) implies that
the restoring force of the spring is in the form F =
k1w + k2w

3. The kinetic energy of the system can be
expressed as follows:

T = 1

2
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∫ L

0

[
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)]2
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+ 1

2
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0

[
∂w

∂t
+ v

∂w

∂x

]2

dx. (4)

The variation of the work done by the external dis-
tributed force on the beam can be expressed as

δWF =
∫ L

0
F̂ (x) cos (ωt) δw dx. (5)
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Fig. 10 (Continued)

The potential and kinetic energies for the beam and
the spring-support, as well as the work done by the
external force, can all be combined by inserting (1)–
(5) into Hamilton’s principle, which is given by

δ

∫ t2

t1

(
T − πb − πs − πp

)
dt +

∫ t2

t1

δWF dt = 0. (6)

This operation renders a large equation involving
a double integral with limits from 0 to L and from t1

to t2. The variations δw and δu are arbitrary, which im-
plies that the integrands should vanish. This generates
the following equations of motion:
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Fig. 10 (Continued)

+ F̂ (x) cos (ωt) = 0, (8)

with the boundary conditions for a hinged-hinged
beam as

u|x=0 = u|x=L = 0, (9)

w|x=0 = ∂2w

∂x2

∣∣∣∣
x=0

= 0, w|x=L = ∂2w

∂x2

∣∣∣∣
x=L

= 0.

(10)

Neglecting the fast dynamics in the longitudinal direc-
tion [36] in (7) and substituting the resulting equation
into (8) gives the following:

EI
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+ ρA
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(
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3)

= EA

2L

∂2w

∂x2

∫ L

0

(
∂w

∂x

)2

dx + F̂ (x) cos (ωt) . (11)

Introducing dimensionless quantities

η = w

L
, ξ = x

L
, ξs = xs

L
,
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Fig. 10 (Continued)

τ = t
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,

the equation of motion can be rewritten as

∂2η

∂τ 2
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∂2η
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f
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(
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3 Method of solution

One approach in the vibration analysis of continuous
systems is to discretize the partial differential equa-
tions of motion to a lower order dimensional system of
ordinary differential equations. This is accomplished
by using an appropriate spatial representation in terms
of a limited number of functions which satisfy the
boundary conditions of the system; the linear eigen-
functions are usually employed in vibration problems.

The equation of motion is approximated employing
the Galerkin procedure, expanding the transverse dis-

placement η(ξ, τ ) in a series of the eigenfunctions of
a hinged-hinged beam, i.e.,

η (ξ, τ ) =
N∑

r=1

φr (ξ) qr (τ ) . (14)

The forcing amplitude is also expressed as

F (ξ) =
N∑

r=1

frφr (ξ) . (15)

In the results presented in this paper, only the first
mode is excited; only the forcing amplitude associated
with the first beam-mode expansion is considered.

Inserting (14) and (15) into (13), multiplying the
resulting equation by the corresponding eigenfunction,
and integrating with respect to ξ from 0 to 1 gives

N∑
j=1
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0
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)
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+ α

N∑
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0
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)
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Fig. 11 Bifurcation diagrams of Poincaré points for increasing
forcing amplitude on the system. The first and second modes,
respectively, with (a, b) α = 0 and γ = 0, (c, d) α = 0.6 and

γ = 0.12, (e, f) α = 1.5 and γ = 0.3, (g, h) α = 3.0 and γ = 0.6,
(i, j) α = 5.0 and γ = 1.0, (k, l) α = 7.5 and γ = 1.5, and (m,
n) α = 15 and γ = 3.0. The axial speed is set to 2.0

+ γ
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)
cos(�τ),

i = 1,2, . . . ,N, (16)

where dot and prime denote the differentiation with
respect to dimensionless time and axial coordinate, re-
spectively.

