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Abstract In this paper, we analyze crowd turbulence
from both classical and quantum perspective. We ana-
lyze various crowd waves and a collision using crowd
macroscopic wave functions. In particular, we will
show that nonlinear Schrödinger (NLS) equation is
fundamental for quantum turbulence, while its closed-
form solutions include shock-waves, solitons, and
rogue waves, as well as planar de Broglie’s waves. We
start by modeling various crowd flows using classi-
cal fluid dynamics, based on Navier–Stokes equations.
Then we model turbulent crowd flows using quantum
turbulence in Bose–Einstein condensation, based on
modified NLS equation.

Keywords Crowd behavior dynamics · Classical and
quantum turbulence · Shock waves · Solitons and
rogue waves

1 Introduction

Massive crowd movements can be today precisely ob-
served from satellites. All that one can see is physical
movement of the crowd. Therefore, all involved psy-
chology of individual crowd agents (and their groups
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within the crowd): cognitive, motivational, and emo-
tional, as well as its global sociology, is only a non-
transparent input (a hidden initial switch) to the fully
observable crowd physics [1–4]. About a decade ago,
Helbing discovered a phenomenon called crowd tur-
bulence (see [5–9]), depicting crowd disasters caused
by the panic stampede that can occur at high pedes-
trian densities and which is a serious concern during
various disasters (bushfires, tornados, earthquakes), as
well as mass events like soccer championship games
or annual pilgrimage in Mecca.

The adaptive, wave-form, nonlinear and stochastic
crowd dynamics has been modeled using (an adap-
tive form of) nonlinear Schrödinger equation1 (NLS),

1The most important case of nonlinear Schrödinger equation is
the cubic NLS

i∂tψ = −1

2
�ψ ± |ψ |2ψ,

with the cubic nonlinearity |ψ |2ψ . The sign + in the cubic NLS
represents defocussing NLS, while the − sign represents focus-
ing NLS. This extraordinarily rich nonlinear PDE represents a
fully integrable Hamiltonian system which is traditionally stud-
ied on Euclidean domains R

n (but other domains, like circle,
torus or hypersphere, are also studied)—and allows for a “zoo”
of various wave-like solutions (to be analyzed later). Terms sub-
critical, critical, and supercritical are frequently used to de-
note a significant transition in the behavior of a particular equa-
tion with respect to a specified regularity class (or conserved
quantity). Typically, subcritical equations behave in an approxi-
mately linear manner, supercritical equation behave in a highly
nonlinear manner, and critical equations are very finely balanced
between the two. Occasionally, one also discusses the subcriti-
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also called Gross–Pitaevskii equation2 (GP), defin-
ing the time-dependent complex-valued macroscopic
wave function ψ = ψ(x, t), whose absolute square
|ψ(x, t)|2 represents the crowd density function. In
natural quantum units (� = 1, m = 1), our NLS equa-
tion reads:

i∂tψ = −1

2
∂xxψ + V |ψ |2ψ,(

i = √−1; with ∂zψ = ∂ψ

∂z

)
,

(1)

where V = V (w,x) denotes the adaptive heat po-
tential (trained by either Hebbian or Levenberg–
Marquardt learning). Physically, the NLS equation (1)
describes a nonlinear wave in a quantum matter (such
as Bose–Einstein condensates).

For general crowd simulation, we recently pro-
posed two NLS-based approaches in [4], each repre-
senting a quantum neural network [10]:

Weak coupling approach: A looser (and more ab-
stract) but higher-dimensional approach consisting of
an n-dimensional set of NLS equations:

i∂tψi = −1

2
∂xxψi + V |ψi |2ψi, (i = 1, . . . , n), (2)

which self-organize in a common adaptive potential
V = V (w,x). Here, the squared amplitude |ψ |2 is
the condensate density. The potential V (w,x) in-
cludes synaptic weights wk , which iteratively update
according to the standard Hebbian rule:

ẇi = −wi + c|ψ |gi |ψ |, V (w,x) =
n∑

i=1

wigi,

where c is the learning rate parameter and gi are
Gaussian kernel functions with means xi and stan-
dard deviations normalized to unity. The system (2)
was numerically solved using the Method of Lines
(combined with the fast adaptive Runge–Kutta–
Fehlberg integrator with Cash–Karp accelerator). Its
solution3 represents time evolution in the complex

cality, criticality, or super-criticality of regularities with respect
to other symmetries than scaling, such as Galilean invariance or
Lorentz invariance. For survey of recent advances in nonlinear
wave equations based on their criticality, see [12].
2NLS or GP is also similar in form to the Ginzburg–Landau
equation, a mathematical theory used to model superconductiv-
ity.
3Crowd simulations were based on the following data:

plane C of n cooperative groups, each consisting
of m agents of SE(2)-kinematic type (see Fig. 1).4

In this approach, each individual line (or kinematic
trajectory), defines a velocity controller for a single
agent. The total number of agents, as well as number
of groups, is limited only by the available computa-
tion power.

