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Abstract Analytical and numerical analyses of the
nonlinear response of a three-degree-of-freedom non-
linear aeroelastic system are performed. Particularly,
the effects of concentrated structural nonlinearities
on the different motions are determined. The con-
centrated nonlinearities are introduced in the pitch,
plunge, and flap springs by adding cubic stiffness in
each of them. Quasi-steady approximation and the
Duhamel formulation are used to model the aerody-
namic loads. Using the quasi-steady approach, we de-
rive the normal form of the Hopf bifurcation associ-
ated with the system’s instability. Using the nonlin-
ear form, three configurations including supercritical
and subcritical aeroelastic systems are defined and an-
alyzed numerically. The characteristics of these differ-
ent configurations in terms of stability and motions are
evaluated. The usefulness of the two aerodynamic for-
mulations in the prediction of the different motions be-
yond the bifurcation is discussed.
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1 Introduction

Complex aeroelastic phenomena, such as flutter, limit-
cycle oscillations (LCOs), chaos and bifurcations, af-
fect the performance of the aircraft and may result
in structural problems and material fatigue [1–3].
Such phenomena are associated with nonlinear aero-
dynamic or structural conditions that characterize
aeroelastic systems. Regarding structural nonlineari-
ties, they can arise from large structural deflections
and/or partial loss of structural integrity [4–7]. Fur-
thermore, the effects of aging, loose attachments, and
material features could lead to undesirable and danger-
ous responses [8–10]. As such, assessing the evolution
of these inevitable behaviors through modeling and
analysis of these nonlinearities is important to avoid
or control dangerous responses. LCOs associated with
nonlinearities in aeroelastic systems have been pro-
posed for energy harvesting [11]. In these applications,
it is important to exploit nonlinearities to maximize
harvested power. These nonlinearities can be classi-
fied into either distributed or concentrated, based on
the region of their existence. Distributed nonlinearities
arise generally from deformations of the entire struc-
ture. On the other hand, concentrated nonlinearities
arise from loose or worn hinges of control surfaces. In
this work, we focus on the concentrated nonlinearities
which can be modeled using nonlinear springs in the
plunge, pitch, and control surface motions.

Analytically, the aerodynamic loads are usually
modeled using the quasi-steady approximation [1] or
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the Duhamel formulation [12, 13]. These approxima-
tions are based on the Theodorsen approach for the
unsteady aerodynamic loads. In the quasi-steady ap-
proximation, the lag between the unsteady oscillations
and their effects on aerodynamic force and torques
is neglected and therefore it is only limited to rela-
tively low-frequency oscillations, i.e. small values of
reduced frequencies. On the other hand, the Duhamel
formulation could simulate arbitrary motions of the
airfoil. Generally, the Duhamel approximation has
been used to study the effects of freeplay nonlinear-
ity on the motions of control surfaces [2, 9, 10, 12]
which has been shown to result in chaotic motions at
speeds lower than the linear flutter speed.

The ability to determine contributions by differ-
ent structural nonlinearities to the system’s response
allows for control and possibly elimination of sub-
critical instabilities. Furthermore, it is important to
determine global response parameters. Such parame-
ters and their relation (e.g. frequency ratios of differ-
ent motions) would depend on accurate representation
of the underlying physics such as aerodynamic loads,
stiffness, damping, etc. In this work, we perform anal-
ysis of different nonlinear aeroelastic systems using
two approximations of the aerodynamic loads. The ob-

jectives are to show how global analysis yields rele-
vant characterization of the system and to present the
shortcomings of using the quasi-steady approximation
for specific aeroelastic systems. As such, the aeroelas-
tic response of a three-degree-of-freedom airfoil sec-
tion with concentrated structural nonlinearities is con-
sidered. In Sect. 2, the equations of motion of this
aeroelastic system are presented. In Sect. 3, different
representations of the aerodynamic loads, namely, the
quasi-steady approximation and the Duhamel formu-
lation, are implemented. In Sect. 4, the normal form
of Hopf bifurcation is derived to obtain analytical ex-
pressions for the steady-state plunge, pitch, and flap
motions. In Sect. 5, a comparison between the used
aerodynamic loads approaches is determined for dif-
ferent considered configurations. Conclusions are pre-
sented in Sect. 6.