In order to use direct time integration and the
pseudo-arclength continuation technique, (16) is trans-
formed into a set of first order ordinary differential
equations using the following transformation:

yi = q̇i , (17)
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Fig. 11 (Continued)

which results in
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Fig. 11 (Continued)

×
∫ 1

0
φ′

kφ
′
l dξ

)
qjqkql

+
N∑

j=1

(∫ 1

0
fjφjφi dξ

)
cos(�τ),

i = 1,2, . . . ,N. (18)

Equations (17) and (18) form 2N non-linear ordi-
nary differential equations which are solved numeri-
cally choosing N = 6 (totalling 12 coupled non-linear
first-order ordinary differential equations). In particu-
lar, the variable step-size Runge-Kutta method along

with the pseudo-arclength continuation technique [55]
are adopted, yielding time-varying or static gener-
alised coordinates. It should also be mentioned that the
numerical simulations include viscous damping μ.

4 Amplitude-frequency responses

In this section, the amplitude-frequency response of
the system is plotted for several values of system pa-
rameters. First, the response of the system away from
internal resonances, the type of bifurcations, and sta-
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Fig. 11 (Continued)

bility of solution branches are examined. Second, the
effect of the system parameters on the response is in-
vestigated. Lastly, the response of the system near an
internal resonance is examined.

The amplitude of the first generalised coordinate is
presented in Fig. 2 for the harmonic excitation ampli-
tude f1 = 0.0055 and fi = 0(i = 2,3, . . . ,6) in the
neighbourhood of the fundamental natural frequency.
Other dimensionless parameters associated with Fig. 2
are the following: c = 0.2, vf = 0.173, v1 = 33.526,
μ = 0.04, α = 1.5, γ = 0.3, and, ξs = 0.3. This plot
shows that the type of non-linearity is hardening; as
the excitation frequency is increased from � = 0.6ω1,
the response amplitude, which is stable, increases ac-
cordingly until the first limit point at A, where � =
1.4101ω1. As the excitation frequency is slightly de-
creased, the response becomes unstable until the sec-
ond limit point is reached at point B, where � =
1.0547ω1; the stability is regained at this point.

In order to characterise the effect of system param-
eters on the amplitude-frequency response, these dia-
grams are plotted in Figs. 3–8 for the system with sev-
eral system parameters and away from internal reso-
nances. From these figures, the following conclusions
may be drawn: (i) as v1 is increased, the curve bends
more to the right, and hence the hardening behaviour
becomes stronger, as seen in Fig. 3; (ii) as seen in
Fig. 4, increasing the forcing amplitude causes the re-
sponse amplitude to increase; (iii) as the axial speed is

increased from 0.1 to 0.5, the multi-valued region of
the response becomes wider (Fig. 5); (iv) as the vis-
cous damping is increased, the response amplitude de-
creases, as shown in Fig. 6; (v) as seen in Fig. 7, al-
though the linear and non-linear stiffness coefficients
of the spring affect the system response significantly, it
is difficult to draw any conclusion regarding the trend
of the influence; (vi) changing the spring location from
the left end to the mid-point results in a decrease in
the hardening-type behaviour of the system, as seen in
Fig. 8.

Shown in Fig. 9 is the typical dynamics of the sys-
tem possessing a three-to-one internal resonance with
the following dimensionless parameters: c = 0.7025,
vf = 0.173, v1 = 10, μ = 0.03, f1 = 0.0055, fi = 0
(i = 2,3,4,5,6), α = 3.5, γ = 0.7, and ξs = 0.2. With
these parameters, a three-to-one internal resonance oc-
curs; i.e. ω2 ≈ 3ω1. As seen in Fig. 9(a, b), energy is
transferred from the external excitation to the first (ex-
cited) mode. A portion of the energy gained is then
transferred to the second mode, as seen in Fig. 9(b).