Strong coupling approach: A pair of strongly-
coupled NLS equations with Hebbian learning:

BLUE: i∂tψB = −aB

2
|φR|2∂xxψB

+ V |ψB|2ψB,

RED: i∂tφR = −bR

2
|ψB|2 ∂xxφR

+ V |φR|2φR,

HEBB: ẇi = − wi + cH|ψB|gi |φR|,

V =
n∑

i=1

wigi.

(3)

Here, aB, bR, cH are parameters related to Red, Blue,
and Hebb, equations, respectively. This is a bidi-
rectional, spatiotemporal, complex-valued associa-
tive memory machine, generalizing Lanchester and
Lotka–Volterra predator-prey dynamical systems, as
well as Hopfield, Kosko, and Grossberg models of
neural networks (see, e.g., [11]).

In this paper, we will analyze crowd turbulence
(from both classical and quantum perspective) as well
as various crowd waves and collisions. In particular,
we will show that NLS equation (1) is fundamental

1. Target function used for this case is: f = 2 sin(20πt). An
infinitesimal tracking function used is: h = −(PDF · dx/x).

2. Gaussian kernel functions are defined as: gi = exp[−(v −
mi)

2], where v = f − h, while mi are random Gaussian
means.

3. Potential field update is given by the scalar product: Vi+1 =
Vi + wi · gi .

4. The complex plane C was embedded in the 3D graphics envi-
ronment (both urban and bush) with 3D collision dynamics.

4The Euclidean motion group SE(2) ≡ SO(2) × R is a set of all
3 × 3-matrices of the form:[ cos θ sin θ x

− sin θ cos θ y

0 0 1

]
,

including both rigid translations (i.e., Cartesian x, y-

coordinates) and rotation matrix
[

cos θ sin θ

− sin θ cos θ

]
in Euclidean

plane R
2 ≈ C (see [15, 16]).
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Fig. 1 Simulating
random-mixing behavior of
four crowds in a confined
environment

for quantum turbulence, while its closed-form solu-
tions include shock-waves, solitons and rogue waves.
Firstly, we will model various crowd flows using clas-
sical fluid dynamics, based on Navier–Stokes equa-
tions. Then we will model turbulent crowd flows us-
ing quantum turbulence in Bose–Einstein condensa-
tion, based on modified NLS equation.

2 Classical approach to crowd turbulence

In this section, we model various crowd flows us-
ing models from classical fluid dynamics, based on
Navier–Stokes partial differential equations (PDEs).

2.1 Classical turbulence and crowd flows

Turbulence has long been one of the great mysteries
in nature, with discussion dating back to the era of
Leonardo da Vinci. He observed the turbulent flow
of water and drew pictures showing that turbulence
has a structure comprised of vortices of different
sizes (Fig. 2). After Leonardo, turbulence has been
intensely studied in a number of fields, but it is still

Fig. 2 Sketch of turbulence by Leonardo da Vinci

far from completely understood. This is primarily be-
cause turbulence is a strongly nonlinear dynamical
phenomenon.

Turbulent flow is a fluid flow regime characterized
by low momentum diffusion, high momentum con-
vection, and rapid variation of pressure and velocity
in space and time. Flow that is not turbulent is called
laminar flow. Also, recall that the Reynolds number Re
characterizes whether flow conditions lead to laminar
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or turbulent flow. The structure of turbulent flow was
first described by Kolmogorov. Consider the flow of
water over a simple smooth object, such as a sphere. At
very low speeds the flow is laminar, i.e., the flow is lo-
cally smooth (though it may involve vortices on a large
scale). As the speed increases, at some point the transi-
tion is made to turbulent (or chaotic) flow. In turbulent
flow, unsteady vortices5 appear on many scales and
interact with each other. Drag due to boundary layer
skin friction increases. The structure and location of
boundary layer separation often changes, sometimes
resulting in a reduction of overall drag.

Applied to crowd dynamics, vorticity ω = ω(x, t)

is defined as the circulation per unit area at a point
in the crowd flow field, that is as the curl of the crowd

5Vortex can be any circular or rotary flow that possesses vortic-
ity. Vortex represents a spiral whirling motion (i.e., a spinning
turbulent flow) with closed streamlines. The shape of media or
mass rotating rapidly around a center forms a vortex. It is a flow
involving rotation about an arbitrary axis and can be described
by the vector curl operator.

In the atmospheric sciences, vorticity is a property that char-
acterizes large-scale rotation of air masses. Since the atmo-
spheric circulation is nearly horizontal, the 3D vorticity is nearly
vertical, and it is common to use the vertical component as a
scalar vorticity.

