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Abstract Spatial component of ecological interac-
tions has been identified as an important factor in how
ecological communities are shaped. In this paper, we
consider a Holling–Tanner model with spatial diffu-
sion. Choosing appropriate parameter values in param-
eter spaces, we obtain rich patterns, including spot-
ted, black-eye, and labyrinthine patterns. The numeri-
cal results show that predator–prey system can exhibit
complicated behavior.
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1 Introduction

A reaction–diffusion system can be described as the
following equations:

∂C

∂t
= F(C,μ) + D∇2C, (1)

where C is the concentration vector of reaction, μ rep-
resents the total control parameters, F stands for re-
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sponse function vector, D denotes the diffusion coef-
ficient matrix, ∇2 represents Laplace operator. For a
given problem, initial conditions and boundary con-
ditions should be given. Usually, diffusion is consid-
ered as a spatial transmission way, which moves from
high concentration to low concentration. This simple
reaction–diffusion system (1) can produce multiply
spatial patterns, which are induced by several mech-
anisms.

Turing showed that a system of coupled reaction–
diffusion equations could give rise to spatial concen-
tration patterns of a fixed characteristic length from an
arbitrary initial configuration due to diffusion-driven
instability by mathematical analysis [1]. The work by
Turing belongs to the field of pattern formation, a sub-
field of mathematical biology. Pattern formation in
nonlinear complex systems is one of the central prob-
lems of the natural, social, and technological sciences.
The occurrence of multiple steady states and transi-
tions from one to another after critical fluctuations,
the phenomena of excitability, oscillations, waves, and
the emergence of macroscopic order from microscopic
interactions in various nonlinear nonequilibrium sys-
tems in nature and society have been the subject of
many theoretical and experimental studies [2–9].

There has been considerable interest to investigate
the stability behavior of a system of interacting popu-
lations by taking into account the effect of self diffu-
sion [10]. The term self-diffusion implies the move-
ment of individuals from a higher to lower concen-
tration region. The Holling–Tanner model has been
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vastly investigated in homogeneous systems, in par-
ticular, authors have focused in the study of the local
and global stability of equilibria [11–13], Hopf bifur-
cation [11, 14, 15], limit cycles [16, 17], amongst oth-
ers. However, the spatial dynamics behavior has been
not well studied.

In this paper, we will consider the spatially extend-
ed reaction–diffusion system of the Holling–Tanner
model. The paper is organized as follows. In Sect. 2,
we obtain a Holling–Tanner model with self diffusion,
and interpret the biological meaning of these param-
eters of the model. We analysis the model, and de-
rive the condition of Turing-instability, with respect to
these parameters in Sect. 3. In Sect. 4, by numerical
simulations, we illustrate the emergence of different
Turing patterns. Finally, some conclusions and discus-
sions are given.

2 Model

The traditional Holling–Tanner predator–prey model
has received great attention among theoretical and
mathematical biologists [15, 18]. Here, we will focus
our attention to the Holling–Tanner model in the fol-
lowing form:

dU

dτ
= r1U

(
1 − U

K

)
− qUV

U + c
, (2a)

dV

dτ
= r2V

(
1 − V

γU

)
, (2b)

where U and V denote the prey and predator, respec-
tively. The parameters r1 and r2 represent the intrin-
sic growth rate. The value K represents the carrying
capacity of the prey and γU takes on the role of a
prey-dependent carrying capacity for the predator. The
parameter γ is a measure of the quality of the prey
as food for the predator. The rate at which predators
remove the prey, qU/(U + c), is know as a Holling
type-II predator response [11, 19, 20]. Parameter q is
the maximum number of prey that can be eaten per
predator per time and the parameter c is a saturation
value; it corresponds to the number of prey to achieve
one half the maximum rate q .

Following the method in [15], we apply the scaling
below

u = U

K
, v = P

γK
, r = r2

r1
, (3a)

a = qγ

r1
, b = c

K
, t = r1τ, (3b)

and obtain the following equations containing dimen-
sionless quantities:

du

dt
= u(1 − u) − auv

b + u
, (4a)

dv

dt
= rv

(
1 − v

u

)
. (4b)

The objective of this paper is to investigate the spa-
tial pattern of system (4). Thus, the model we employ
is as follows:
∂u

∂t
= u(1 − u) − auv

b + u
+ d1∇2u, (5a)

∂v

∂t
= rv

(
1 − v

u

)
+ d2∇2v, (5b)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is the usual Laplacian operator
in 2-dimensional space and the variables u and v de-
note prey and predator densities, respectively. d1, d2

are the diffusion coefficients of prey and predator, re-
spectively.