5 Bifurcation diagrams

The bifurcation diagrams of Poincaré maps of the sys-
tem, when either the forcing amplitude or the axial
speed is increased, are obtained for several values of
the spring stiffness coefficients. This is accomplished
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Fig. 12 Bifurcation diagrams of Poincaré points for increasing
axial speed of the system. The first and second modes, respec-
tively, with (a, b) α = 0 and γ = 0, (c, d) α = 0.6 and γ = 0.12,

(e, f) α = 1.5 and γ = 0.3, (g, h) α = 3.0 and γ = 0.6, (i, j)
α = 5.0 and γ = 1.0, (k, l) α = 7.5 and γ = 1.5, (m, n) α = 15
and γ = 3.0, and (l, o) α = 30 and γ = 6.0

via direct time integration of (17) and (18) using a
variable step-size Runge–Kutta method. Although the
AUTO code is capable of providing continuation of
solutions and stability and bifurcation analysis using
the pseudo-arclength continuation scheme and collo-
cation methods, it is not able to obtain quasi-periodic
and chaotic motions. This restriction is overcome here
using direct time integration. Two system parameters,
namely the forcing amplitude and axial speed, are
chosen as bifurcation parameters and the phase space
was sectioned in every period of the exciting force.

The computer codes were run for a time interval of
[0 2500] dimensionless seconds and the last 30% of
the response has been retained, excluding any possi-
ble transient effects. All the results presented in this
section have been obtained using the generalised coor-
dinates for a given value of the bifurcation parameter
as initial conditions for the next value. In this section,
by saying response, the q1 motion is meant, and am-
plitude means the amplitude of the q1 motion where it
is sectioned. The excitation frequency is set to 1.2.
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Fig. 12 (Continued)

The bifurcation diagrams of the first two gener-
alised coordinates versus the magnitude of the external
force are shown in Fig. 10(a, b)–(m, n), respectively,
for the spring stiffness coefficients of (i) α = 0 and
γ = 0, (ii) α = 0.6 and γ = 0.12, (iii) α = 1.5 and
γ = 0.3, (iv) α = 3.0 and γ = 0.6, (v) α = 5.0 and
γ = 1.0, (vi) α = 7.5 and γ = 1.5, and (vii) α = 15.0
and γ = 3.0, respectively. The other dimensionless pa-
rameters of the system of Fig. 10 are the following:
c = 0.7, vf = 0.173, v1 = 33.526,μ = 0.04, and ξs =
0.4. The bifurcation diagram of the system with α =
γ = 0, i.e. case (i), is shown in Fig. 10(a, b). As seen

in Fig. 10(a), as the forcing amplitude is increased, the
response amplitude increases initially, then decreases
until a sudden jump occurs at f1 = 0.132. The motion
becomes quasi-periodic in the forcing amplitude range
of [0.316 0.324]. There are two co-existing attractors
in the interval of [0.344 0.424] and the response re-
peatedly jumps from one to the other. As the forcing
amplitude is increased slightly, the system returns to
its original period and maintains it until f1 = 0.488 is
hit, where the motion becomes period-3. In the forcing
amplitude range of [0.488 0.598], the response repeat-
edly becomes periodic and period-3. The period is re-
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gained at f1 = 0.600 and maintained until f1 = 0.694.
The motion becomes quasi-periodic in the interval
[0.696 0.706], periodic in [0.708 .748], quasi-periodic
at f1 = 0.750, period-5 in the interval [0.752 0.756],
and quasi-periodic in the range of [0.758 0.776]. The
motion regains the period at f1 = 0.778 which is char-
acterised by a jump (an increase in the amplitude) and
maintains that period until f1 = 0.934, where it be-
comes period-3. Beyond this forcing amplitude until
f1 = 1.00, there are two attractors, one periodic and
the other period-3; the motion repeatedly jumps from
one to the other.