A vortex can be seen in the spiraling motion of air or liquid
around a center of rotation. Circular current of water of con-
flicting tides form vortex shapes. Turbulent flow makes many
vortices. A good example of a vortex is the atmospheric phe-
nomenon of a whirlwind or a tornado. This whirling air mass
mostly takes the form of a helix, column, or spiral. Torna-
does develop from severe thunderstorms, usually spawned from
squall lines and supercell thunderstorms, though they some-
times happen as a result of a hurricane. (A hurricane is a much
larger, swirling body of clouds produced by evaporating warm
ocean water and influenced by the Earth’s rotation. In particu-
lar, polar vortex is a persistent, large-scale cyclone centered near
the Earth’s poles, in the middle and upper troposphere and the
stratosphere. Similar, but far greater, vortices are also seen on
other planets, such as the permanent Great Red Spot on Jupiter
and the intermittent Great Dark Spot on Neptune.) Another ex-
ample is a meso-vortex on the scale of a few miles (smaller than
a hurricane but larger than a tornado). On a much smaller scale,
a vortex is usually formed as water goes down a drain, as in
a sink or a toilet. This occurs in water as the revolving mass
forms a whirlpool. (A whirlpool is a swirling body of water pro-
duced by ocean tides or by a hole underneath the vortex, where
water drains out, as in a bathtub.) This whirlpool is caused by
water flowing out of a small opening in the bottom of a basin
or reservoir. This swirling flow structure within a region of fluid
flow opens downward from the water surface. In the hydrody-
namic interpretation of the behavior of electromagnetic fields,
the acceleration of electric fluid in a particular direction creates
a positive vortex of magnetic fluid. This in turn creates around
itself a corresponding negative vortex of electric fluid.

flow velocity: ω = ∇ ×u. It is a vector quantity, whose
direction is approximately along the axis of the swirl.
The movement of a crowd flow can be said to be vor-
tical if the fluid moves around in a helix (which from
the top looks like a circle), or if it tends to spin around
some axis. Such motion can also be called solenoidal.

Because laminar–turbulent transition in crowd dy-
namics is governed by Reynolds number, the same
transition occurs if the size of the crowd is gradually
increased, or the viscosity of the crowd is decreased,
or if the density of the crowd is increased.

In particular, in a turbulent crowd flow, there is a
range of scales of the crowd flow motions, called ed-
dies. A single packet of crowd flow moving with a bulk
velocity is called an “eddy.” The size of the largest
scales (eddies) are set by the overall geometry of the
crowd flow.6

Such turbulent crowd flow shows characteristic sta-
tistical behavior (compare with [52, 53]). For simplic-
ity, we will assume a steady state of fully developed
turbulence of an incompressible classical crowd flow.
Energy is injected into the crowd flow at a rate ε in
an energy-containing range. In an inertial range, this
crowd energy is transferred to smaller length scales
without dissipation. In this range, the crowd is locally
homogeneous and isotropic, leading to energy spectral
statistics described by the Kolmogorov law,7

E(k) = C ε2/3 k−5/3. (4)

The crowd energy spectrum E(k) is defined by E =∫
E(k)dk, where E is the kinetic energy of the crowd

per unit mass and k is the crowd wave-number from
the Fourier transform of the velocity field (compare
with the last subsection on quantum crowd waves).
The spectrum of (4) is derived by assuming that E(k)

is locally determined only by the crowd energy flux
ε and by k. The crowd energy transferred to smaller
scales is dissipated at the Kolmogorov wave-number
kK = (ε/ν3)1/4 in an energy-dissipative range via the

6For comparison, in an industrial smoke-stack, the largest scales
of fluid motion are as big as the diameter of the stack itself. The
size of the smallest scales is set by Re. As Re increases, smaller
and smaller scales of the flow are visible. In the smoke-stack, the
smoke may appear to have many very small bumps or eddies, in
addition to large bulky eddies. In this sense, Re is an indicator of
the range of scales in the flow. The higher the Reynolds number,
the greater the range of scales.
7The Kolmogorov spectrum has been confirmed experimentally
and numerically in fluid turbulence at high Reynolds numbers.
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viscosity of the crowd flow at a dissipation rate ε

in (4), which is equal to the crowd energy flux Φ in the
inertial range. The Kolmogorov constant C is a dimen-
sionless parameter of order unity. The inertial range
is thought to be sustained by a self-similar Richard-
son cascade in which large crowd eddies break up into
smaller eddies through crowd vortex reconnections.

In order for two crowd flows to be similar they must
have the same geometry and equal Reynolds numbers.
When comparing crowd flow behavior at homologous
points in a crowd model and a full-scale crowd flow,
we have Re∗ = Re, where quantities marked with ∗
concern the flow around the crowd model and the other
the real crowd flow.