2 Representation of the aeroelastic system

We consider a two-dimensional rigid airfoil con-
strained to three degrees of freedom; namely, the
plunge (w), pitch (α) and control surface flap (β) mo-
tions as shown in Fig. 1. The equations of motion of
the system are written as [1]:

⎡
⎣

mT mWbxα mWbxβ

mWbxα mWb2r2
α mWb2r2

β + mWb2xβ(c − a)

mWbxβ mWb2r2
β + mWb2xβ(c − a) mWb2r2

β

⎤
⎦

⎡
⎣

ẅ

α̈

β̈

⎤
⎦

+
⎡
⎣

dw 0 0
0 dα 0
0 0 dβ

⎤
⎦

⎡
⎣

ẇ

α̇

β̇

⎤
⎦ +

⎡
⎣

kw(w) 0 0
0 kα(α) 0
0 0 kβ(β)

⎤
⎦

⎡
⎣

w

α

β

⎤
⎦ =

⎡
⎣

L

Mα

Mβ

⎤
⎦ (1)

where

xα = Sα

mWb
; xβ = Sβ

mWb
;

r2
α = Iα

mWb2
; r2

β = Iβ

mWb2
;

and mW is the mass of the wing, mT is the mass of
the entire system (wing + support blocks); dw , dα and
dβ are damping coefficients for the plunge, pitch, and
flap motions, respectively. Furthermore, Iα is the air-
foil mass moment of inertia about the elastic axis and
Iβ is the control surface mass moment of inertia about
the elastic axis. Fig. 1 Structural representation of the aeroelastic model
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The plunge and pitch motions are measured at the
elastic axis and the β angle of the control surface is
measured at the hinge line. In addition, c represents
the distance between the elastic axis to the hinge line
of control surface, b is the semichord of the entire air-
foil section. The mass center of the entire airfoil is
located at a distance xα from the elastic axis and the
mass center of the control surface is located at a dis-
tance xβ from the hinge line. Further, kw represents the
plunge stiffness, kα the stiffness of the pitch spring, kβ

the stiffness of the control surface hinge. Furthermore,
L and Mα are the aerodynamic lift and moment mea-
sured about the elastic axis and Mβ is the aerodynamic
moment on the flap about the flap hinge; Sα and Sβ are
the static mass moments.

For this work, we consider only structural nonlin-
earities. In addition, we consider a specific type of
concentrated nonlinearity whereby hard and soft non-
linear springs are used to represent the stiffness of the
different motions. These nonlinearities are modeled by
cubic terms, i.e.

kw = kw0 + kw2w
2

kα = kα0 + kα2α
2 (2)

kβ = kβ0 + kβ2β
2

3 Representation of aerodynamic loads

In this work, we use the aerodynamic lift and moments
as derived by Theodorsen [13], which are written as

L = −πρb2
[
ẅ + Uα̇ − baα̈ − U

π
T4β̇ − b

π
T1β̈

]

− 2πρUbQC(k) (3)

Mα = πρb2
[
baẅ − Ub

(
1

2
− a

)
α̇ − b2

(
1

8
+ a2

)
α̈

− U2

π
(T4 + T10)β

+ Ub

π

{
−T1 + T8 + (c − a)T4 − 1

2
T11

}
β̇

+ b2

π

{
T7 + (c − a)T1

}
β̈

]

+ 2πρb2U

(
a + 1

2

)
QC(k) (4)

and

Mβ = πρb2
[

b

π
T1ẅ + Ub

π

{
2T9 + T1

−
(

a − 1

2

)
T4

}
α̇ − 2b2

π
T13α̈

−
(

U

π

)2

(T5 − T4T10)β

+ Ub

2π2
T4T11β̇ +

(
b

π

)2

T3β̈

]

− ρUb2T12QC(k) (5)

where

Q = Uα + ẇ + α̇b

(
1

2
− a

)
+ U

π
T10β + b

2π
T11β̇ (6)

and T functions are defined in Appendix A.
Clearly, the aerodynamic loads are dependent on

Theodorsen’s function C(k), where k = wb
U

is the re-
duced frequency of the harmonic oscillations. The ex-
act expression of C(k) is given by [1]:

C(k) = F(k) + iG(k) (7)

where F and G are the function of Hankel and the
modified Bessel function.