Figure 10(c, d) shows the bifurcation diagrams for
the system with α = 0.6 and γ = 0.12 (i.e. in the
presence of the intermediate spring-support). As seen
in this figure, adding an intermediate spring-support
with the above-mentioned stiffness coefficients does
not change the system dynamics substantially. The bi-
furcation diagrams for the system with α = 1.5 and
γ = 0.3 is shown in Fig. 10(e, f), where a spring stiffer
than that of the previous case (Fig. 10(c, d)) is used.
Investigating the dynamics of the system with higher
spring stiffness, specifically with α = 3.0 and γ = 0.6
(Fig. 10(g, h)), α = 5.0 and γ = 1.0 (Fig. 10(i, j)),
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Fig. 12 (Continued)

α = 7.5 and γ = 1.5 (Fig. 10(k, l)), and α = 15.0
and γ = 3.0 (Fig. 10(m, n)) reveals that, in general,
due to an increased stiffness coefficient of the spring-
support, the cascade of higher order bifurcations as
well as coexisting and strange attractors disappear; a
stiffer spring-support stabilises the system.

The bifurcation diagram of the same system shown
in Fig. 10(a–n), but with a higher axial speed, i.e., c =
2.0, are plotted in Fig. 11(a–n), again for different val-
ues of the spring stiffness. As seen in Fig. 11(a) for q1,
in general, the motion is periodic at first, then under-
goes some small jumps, and finally becomes chaotic.

The bifurcation diagrams of the system with higher

spring stiffness are shown in Figs. 11(c, d), 11(e, f),

11(g, h), 11(i, j), 11(k, l), and 11(m, n), respectively;

Fig. 11(a, b) has no spring, and Fig. 11(m, n) has the

strongest one. From comparison of the system dynam-

ics in these figures, one may conclude that the range

of chaotic regions decreases as the stiffness coefficient

of the spring is increased; the fully chaotic region in

Fig. 11(a, b) is split into two regions, separated by a

simpler kind of attractor, such as periodic or quasi-

periodic (Fig. 11(g–n)).
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In Fig. 12(a–p), the axial speed is varied as the
control parameter for different spring stiffness coeffi-
cients. The following system parameters have been se-
lected for Fig. 12(a–p): f1 = 0.06, vf = 0.173, v1 =
33.526, μ = 0.04, and ξs = 0.4. As seen in this fig-
ure, it is hard to draw any general conclusion regard-
ing the effect of the spring stiffness on the bifurca-
tion diagrams of the system. One of the cases with the
most interesting dynamics is explained in detail in the
following. As seen in Fig. 12(e), the amplitude of q1

jumps at c = 0.500. There are two coexisting attractors
in the axial speed range of [1.008 1.076], where the re-
sponse jumps repeatedly from one to the other. As the
axial speed is increased further, the motion becomes
period-3 at c = 1.284, and continues until c = 1.404,
except for some c values, where the motion is peri-
odic. The motion becomes chaotic at c = 1.408; more
specifically, in the interval [1.408 1.748] there are four
attractors, namely chaotic, quasi-periodic, period dou-
bling, and periodic. These attractors are repeated one
after another, as the response jumps between them. Fi-
nally, the motion regains the period at c = 1.752.

6 Conclusions

Non-linear vibration characteristics of an axially mov-
ing beam supported by an intermediate spring has been
studied by means of the pseudo-arclength continua-
tion technique for continuation and bifurcation anal-
ysis of non-linear ordinary differential equations, as
well as direct time integration via the variable step-
size Runge–Kutta method. The results for both cases,
with and without a three-to-one internal resonance
have been presented. For different spring-support co-
efficients, the system displays very rich dynamical be-
haviour involving periodic, quasi-periodic, period-2,
period-3, and chaotic motions. In connection with the
sub-critical dynamics, the system away from an inter-
nal resonance displays two limit point bifurcations; be-
tween these the solution branch is unstable.

It is hoped that the results presented in this paper
are helpful toward a better understanding of the dy-
namics of an axially moving beam with an interme-
diate spring-support, specifically the effect of spring
stiffness on the dynamics of the system, particularly
those which are hard to investigate via analytical tech-
niques.
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