2.2 Navier–Stokes crowd fluids

Fluid dynamicists believe that Navier–Stokes PDEs
accurately describe turbulence (see, e.g., [51]). There-
fore, we can assume that viscous crowd flows evolve
according to nonlinear Navier–Stokes equations8

u̇ + u · ∇u + ∇p/ρ = ν�u + f, (5)

where u = u(x, t) is the 3D velocity of a crowd flow,
u̇ ≡ ∂tu is the 3D acceleration of a crowd flow, p =
p(x, t) is the crowd pressure field, while f = f(x, t)

is the external nonlinear energy source to the crowd,
while ρ, ν are the crowd flow density and viscosity co-
efficient, respectively. Such a crowd flow can be char-
acterized by the ratio of the second term on the left-
hand side of (5), u · ∇u, referred to as the crowd iner-
tial term, and the second term on the right-hand side,
ν�u, that we call the crowd viscous term. This ratio

8Navier–Stokes equations, named after C.L. Navier and G.G.
Stokes, are a set of PDEs that describe the motion of liquids
and gases, based on the fact that changes in momentum of the
particles of a fluid are the product of changes in pressure and
dissipative viscous forces acting inside the fluid. These viscous
forces originate in molecular interactions and dictate how vis-
cous a fluid is, so the Navier–Stokes PDEs represent a dynami-
cal statement of the balance of forces acting at any given region
of the fluid. They describe the physics of a large number of phe-
nomena of academic and economic interest (they are useful to
model weather, ocean currents, water flow in a pipe, motion of
stars inside a galaxy, flow around an airfoil (wing); they are also
used in the design of aircraft and cars, the study of blood flow,
the design of power stations, the analysis of the effects of pollu-
tion, etc.).

defines the Reynolds number9 Re = v̄D/ν, where v̄

and D are a characteristic velocity and length scale,
respectively. When v̄ increases and the Reynolds num-
ber Re exceeds a critical value, the crowd changes
from a laminar to a turbulent state, in which the crowd
flow is complicated and contains eddies.10 To simplify
the problem, we can impose to f the so-called Reynolds
condition, 〈f ·u〉 = ε, where ε is the average rate of en-
ergy injection.

In mechanical Lie algebra terms (see Appendix),
the Navier–Stokes PDE (5) can be written:

ω̇ = −[u,ω] + curl f + ν�ω.

On the other hand, the Euler equation for ideal
crowd flows,

u̇ + u · ∇u + ∇p/ρ = 0, (6)

reads in Lie algebra terms,

ω̇ = −[u,ω], ω = curl u.

Equation (6) is related to the Navier–Stokes PDE (5)
in the same way as the classical Euler equation of a
rigid body (with a fixed point, see Appendix),

π̇ = π × ω,

9Reynold’s number Re is the most important dimensionless
number in fluid dynamics and provides a criterion for determin-
ing dynamical similarity. Where two similar objects in perhaps
different fluids with possibly different flow-rates have similar
fluid flow around them, they are said to be dynamically similar.
Re is the ratio of inertial forces to viscous forces and is used
for determining whether a flow will be laminar or turbulent.
Laminar flow occurs at low Reynolds numbers, where viscous
forces are dominant, and is characterized by smooth, constant
fluid motion, while turbulent flow, on the other hand, occurs at
high Res and is dominated by inertial forces, producing random
eddies, vortices and other flow fluctuations. The transition be-
tween laminar and turbulent flow is often indicated by a criti-
cal Reynold’s number (Recrit), which depends on the exact flow
configuration and must be determined experimentally. Within a
certain range around this point there is a region of gradual tran-
sition where the flow is neither fully laminar nor fully turbulent,
and predictions of fluid behavior can be difficult.
10The first demonstration of the existence of an unstable re-
current pattern in a turbulent hydrodynamic flow was per-
formed in [19], using the full numerical simulation, a 15,422-
dimensional discretization of the 3D Plane Couette turbulence
at the Reynold’s number Re = 400. The authors found an impor-
tant unstable spatiotemporally-periodic solution, a single unsta-
ble recurrent pattern.
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is associated to a more general equation, involving
friction and external angular momentum [13, 14]

π̇ = π × ω + F − νπ, (7)

the “friction operator” ν is symmetric and positive def-
inite. The distributed mass force f, which appeared in
the Navier–Stokes equation (5), is similar to the ex-
ternal angular momentum F, and it is the origin of
the crowd flow motion. The viscous friction ν�u is
analogous to the term −νπ in (7) slowing the rigid
body motion. The similarity becomes especially no-
ticeable if one rewrites the equations in components in
the eigenbasis of the friction operator.

For example, for the Navier–Stokes equation with
periodic boundary conditions one can expand the
crowd vorticity field and the force f into the ordinary
Fourier series. The equations in both of the cases have
the form of Galerkin approximation:

ẋi =
∑
j,k

aijkxj xk +
∑

i

fi − νixi . (8)

The first term corresponds to the Euler equation (6)
and describes the inertial crowd motion. It follows
from the properties of (6) that the divergence of this
term is equal to zero. Furthermore, the Euler equation
of an ideal crowd flow in any dimension, as well as that
of a rigid body, has a quadratic positive definite first
integral, the kinetic energy. Therefore, for f = u = 0,
the vector field on the right-hand side of (8) is tangent
to certain ellipsoids centered at the crowd origin. This
implies that during the crowd evolution defined by this
equation there is neither growth nor decay of solutions.