3.1 Quasi-steady approximation

In the quasi-steady approximation, the reduced fre-
quency approaches zero and C(k) is set equal to one.
This assumption neglects any lag between the un-
steady oscillations and their effects on aerodynamic
forces and torques, limiting the modeling capabili-
ties to relatively low-frequency oscillations. Setting
C(k) = 1, we obtain second-order equations of mo-
tion with only structural cubic nonlinearity. The gen-
eral form of these equations of motion is then written
as

Mq̈ + Cq̇ + Kq + N(q,q, q) = 0 (8)

where

q =
⎡
⎣

w

α

β

⎤
⎦ , (9)
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M =
⎡
⎢⎣

mT + πρb2 Sα − aπρb3 Sβ − T1ρb3

Sα − aπρb3 Iα + π( 1
8 + a2)ρb2 Iβ + b(c − a)Sβ + 2T13ρb4

Sβ − T1ρb3 Iβ + b(c − a)Sβ + 2T13ρb4 Iβ − T3
π

ρb4

⎤
⎥⎦ , (10)

C =
⎡
⎢⎣

dw + 2πρbU 2(1 − a)πρb2U (T11 − T4)ρUb2

−2π(a + 1
2 )ρb2U dα + a(2a − 1)πρb3U [T1 − T8 − (c − a)T4 − aT11]ρb3U

T12ρb2U [T4(a − 1
2 ) − T1 − 2T9 + T12(

1
2 − a)]ρb3U dβ + [T11T12 − T4T11] ρ

2π
b3U

⎤
⎥⎦ ,

(11)

K =
⎡
⎢⎣

kw0 2πρbU2 2ρbU2T10

0 kα0 − 2π( 1
2 + a)ρb2U2 [T4 − 2aT10]ρb2U2

0 T12ρb2U2 kβ0 + (T5 − T4T10 + T10T12)
ρ
π
b2U2

⎤
⎥⎦ , (12)

and

N =
⎡
⎣

kw2w
3

kα2α
3

kβ2β
3

⎤
⎦ . (13)

Multiplying (8) from the left by the inverse M−1 of
M , we obtain

q̈ = C∗q̇ + K∗q − M−1N(q,q, q) (14)

where C∗ = −M−1C and K∗ = −M−1K .
In state space form, we define

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

X4

X5

X6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

w

ẇ

α

α̇

β

β̇

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

Using these variables, (14) is rewritten as
⎡
⎣

Ẋ2

Ẋ4

Ẋ6

⎤
⎦ = C∗

⎡
⎣

X2

X4

X6

⎤
⎦ + K∗

⎡
⎣

X1

X3

X5

⎤
⎦

− M−1

⎡
⎢⎣

kw2X
3
1

kα2X
3
3

kβ2X
3
5

⎤
⎥⎦ . (16)

Additionally, we have:

Ẋ1 = X2,

Ẋ3 = X4, (17)

Ẋ5 = X6.

Combining these equations, we obtain the following
form:

Ẋ = B(U)X + Nc(X,X,X) (18)

where Nc(X,X,X) are the cubic vector functions of
the state variables which describe the structural non-
linearity

Nc =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
Nc2

0
Nc4

0
Nc6

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

and

B(U) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
K∗

11 C∗
11 K∗

12 C∗
12 K∗

13 C∗
13

0 0 0 1 0 0
K∗

21 C∗
21 K∗

22 C∗
22 K∗

23 C∗
23

0 0 0 0 0 1
K∗

31 C∗
31 K∗

32 C∗
32 K∗

33 C∗
33

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The matrix B(U) has a set of six eigenvalues λi ,
i = 1,2, . . . ,6. These eigenvalues are complex conju-
gates (λ2 = λ1, λ4 = λ3, and λ6 = λ5). The real parts
of these eigenvalues correspond to the damping coef-
ficients and the imaginary parts are the coupled fre-
quencies of the aeroelastic system. The solution of the
linear part is asymptotically stable if the real parts of
the λi are negative. In addition, if one of the real parts
is positive, the linearized system is unstable. The speed
at which one or more eigenvalues have zero real parts
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corresponds to the onset of the linear instability and is
termed as the flutter speed, Uf .