The model (5) needs to be analyzed with the initial
populations

u(0) > 0, v(0) > 0. (6)

We also assume that no external input is imposed from
outside. Hence, the boundary conditions are taken as

∂u

∂n

∣∣∣∣
(x,y)

= ∂v

∂n

∣∣∣∣
(x,y)

= 0, (7)

where n represents space, (x, y) ∈ ∂� and � is the
spatial domain.

3 Bifurcation analysis of the system

We first consider a spatially homogeneous system and
find the steady state as follows:

(i) E1 = (1,0), which is corresponding to extinction
of the predator;

(ii) positive equilibrium point E∗ = (u∗, v∗), which is
corresponding to coexistence of prey and predator
and

u∗ = v∗ = 1 − a − b + √
(a + b − 1)2 + 4b

2
. (8)

From the biological point of view, we are interested
to study the stability behavior of the interior equilib-
rium point E∗ [21–24]. The Jacobian corresponding
to this equilibrium point is that

J =
(

a11 a12

a21 a22

)
,
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where

a11 = 2
(−1 + 4a − 2b − b2 + ab − 5a2 + 2a3

+ ab2 + 3a2b − M − bM + 3aM

− abM − 2a2M
)
/(−1 − a − b − M)2, (9)

a12 = a(−1 + a + b − M)

1 − a + b + M
, (10)

a21 = r, (11)

a22 = −r, (12)

and M = √
(a + b − 1)2 + 4b.

To consider pattern formation for system (5), we
need to look for the dispersion relation. Follow-
ing [25], we will give the linear stability of system
(5) following the standard route [26, 27]. We make the
following substitute:

u = u∗ + ū(�r, t), (13)

and

v = v∗ + v̄(�r, t), (14)

into (5) and assume |ū| � u∗, |v̄| � v∗. Here, �r = x

(y) or �r = (x, y), which is corresponding to the one-
or two-dimension space. Then, in the linear approxi-
mation, we have

∂ū

∂t
= a11ū + a12v̄ + Du∇2ū, (15a)

∂v̄

∂t
= a21ū + a22v̄ + Dv∇2v̄. (15b)

The initial conditions are assumed as that

ū|t=0 = f (�r) (16)

and

v̄|t=0 = g(�r), (17)

where the functions f (�r) and g(�r) decay rapidly for
�r → ±∞. Following the standard approach, let us
now perform a Laplace transformation of the lin-
earized equations over the two independent variables �r
and t . For �r, we use the so-called two-sided version of
the transformation. The relations for the forward and
backward transforms are

usq =
∫ ∞

0
e−st dt

∫ +∞

−∞
ū(�r, t)e−q�r d�r (18)

and

ū(�r, t) = − 1

4π2

∫ β+i∞

β−i∞
est ds

∫ i∞

−i∞
usqeq�r dq, (19)

where s and q are complex variables. And s is the
Laplace transform variable, q is the Fourier transform
variable. That is to say that, q = ik or (ik, il) corre-
sponding to one- and two-dimensional space, and the
wave numbers k and l are real number. In formula
(18) for the backward transformation, the integration
contour in the q-plane is the imaginary axis. In the s-
plane, the contour is parallel to the imaginary axis and
located to the right of all singularities of the integrand.

After this transformation, the kinetic equations read(
s − a11 − d1q

2)usq − a12vsq = F(q) (20)

and(
s − a22 − d2q

2)vsq − a21usq = G(q), (21)

where F(q) and G(q) are the transforms of f (�r) and
g(�r). To reveal the presence of an instability and dis-
close its character, it is sufficient to consider one vari-
able. The temporal growth of the perturbations can
now be found by inverting the Laplace transforms,
which follows directly after factorizing the denomi-
nator. By solving the linear equations (20) and (21)
we find usq and then use the backward transformation
(19) to obtain the following formal solution:

ū(�r, t) = − 1

4π2

∫ β+i∞

β−i∞
est ds

×
∫ i∞

−i∞
(s − a22 − d2q

2)F (q) + a12G(q)

D(s, q)

× eq�r dq. (22)

Then we obtain the denominator

D(s, q) = (
s − a22 − d2q

2)(s − a11 − d1q
2)

− a12a21. (23)

Hence, the dispersion equation is that(
s − a22 − d2q

2)(s − a11 − d1q
2) − a12a21 = 0. (24)

A symmetry breaking occurs when a homogeneous
steady state solution of the system (5) is linearly sta-
ble to perturbations in the absence of the diffusion and
advection terms but linearly unstable to small spatial
perturbations in the presence of diffusion and advec-
tion. The condition for instability is that (24) has a root
s with positive real part. We find the roots from that

s = α(q2) + √[α(q2)]2 − 4β(q2)

2
, (25)

where
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α
(
q2) = (d1 + d2)q

2 + (a11 + a22), (26a)

β
(
q2) = d1d2q

4 + (a11 + a22)q
2

+ a11a22 − a12a21. (26b)

The condition for a spatial mode q (in one- or two-
dimensional space) to be unstable and thus grow into
a pattern is that Re(s) > 0. To well see the dispersion
relation, we set that a = 0.75, b = 0.25, r = 0.015,
d1 = 0.2, and vary d2. Figure 1 depicts the range of
the values of q for some constant values, and the small
perturbation may bring about an instability with time.
From Fig. 1, we can see that the spatial pattern can
occur due to the positive real parts of s.