The term −νixi in (8), corresponding to the crowd
friction, dominates over the constant “crowd pump-
ing” f when considered sufficiently far away from the
crowd origin. Hence, in that remote crowd region, the
crowd motion is directed towards the origin, and an
infinite growth of solutions is impossible. Also, since
the “crowd pumping” f pushes a phase point out of any
neighborhood of the origin, while the friction returns it
from a distance, crowd motion in the system of a rigid
body (7) approaches an intermediate regime-attractor.
For instance, this crowd attractor can be a stable stag-
nation point or a periodic crowd motion, while for suf-
ficiently high dimension of the phase space it can ap-
pear to be a chaotic motion sensitive to the initial con-
ditions.

Here, we recall that chaos theory, of which turbu-
lence is the most extreme form, started in 1963, when

Lorenz from MIT took the Navier–Stokes PDEs (5)
and reduced them into three first-order coupled nonlin-
ear ODEs, to demonstrate the idea of sensitive depen-
dence upon initial conditions and associated chaotic
behavior. The 3D phase-portrait of the Lorenz system
(9) shows the celebrated “Lorenz mask,” a special type
of fractal attractor.11

If the crowd friction (or viscosity) coefficient ν is
high enough, then the crowd attractor will necessar-
ily be a stable equilibrium position. While the param-
eter ν decreases (i.e., the reciprocal parameter, the
Reynolds number Re = 1/ν, increases), bifurcations
of the crowd equilibrium are possible, and the crowd
attractor can become a periodic motion and later a to-
tally “stochastic” one.12

11The Lorenz reduced system of nonlinear ODEs

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz, (9)

where x, y, and z are dynamical variables, constituting the 3D
phase-space of the Lorenz flow; and a, b, and c are the pa-
rameters of the system. Originally, Lorenz used this model to
describe the unpredictable behavior of the weather, where x is
the rate of convective overturning (convection is the process by
which heat is transferred by a moving fluid), y is the horizontal
temperature overturning, and z is the vertical temperature over-
turning; the parameters are: a ≡ P —proportional to the Prandtl
number (ratio of the fluid viscosity of a substance to its ther-
mal conductivity, usually set at 10), b ≡ R—proportional to the
Rayleigh number (difference in temperature between the top and
bottom of the system, usually set at 28), and c ≡ K—a num-
ber proportional to the physical proportions of the region under
consideration (width to height ratio of the box which holds the
system, usually set at 8/3). The Lorenz system (9) has the prop-
erties: (i) symmetry: (x, y, z) → (−x,−y, z) for all values of
the parameters, and (ii) the z-axis (x = y = 0) is invariant (i.e.,
all trajectories that start on it also end on it).

Today, it is well-known that the Lorenz model is a paradigm
for low-dimensional chaos in dynamical systems and this
model or its modifications are widely investigated in connec-
tion with modeling purposes in meteorology, hydrodynamics,
laser physics, superconductivity, electronics, oil industry, chem-
ical and biological kinetics, etc.

The Lorenz mask (3D chaotic attractor) has the following
characteristics: (i) trajectory does not intersect itself in three di-
mensions; (ii) trajectory is not periodic or transient; (iii) general
form of the shape does not depend on initial conditions; and (iv)
exact sequence of loops is very sensitive to the initial conditions.
12The hypothesis that this mechanism is responsible for the phe-
nomenon of turbulenization of a fluid motion for large Reynolds
numbers has been suggested by many authors. In particular, to
normalize the attractor, A.N. Kolmogorov suggested in 1965
considering the “pumping” proportional to the same small pa-
rameter ν as viscosity, and he formulated the following two con-
jectures [14]:
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2.3 Isovorticial 2D crowd flows

Crowd 2D flow differs sharply from crowd 3D flow.
According to Arnold, in the realm of fluid dynam-
ics, the essence of this difference is contained in the
difference in the geometries of the orbits of the co-
adjoint representation (see Appendix) in the two and
3D cases [13, 14]. The character of the first, inertia,
term in the Galerkin approximation (8) (of the Navier–
Stokes PDEs (5)) changes drastically in the passage
from 2D crowd flow flows to three- (or higher-) dimen-
sional ones. The reason lies in the distinctions among
the geometries of the coadjoint orbits of the corre-
sponding diffeomorphism groups. In other words, in
the 2D case the orbits are in some sense closed and
behave like a family of level sets of a function. In the
3D case, the orbits are more complicated; in particu-
lar, they are unbounded (and perhaps dense). The or-
bits of the coadjoint representation of the group of dif-
feomorphisms of a 3D Riemannian manifold can be
described in the following way. Let v1 and v2 be two
vector fields of velocities of a noncompressible crowd
flow in the region D. We say that the fields v1 and
v2 are isovorticial if there is volume-preserving dif-
feomorphism g : D → D which carries every closed
contour γ in D to a new contour such that the cir-
culation of the first field along the original contour is
equal to the circulation of the second field along the

1. The weak conjecture: The maximum of the dimensions of
minimal attractors (attractor is called a minimal attractor if
it does not contain smaller attractors) in the phase space of
the Navier–Stokes PDEs (5) (as well as of their Galerkin
approximations (8)) grows along with the Reynolds number
Re = 1/ν.