3.2 Duhamel formulation

To simulate the arbitrary motions of the aeroelastic
system, the loads associated with Theodorsen’s func-
tion are replaced by the Duhamel formulation in the
time domain and written as [2, 12]

Lc = C(k)f (t) = f (0)φ(τ)+
∫ τ

0

∂f (σ )

∂σ
φ(τ −σ)dσ

(20)

where

f (t) = Uα + ẇ + b

(
1

2
− a

)
α̇ + 1/πT10Uβ

+ b

(
1

2π

)
T11β̇ (21)

and φ(τ) is Wagner function. The Sears approxima-
tion to φ(τ) is given by [2, 12, 14]

φ(τ) ≈ c0 − c1e−c2τ − c3e−c4τ (22)

where c0 = 1, c1 = 0.165, c2 = 0.0455, c3 = 0.335
and c4 = 0.3.

Using integration by parts and following the state
space method proposed by [11, 12], (20) is rewritten
as:

Lc = f (τ)φ(0) +
∫ τ

0
f (σ )

∂φ(τ − σ)

∂σ
dσ,

Lc = (c0 − c1 − c3)f (t) + c2c4(c1 + c3)

(
U2

b

)
x̄

(23)

+ (c1c2 + c3c4)U ˙̄x.

With the introduction of two augmented variables,
xa1 = x̄ and xa2 = ˙̄x, (1) is rewritten as

(Ms − MNC)ẍ +
(

Bs − BNC − 1

2RS2

)
ẋ

+
(

Ks − KNC − 1

2RS1

)
x − RS3xa = 0 (24)

where x = [α β w/b]T and xa = [xa1 xa2].
The augmented state vector xa = [x̄ ˙̄x] contains the

augmented variables which describe the effects of the

Table 1 Comparison of the coupled frequencies and flutter fre-
quency and speed when using Duhamel and quasi-steady repre-
sentations for the aerodynamic loads

Parameter Duhamel Quasi-steady

ωwc (Hz) 4.38 4.38

ωαc (Hz) 9.15 9.15

ωβc (Hz) 18.60 18.60

Uf (Hz) 24.8 23.56

ωf (Hz) 6.16 5.46

wake dynamics of the airfoil. This vector is related to
the other system parameters by the following differen-
tial equation [12]:

¨̄x =
[
−c2c4

(
U2

b

)
− (c2 + c4)

(
U

b

)]
xa

+ 1

b
S1x + 1

b
S2ẋ. (25)

Equations (24) and (25) are then rewritten in the state
space form as

Ẋ = A(X)X. (26)

Details about the matrices in (24)–(26) are presented
in Appendix B.

Table 1 presents a comparison of the coupled fre-
quencies and flutter speed and frequency using the
experimental parameters of Conner et al. [8] and as
obtained from the above analyses. Of particular im-
portance is the near 3-to-1 ratio of the flap frequency
to the flutter frequency when using the Duhamel ap-
proach to represent the aerodynamic loads which
points to the possibility of energy exchange between
the flap motion and the pitch and plunge motions near
flutter. As such and through this resonance, the impact
of the flap motion on the wing can only be modeled
by the Duhamel formulation through its wake capture
component.

4 Nonlinear analysis

For the quasi-steady approximation of the aerody-
namic loads, we determine the type of bifurcation that
is associated with the flutter of the aeroelastic sys-
tem by computing the normal form of the bifurcation
near the flutter speed Uf . Furthermore, we perform
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analytical and numerical comparisons of the effects
of nonlinearities when using the unsteady, based on
both the Duhamel and quasi-steady, formulations. The
perturbation analysis used to derive the normal form
was performed using Mathematica. The Runga–Kutta
method was used to perform the numerical integra-
tions.

4.1 Normal form of Hopf bifurcation

To derive the nonlinear normal form, we first add a
perturbation term, ε2σU Uf , to the flutter speed (U =
Uf + σUε2Uf ), which leads to the appearance of the
secular terms at the third order. Taking into account the
perturbation term of the flutter speed, the matrix B(U)

is written as the sum B(Uf ) + ε2B1(Uf ), where

B1(Uf )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 f2Uf 2e3U2

f
f4Uf 2e5U2

f
f6Uf

0 0 0 0 0 0
0 f8Uf 2e8U2

f
f10Uf 2e10U2

f
f12Uf

0 0 0 0 0 0
0 f14Uf 2e13U2

f
f16Uf 2e15U2

f
f18Uf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and where ei and fi are the associated values for K∗
and C∗ depending, respectively, on U2 and U as can
be deduced from (10), (11) and (13).