4 Pattern structures

In order to solve differential equations by computers,
one has to let the space and time be discrete. The two-
dimensional space is solved in a discrete domain with
M × N lattice sites and the spacing between the lat-
tice points is defined by 	h. For 	h → 0 the differ-
ences approach the derivatives. The time evolution is
also discrete and the time step is 	t . In the present
paper, we set 	h = 1, 	t = 0.001 and M = N = 500.

In the simulations, different types of dynamics are
observed and we have found that the distributions of
predator and prey are always of the same type. As a

result, we can restrict our analysis of pattern forma-
tion to one distribution (in this paper, we show the
distribution of prey, for instance). Figure 2 shows the
evolution of the spatial pattern of prey, with small ran-
dom perturbation of the stationary solution u∗ and v∗.
And the values of the parameters are that a = 0.75,

Fig. 1 An illustration of the dispersion relation from the (25)
and the parameter values are in the text. A: d2 = 1.2; B: d2 = 3;
C: d2 = 10. For other parameters’ values, see text. Here, k is
wavenumber

Fig. 2 (Color online)
Snapshots of contour
pictures of the time
evolution of the prey, u, at
different instants with
d2 = 1.2. For other
parameters’ values, see text.
(a) 10 iterations; (b) 10,000
iterations; (c) 15,000
iterations; (d) 100,000
iterations
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Fig. 3 (Color online)
Snapshots of contour
pictures of the time
evolution of the prey, u, at
different instants with
d2 = 3. For other
parameters’ values, see text.
(a) 10 iterations; (b) 10,000
iterations; (c) 15,000
iterations; (d) 100,000
iterations

Fig. 4 (Color online)
Snapshots of contour
pictures of the time
evolution of the prey, u, at
different instants with
d2 = 10. For other
parameters’ values, see text.
(a) 10 iterations; (b) 10,000
iterations; (c) 15,000
iterations; (d) 100,000
iterations

b = 0.25, r = 0.015, d1 = 0.2, and d2 = 1.2. After ir-
regular transient pattern, we can see that the regular
spotted patterns with the same radius prevail over the
whole domain finally, and the dynamics of the system
does not undergo any further changes.

The parameter values of Figs. 3–4 are in the do-
main of Turing space. All of the figures show the evo-
lution of the spatial pattern of the 10, 10,000, 15,000

and 100,000 iterations, with small random perturba-
tion of the stationary solution u∗ and v∗ of the spatially
homogeneous systems. From Fig. 3, we can see that
the regular black-eye patterns prevail over the whole
domain finally, and the dynamics of the system does
not undergo any further changes. Figure 4 shows that
stationary labyrinthine patterns emerge in the distri-
bution of the population density and prevail over the
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whole domain. Although the dynamics of the system
starts from the same initial condition as previous cases,
there is an essential difference for the spatially ex-
tended model which can be seen from the three figures
(cf. Figs. 2–4).

5 Discussion and conclusion

In this paper, we have investigated a Holling–Tanner
model with spatial diffusion. By linear stability and
bifurcation analysis, we present the dispersion rela-
tion diagrams. Numerical simulations show that the
predator–prey model has rich dynamical behavior,
such as spotted, black-eye, and labyrinthine patterns.
The results show that the model with diffusion is more
complicated than the model without it, which reveal
that modeling by reaction–diffusion equations is an
appropriate tool for investigating fundamental mecha-
nisms.

Amplitude equations can be used to describe slow
modulations in space and time of a reaction–diffusion
system and their general forms can be derived from
standard techniques of symmetry-breaking bifurca-
tions [28–31]. In the future work, we will give the
analysis of pattern selection of system (5) in detail.

Although more work is needed, in principle, it
seems that diffusion is able to generate many different
kinds of spatiotemporal patterns. For such reasons, we
can predict that diffusion can be considered as an im-
portant mechanism for the appearance of complex spa-
tiotemporal dynamics in ecology models. Moreover,
migration is also an important motion of the popula-
tions [32], which needs further investigation.
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