2. The strong conjecture: Not only maximum, but also the min-
imum of the dimensions of the minimal attractors mentioned
above increases with the Reynolds number Re. As far as we
know, both of these hypotheses still remain open.

For the Lorenz system, the role of energy is played by a non-
homogeneous quadratic function. The instability in the Lorenz
model is apparently stronger than in the Kolmogorov one. One
can check how the motion along the Lorenz strange attractor
sensitively depends on the initial conditions, while for the Kol-
mogorov model it remains a conjecture. It is proven only that
a stationary flow indeed loses stability as the Reynolds number
Re increases.

In 1970, Ruelle and Takens formulated the conjecture that
turbulence is the appearance of attractors with sensitive depen-
dence of motion on the initial conditions along them in the phase
space of the Navier–Stokes equation [17, 18].

new contour:∮
γ

v1 =
∮

gγ

v2.

The image of an orbit of the coadjoint representa-
tion in a Lie algebra is the set of vector fields isovor-
ticial to the given vector field. We have the following
law of conservation of circulation [13, 14]: The circu-
lation of a field of velocities of an ideal crowd flow
over a closed flow contour does not change when the
contour is carried by the flow to a new position.

Now, for simplicity, we will assume that the region
D of the crowd flow is 2D and oriented. The met-
ric and orientation give a symplectic structure on D;
the field of crowd velocities has divergence zero and
is therefore Hamiltonian. Therefore, this vector field
is given by a Hamiltonian function (many-valued, in
general, if the region D is not simply-connected). The
Hamiltonian function of a field of crowd velocities is
called the stream-function, and is denoted by ψ . Thus,
we have

v = I grad ψ,

where I is the operator of clockwise rotation by 90◦.
The stream function of the commutator of two

crowd vector fields turns out to be the Jacobian (or
the Poisson bracket of Hamiltonian formalism) of the
crowd stream functions of the original vector fields:

ψ[v1,v2] = J (ψ1,ψ2).

The vorticity (or curl) of a 2D crowd field of ve-
locities is the scalar function r such that the integral
around any oriented crowd region σ in D of the prod-
uct of r with the oriented area element is equal to the
circulation of the field of crowd velocities around the
boundary of σ :
∫

σ

r dS =
∮

∂σ

v.

The crowd vorticity can be now computed in terms of
the crowd stream function as

r = −�ψ.

In the simply-connected 2D case, isovorticity of crowd
vector fields v1 and v2 means that the functions r1 and
r2 (the vorticities of these fields) are carried to one an-
other under a suitable volume-preserving diffeomor-
phism. Therefore, if two vector fields are in the image
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of the same orbit of the coadjoint representation, then
a whole series of functionals are equal. For example,
the integrals of all powers k of the crowd vorticity are
∫

D

rk
1 dS =

∫
D

rk
2 dS.

In particular, Euler’s equations of motion of a 2D ideal
crowd flow:

∂tv + v∇v = −∇p, div v = 0,

have an infinite collection of first integrals. For exam-
ple, such a first integral is the integral of any power k

of the crowd vorticity of the field of crowd velocities:

Ik =
∫ ∫

D

(∂xv2 − ∂xv1)
k dx ∧ dy,

where ∧ denotes the antisymmetric wedge product.
Following Arnold [13, 14], we obtain in this way

the following assertions regarding stability of planar
stationary crowd flows:

1. A stationary flow of an ideal crowd flow is distin-
guished from all crowd flows isovorticial to it by
the fact that it is a conditional extremum (or critical
point) of the crowd kinetic energy.

2. If (i) the indicated critical point is actually an ex-
tremum, i.e., a local conditional maximum or min-
imum, (ii) it satisfies certain (generally satisfied)
regularity conditions, and (iii) the extremum is non-
degenerate (the second differential is positive- or
negative-definite), then the stationary crowd flow is
stable (i.e., is a Lyapunov stable equilibrium posi-
tion of Euler’s equation).

3. The formula for the second differential of the
crowd kinetic energy, on the tangent space to the
manifold of crowd fields which are isovorticial to a
given one, has the following form in the 2D case.
Let D be a region in the Euclidean plane with
Cartesian coordinates x and y. Consider a station-
ary crowd flow with stream function ψ = ψ(x, y).
Then we have the quadratic crowd energy form
d2H , given by

d2H = 1

2

∫ ∫
D

(δv)2 + (�ψ/∇�ψ)(δr)2 dx dy,

where δv is the variation of the field of crowd ve-
locities (i.e., a vector of the tangent space indi-
cated above), and δr = curl δv. We remark here

that for a crowd stationary flow, the gradient vec-
tors of the crowd stream function and its Lapla-
cian are collinear. Therefore, the ratio �ψ/∇�ψ

makes sense. Furthermore, in a neighborhood of
every point where the gradient of the crowd vor-
ticity is not zero, the crowd stream function is a
function of the vorticity function.