Equation (27) is then written as

Ẋ = B(Uf )X + ε2σUB1(Uf )X + Nc(X,X,X). (27)

Letting P be the matrix whose columns are the eigen-
vectors of the matrix corresponding to the eigenvalues
±jω1 −μ1, ±jω2, and ±jω3 −μ3 of B(Uf ), we de-
fine a new vector Y such that X = PY and rewrite (27)
as

P Ẏ = B(Uf )PY + ε2σUB1(Uf )PY + Nc(PY ). (28)

Multiplying (28) from the left by the inverse P −1 of
P , we obtain

Ẏ = JY + ε2σUGY + P −1Nc(PY ) (29)

where J = P −1B(Uf )P is a diagonal matrix whose
elements are the eigenvalues ±jω1 − μ1, ±jω2, and
±jω3 − μ3 of B(Uf ) and G = P −1B1(Uf )P . We
note that Y2 = Y1, Y4 = Y3, Y6 = Y5 and hence (29)

is rewritten in component form as

Ẏ1 = jω1Y1 − μ1Y1 + ε2σU

5∑
1

G1iYi + N1(Y,Y,Y ),

(30)

Ẏ3 = jω2Y3 + ε2σU

5∑
1

G3iYi + N3(Y,Y,Y ), (31)

Ẏ5 = jω3Y5 − μ3Y5 + ε2σU

5∑
1

G5iYi + N5(Y,Y,Y ),

(32)

where the Ni(Y,Y,Y ) are trilinear functions of the Y .
Because we have considered only cubic nonlineari-
ties, the solutions of Y1 and Y5 decay to zero. Con-
sequently, we retain only the non-decaying solution
(Y3). Moreover, to compute the normal form of the
Hopf bifurcation of (30)–(32) near U = Uf , we fol-
low Nayfeh and Balachandran [15] and search for a
third-order approximate solution of (31) in the follow-
ing form:

Y3 = εY31(T0, T2) + ε2Y32(T0, T2) + ε3Y33(T0, T2)

+ O
(
ε4) (33)

where Tn = εnt . In terms of the Ti , the time derivative
can be expressed as

d

dt
= ∂

∂T0
+ ε2 ∂

∂T2
= D0 + ε2D2. (34)

Substituting (33) and (34) into (31) and equating
terms of like powers of ε, we obtain two different set
of relations for ε and ε3 as: Order(ε)

D0Y31 − jω2Y31 = 0, (35)

Order(ε3)

D0Y33 − jω2Y33 = −D2Y31 + σUG33Y31

+ N(Y31, Y31, Y31) + cc + NST,

(36)

where NST stands for terms that do not produce sec-
ular terms and cc stands for the complex conjugate of
the preceding terms. The solution of (35) is expressed
as

Y31 = A(T2)e
jω2T0 . (37)



Bifurcation analysis of an aeroelastic system with concentrated nonlinearities 63

Substituting (37) into (36) and eliminating the terms
that lead to secular terms, we obtain the modulation
equation

D2A = σUG33A + NeA
2A. (38)

The effect of the cubic nonlinearity (kw2, kα2 , and kβ2 )
on the system is expressed through Ne. For conve-
nience, we write (38) as

D2A = βA + NeA
2A (39)

where β = σUG33.
Expressing A in the polar form, A(T2) = 1

2aeiγ (T2),
and separating the real and imaginary parts in (39),
we obtain the following nonlinear normal form of the
Hopf bifurcation:

a′ = βra + 1

4
Nera

3, (40)

γ ′ = βi + 1

4
Neia

2, (41)

where a is the amplitude and γ is the shifting angle
of the periodic solution. Equation (40) has generally
three equilibrium solutions which are:

a = 0, a = ±
√

−4βr

Ner

.

The solution a = 0 corresponds to the fixed points
(0,0). The other two solutions are the nontrivial ones.
The origin is asymptotically stable for βr < 0 or βr =
0 and Ner < 0, unstable for βr > 0 or βr = 0 and
Ner > 0. For the nontrivial solutions, they exist when
βrNer < 0. Furthermore, they are stable (supercritical
Hopf bifurcation) for βr > 0 and Ner < 0 and unstable
(subcritical Hopf bifurcation) for βr < 0 and Ner > 0.

For the parameters of Conner et al. [8], the real
parts of β and Ne are given by:

βr = 8.006σU ,

Ner = 3.21 × 10−7kw2 − 3.12 × 10−4kα2 (42)

− 4.25 × 10−5kβ2.

We note that type of bifurcation associated with the
flutter speed is dependent on the values of the nonlin-
ear coefficients kw2, kα2 , and kβ2 .

5 Results and discussions

In this section, we compare the analytical solution as
determined from the normal form of Hopf bifurcation
analysis with numerical integrations of the governing
equations when using the quasi-steady approximation
and the Duhamel formulation. We consider three dif-
ferent configurations. Table 2 shows the values used
for the nonlinear spring coefficients and the corre-
sponding real part of the effective nonlinearity (Ner ).
These coefficients are chosen to yield supercritical in-
stabilities in the first and second configurations and a
subcritical instability in the third one. Furthermore, the
stiffness of the plunge motion is assumed to be linear
in the first configuration.

Using the nonlinear normal form, the amplitudes of
the LCO for the plunge (Aw), pitch (Aα) and flap (Aβ )
motions are given by:

Ah = a

√
P [1,3]2

r + P [1,3]2
i , (43)

Aα = a

√
P [3,3]2

r + P [3,3]2
i , (44)

Aβ = a

√
P [5,3]2

r + P [5,3]2
i , (45)

where [.]r and [.]i denote the real and imaginary parts,
respectively, and P [j, k] denotes the component (j, k)

of matrix P .
Concerning the first configuration, Fig. 2 shows the

variations of the plunge, pitch and flap motions with
the freestream velocity. In general the normal form
yields a good prediction of the pitch and plunge mo-
tions for speeds up to 1.2Uf . As for the flap motion,
the normal form yields a good prediction of the bi-
furcation. However, it fails to predict the amplitudes
of this motion at speeds above 1.05Uf . We note here
that we have a supercritical bifurcation (because Ner

is negative) as predicted by the normal form.
The normal form analysis of the second config-

uration shows agreement between the predicted and

Table 2 Parameters of the three considered configurations

First Second Third

configuration configuration configuration

kw2/kw0 0 10 500

kα2/kα0 10 30 35

kβ2/kβ0 5 10 10

Ner −0.117 −0.342 0.0429
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Fig. 2 Variation of the plunge (a), pitch (b), and flap (c) with
the freestream velocity, for the first configuration, using the nor-
mal form based on the quasi steady formulation (dashed lines)

and numerical integrations of the quasi-steady approximation
(solid lines) and Duhamel formulation (dots)

Fig. 3 Variation of the plunge (a), pitch (b), and flap (c) with
the freestream velocity, for the second configuration, using the
normal form based on the quasi-steady formulation (dashed

lines) and numerical integrations of the quasi-steady approxi-
mation (solid lines) and Duhamel formulation (dots)



Bifurcation analysis of an aeroelastic system with concentrated nonlinearities 65

Fig. 4 Time histories of the pitch (a, c and e) and flap (b,
d and f), for the second configuration, for the different used
methods (dots for the numerical integrations of the Duhamel

representation and solid line for the numerical integrations of
the quasi-steady approximation) when U = 1.05Uf (a and b),
U = 1.1Uf (c and d) and U = 1.2Uf (e and f)

numerically determined amplitudes of the pitch and
plunge motions. On the other hand, the normal form
analysis fails to predict the amplitude of the flap mo-
tion at speeds above 1.05Uf , as shown in Fig. 3. Time
histories of the predicted motions using the Duhamel
and quasi-steady formulations at different freestream
velocities are shown in Fig. 4. The results show that
predicted pitch motions by both analyses are periodic,
as shown in Figs. 4(a), (c) and (e), while the ampli-
tudes of the predicted motions are about the same,
their frequencies are different. This is expected from
the linear analysis presented in Table 1. As for the pre-
dicted flap motions, the results show significant dif-
ferences when using the two approaches. At the rela-
tively lower speeds, U = 1.05Uf , near the bifurcation

the flap motion contains mostly one frequency com-
ponent, as shown in Fig. 4(b). In contrast, this motion
contains other frequencies components at the higher
speeds, as shown in Figs. 4(d) and (f). This is clearly
due to the ability of the Duhamel formulation to cap-
ture the dynamic wake effects of the flap.