The above assertions lead to the conclusion that
the positive or negative definiteness13 of the quadratic
crowd energy form d2H is a sufficient condition for
stability of the stationary crowd flow under considera-
tion. The analogous proposition in the linearized fluid
dynamics problem is called Rayleigh’s theorem.

Now, consider N crowd vortices with velocity cir-
culations ki , (i = 1, . . . ,N) around them in the Eu-
clidean plane R

2. Then the crowd vorticity at any mo-
ment will be concentrated at N points, and the crowd
circulations at each of them will remain constant for-
ever. It is convenient to write the evolution of crowd
vortices as a dynamical system in the crowd configu-
ration space for the N -vortex system, the space R

2N

with coordinates zi = (xi, yi) and symplectic struc-
ture

∑
i ki dyi ∧ dxi . Then the crowd vortex evolu-

tion in R
2N will be given by the following Kirchhoff–

Hamiltonian system [20]:

ki ẋi = ∂yi
H, ki ẏi = −∂xi

H.

3 Quantum approach to crowd turbulence

In this section, we model turbulent crowd flows using
models of quantum turbulence in the so-called Bose–
Einstein condensate (BEC), based on modified non-
linear Schrödinger equation. Here, we want to go be-
yond classical turbulence as described in the previous
section using Navier–Stokes equations. Essentially,
we want to achieve two things here: (i) to provide a
cleaner (more controllable and repetitive) simulation
environment for crowd turbulence; and (ii) the ability

13A definite bilinear form is a bilinear form B(x, x) over some
vector space V such that the associated quadratic form Q(x) =
B(x, x) is definite, that is, has a real value with the same sign
(positive or negative) for all nonzero x. According to that sign,
B is called positive definite or negative definite. If Q(x) takes
both positive and negative values, the bilinear form B(x, x) is
called indefinite. If B(x, x) ≥ 0 for all x, then B is said to be
positive semidefinite. Negative semidefinite bilinear forms are
defined similarly.
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to include into this environment a variety of nonlinear
waves (e.g., shock-waves, solitons, breathers, rogue
waves). Here, we are primarily interested in the non-
linear dynamics of the BEC-superfluid, which repre-
sents a controllable and repetitive simulation environ-
ment for crowd turbulence. This implicitly means that,
from purely physical perspective, BEC will represent
our macroscopic quantum crowd superfluid model.14

3.1 Quantum turbulence

Quantum turbulence was firstly discovered in bosonic
superfluid helium (4He) in the 1950s, to be re-dis-
covered in the fermionic superfluid helium (3He) in
1972. However, the field moved in a new direction
starting around the mid 1990s (see [21, 22]). Briefly,
quantum turbulence (see Fig. 3) is comprised of quan-
tized vortices that are definite topological defects aris-
ing from the order parameter appearing in BEC.15

Hence, quantum turbulence is expected to yield a sim-
pler model of turbulence than does classical turbulence
based on the Navier–Stokes PDE (5).

Bose–Einstein condensation is often considered
to be a macroscopic quantum phenomenon (see,
e.g., [23]). This is because bosons occupy the same
single-particle ground state below a critical temper-
ature through Bose–Einstein condensation to form
a macroscopic wave function (order parameter) ex-
tending over the entire system. As a direct result of
the formation of a macroscopic wave function, quan-
tized vortices appear in the Bose-condensed system.
A quantized vortex16 is a vortex of inviscid super-

14We remark here that we prefer to work with the bosonic super-
fluid model rather than the fermionic one, for the reason of sim-
plicity: bosonic models and theories are in general much sim-
pler than the corresponding fermionic ones. Although agents in
a crowd cannot share the same state if we were to treat them
in their entirety, we can ignore the numerous unknowable sub-
tleties of individual differences that do not impact much (if at
all) on overall dynamics of crowd. Thus we argue that a bosonic
model allowing agents to be in the same quantum state is suffi-
cient.
15A Bose–Einstein condensate (BEC) is a state of matter of a
dilute gas of weakly interacting bosons confined in an external
potential and cooled to temperatures very near absolute zero. It
is the most common example of quantum media.
16The studies of quantized vortices originally began in 1950s
using superfluid 4He, and much theoretical, numerical, and ex-
perimental effort has been devoted to the field. Superfluid 3He,
discovered in 1972, presented a system with a variety of quan-
tized vortices characteristic of p-wave superfluids.

Fig. 3 Quantum turbulence (QT) in Bose–Einstein condensa-
tion (BEC)

flow, and any rotational motion of a superfluid is sus-
tained by quantized vortices. A quantized vortex is
stable and well-defined topological defect, very dif-
ferent from classical vortices in a conventional fluid.
Hydrodynamics dominated by quantized vortices is
called quantum superfluid dynamics, and turbulence
comprised of quantized vortices is known as quantum
turbulence (QT) [21, 22].