Power spectra of the pitch and flap motions when
using the Duhamel formulation for the aerodynamic
loads are shown in Fig. 5. We note the two peaks near
the flutter and flap frequencies which have a 3-to = 1
ratio for the three considered freestream velocities. For
the pitch motion, we note that dominant peak is that of
the flutter frequency of the wing as shown in Figs. 5(a),
(c) and (e). Regarding the flap motions, it is noted that
the amplitude of the flap frequency increases signifi-
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Fig. 5 Power spectrum for the pitch (a, c and e) and flap (b, d and f), for the second configuration, for the Duhamel representation
when U = 1.05Uf (a and b), U = 1.1Uf (c and d) and U = 1.2Uf (e and f)

cantly as the freestream velocity is increased, as shown
in Figs. 5(b), (d) and (f). Again, this behavior is due to
the 3-to-1 ratio of the coupled flap and flutter frequen-
cies, as shown in Table 1. As expected, there is more
energy transfer to the flap motion when increasing the
freestream velocity.

Figure 6 shows the time histories for the pitch and
flap motions for the quasi-steady approximation for
the third configuration. We note that both motions are
periodic. On the other hand, when using the Duhamel
representation, we obtain nonperiodic/chaotic motions
as shown in Fig. 7 for both pitch and flap responses.
This is determined from the Poincaré sections shown
in Fig. 8. Therefore, for the considered subcritical con-
figuration, the quasi-steady approximation failed to
predict the arbitrary and nonperiodic motions that are
associated with the dynamic effects of the flap.

Variations of the root mean square (RMS) values
of the plunge, pitch and flap with forward and back-
ward sweeps of the freestream velocity for the third
(subcritical) configuration presented in Table 2 as pre-
dicted by the quasi-steady approximation are shown
in Fig. 9. Clearly, a hysteretic response is identified.
This hysteresis is a characteristic of the subcritical in-
stability. As such, this result is in agreement with val-
ues obtained from normal form analysis of Hopf bi-
furcation. The plotted curves in Fig. 10 show the bi-
furcation diagram for the third configuration when us-
ing the Duhamel representation approach for the aero-
dynamic loads. Again, we note that the hysteresis in
the response is caused by the subcritical instability of
the system. However, we note that there is a large dif-
ference in the maximum values for all system outputs
when considering the quasi-steady approximation and
the Duhamel formulation. For the Duhamel formula-
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Fig. 6 Time histories of the pitch (a) and flap (b), for the third configuration, for the quasi-steady representation when U = 1.05Uf

Fig. 7 Time histories of the pitch (a) and flap (b), for the third configuration, for the Duhamel representation when U = 1.05Uf

Fig. 8 Poincaré sections for the pitch (a) and flap (b), for the third configuration, for the Duhamel representation when U = 1.05Uf

tion of aerodynamic loads, higher pitch and flap am-
plitudes are obtained.

6 Conclusions

In this work, a nonlinear analysis of a three-degree-of-
freedom airfoil section is performed. To study the ef-
fects of concentrated structural nonlinearities, we con-
sidered three configurations for concentrated nonlin-
earities in the stiffness of the pitch, plunge, and flap
springs. We used two different approaches to repre-
sent the aerodynamic loads, namely, the quasi-steady

approximation and the Duhamel formulation. For the
wing and flap considered parameters, the linear anal-
ysis shows a difference in the predicted flutter fre-
quencies when using the two approaches. Particularly,
the Duhamel formulation shows a possibility for en-
ergy exchange between the wing and flap through a
3-to-1 resonance mechanism. Using the quasi-steady
approximation, we derived the normal form of Hopf
bifurcation to characterize the system’s stability and
the response near the bifurcation. The results show
that both the quasi-steady approximation and the un-
steady representation, which is based on the Duhamel
formulation, yield comparable results when the pitch
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Fig. 9 Variation of the RMS values for the plunge (a), pitch (b), and flap (c) with the freestream velocity, for the third configuration,
for the quasi-steady approximation (dashed lines for the decreasing speeds and solid line for the increasing speeds)

Fig. 10 Variation of the RMS values for the plunge (a), pitch (b), and flap (c) with the freestream velocity, for the third configuration,
for the Duhamel approximation (dashed lines for the decreasing speeds and solid line for the increasing speeds)

and plunge motions are periodic. However, the two
approaches yield different amplitudes for the flap mo-
tions at higher speeds (above 1.05Uf ). This is due to
the failure of the quasi-steady approach to account for

the dynamic wake effects of the flap. For the same
reason, the quasi-steady approach fails to predict non-
periodic or chaotic motions that are associated with
subcritical instabilities. These results show the impor-
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tance of correctly modeling the aerodynamic loads
when characterizing complex phenomena associated
with nonlinearities in aeroelastic systems.
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Appendix A: Theodorsen constants

T1 = −2 + c2

3

√
1 − c2 + c cos−1 c,

T3 = −1 − c2

8

(
5c2 + 4

) + 1

4
c
(
7 + 2c2),

×
√

1 − c2 cos−1 c −
(

1

8
+ c2

)(
cos−1 c

)2
,

T4 = c
√

1 − c2 − cos−1 c,

T5 = −(
1 − c2) − (

cos−1 c
)2 + 2c

√
1 − c2 cos−1 c,

T7 = c
7 + 2c2

8

√
1 − c2 −

(
1

8
+ c2

)
cos−1 c,

T8 = −1

3

(
1 + 2c2)√1 − c2 + c cos−1 c,

T9 = 1

2

[√
1 − c2(1 − c2)

3
+ aT4

]
,

T10 =
√

1 − c2 + cos−1 c,

T11 = (2 − c)
√

1 − c2 − (1 − 2c) cos−1 c,

T12 = (2 + c)
√

1 − c2 − (1 + 2c) cos−1 c,

T13 = −1

2
[T7 + (c − a)T1].

Appendix B: Matrices of (24) and (26)

Ms =
⎡
⎣

r2
α r2

β + (c − a)xβ xα

r2
β + (c − a)xβ r2

β xβ

xα xβ MT /mW

⎤
⎦ ,

Bs = (�T )−1

⎡
⎣

2mαωαξα 0 0
0 2mβωβξβ 0
0 0 2mwωwξw

⎤
⎦�−1,

where mα , mβ , mw are modal masses.

Ks =
⎡
⎣

r2
αω2

α 0 0
0 r2

βω2
βF (β)/β 0

0 0 ω2
w

⎤
⎦ ,

MNC = − ρ

mW

⎡
⎢⎣

πb2( 1
8 + a2) −(T7 + (c − a)T1)b

2 −πab2

2T13b
2 −T3b

2/π −T1b
2

−πab2 −T1b
2 πb2

⎤
⎥⎦ ,

BNC = − ρ

mW

⎡
⎢⎣

π( 1
2 − a)Ub T1 − T8 − (c − a)T4 + T11/2)Ub 0

(−2T9 − T1 + T4(a − 1
2 ))Ub −T4T11Ub/(2π) 0

πUb −UT4b 0

⎤
⎥⎦ ,

KNC = − ρ

mW

⎡
⎣

0 (T4 + T10)U
2 0

0 (T5 − T4T10)U
2/π 0

0 0 0

⎤
⎦ ,

R =
[

2πρU(a + 1
2 )/mW −ρUT12/mW − 2πρU

mW

]T

,
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S1 = [
U T10U/π 0

]
,

S2 = [
b
( 1

2 − a
)

bT11/2π b
]
,

S3 = [
c2c4(c1 + c3)U

2/b (c1c2 + c3c4)U
]
,

A =
⎡
⎣

0 I3x3 0
−M−1

t Kt −M−1
t Bt −M−1

t D
E1 E2 F

⎤
⎦

being,

Mt = Ms − MNC, Bt = Bs − BNC − 1/2RS2, Kt = Ks − KNC − 1/2RS1, D = RS3,

E1 =
[

0 0 0
U/b UT10/(πb) 0

]
,

E2 =
[

0 0 0
(1/2 − a) T11/(2π) 1

]
,

F =
[

0 1
−c2c4U

2/b −(c2 + c4)U/b

]
.
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