Liquid 4He enters a superfluid state below the λ

point (Tλ = 2.17 K) with BEC of the 4He atoms.17

The λ transition is closely related to the Bose–Einstein
condensation of 4He atoms, as first proposed by [29].
The Bose-condensed system exhibits the macroscopic
wave-function ψ(x, t) = |ψ(x, t)|eiθ(x,t) as an order

17The characteristic phenomena of superfluidity were experi-
mentally discovered in the 1930s by Kapitza [24] and Allen
et al. [25]. The hydrodynamics of superfluid helium are well
described by the two-fluid model proposed by Landau [26] and
Tisza [27]. According to the two-fluid model, the system con-
sists of an inviscid superfluid (density ρx) and a viscous nor-
mal fluid (density ρn) with two independent velocity fields vx
and vn. The mixing ratio of the two fluids depends on the tem-
perature. As the temperature is reduced below the λ point, the
ratio of the superfluid component increases, and the fluid be-
comes entirely superfluid below about 1 K. The two-fluid model
successfully explained the phenomena of superfluidity, while
it was known in 1940s that superfluidity breaks down when it
flows fast [28] and this phenomenon was not explained through
the two-fluid model. This was later found to be caused by tur-
bulence of the superfluid component due to random motion of
quantized vortices.
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parameter. The superfluid velocity field is given by
vx = (�/m)∇θ , with boson mass m, representing the
potential flow. Since the macroscopic wave function
should be single-valued for the space coordinate x, the
circulation � = ∮

v · d� for an arbitrary closed loop
in the fluid is quantized by the quantum κ = h/m.
A vortex with quantized circulation is called a quan-
tized vortex. Any rotational motion of a superfluid is
sustained only by quantized vortices.18

The idea of quantized circulation was first proposed
by L. Onsager, for a series of annular rings in a ro-
tating superfluid [30]. R. Feynman considered that a
vortex in a superfluid could take the form of a vortex
filament, with the quantized circulation κ and a core of
atomic dimension [31].19 Vinen confirmed Feynman’s
findings experimentally, by showing that the dissipa-
tion arises from mutual friction between vortices and
the normal flow [34–37]. Vinen also succeeded in ob-
serving quantized circulation using vibrating wires in
rotating superfluid 4He [38]. Subsequently, many ex-
perimental studies have examined superfluid turbu-
lence (ST) in thermal counterflow systems, and have
revealed a variety of physical phenomena [39]. Since
the dynamics of quantized vortices are nonlinear and

18A quantized vortex is a topological defect characteristic of a
Bose–Einstein condensate, and is different from a vortex in a
classical viscous fluid. First, the circulation is quantized, which
is contrary to a classical vortex that can have any circulation
value. Second, a quantized vortex is a vortex of inviscid super-
flow. Thus, it cannot decay by the viscous diffusion of vorticity
that occurs in a classical fluid. Third, the core of a quantized vor-
tex is very thin, of the order of the coherence length, which is
only a few angstroms in superfluid 4He. Because the vortex core
is very thin and does not decay by diffusion, it is always possible
to identify the position of a quantized vortex in the fluid. These
properties make a quantized vortex more stable and definite than
a classical vortex.
19Early experimental studies on superfluid hydrodynamics fo-
cused primarily on thermal counterflow. The flow is driven by
an injected heat current, and the normal fluid and superfluid flow
in opposite directions. The superflow was found to become dis-
sipative when the relative velocity between the two fluids ex-
ceeds a critical value [28]. Gorter and Mellink attributed the
dissipation to mutual friction between two fluids, and consid-
ered the possibility of superfluid turbulence. Feynman proposed
a turbulent superfluid state consisting of a tangle of quantized
vortices [31]. Hall and Vinen performed the experiments of sec-
ond sound attenuation in rotating 4He, and found that the mu-
tual friction arises from interaction between the normal fluid and
quantized vortices [32, 33]; second sound refers to entropy wave
in which superfluid and normal fluid oscillate oppositely, and its
propagation and attenuation give the information of the vortex
density in the fluid.

non-local, it has not been easy to quantitatively un-
derstand these observations on the basis of vortex dy-
namics. Schwarz clarified the picture of ST based on
tangled vortices by numerical simulation of the quan-
tized vortex filament model in the thermal counterflow
[40, 41]. However, since the thermal counterflow has
no analogy in conventional fluid dynamics, this study
was not helpful in clarifying the relationship between
ST and classical turbulence (CT). Superfluid turbu-
lence is often called quantum turbulence (QT), which
emphasizes the belief that it is comprised of quantized
vortices [21, 22].

3.2 Bose–Einstein crowd superfluids

Recall from the first section, what happens if we ro-
tate a cylindrical vessel with a classical viscous fluid
inside. Even if the fluid is initially at rest, it starts to ro-
tate and eventually reaches a steady rotation with the
same rotational speed as the vessel. In that case, one
can say that the system contains a vortex that mimics
solid-body rotation. A rotation of arbitrary angular ve-
locity can be sustained by a single vortex.

However, this does not occur in a quantum super-
fluid. Because of quantization of circulation, superflu-
ids respond to rotation, not with a single vortex, but
with a lattice of quantized vortices. Feynman noted
that in uniform rotation with angular velocity Ω the
curl of the superfluid velocity is the circulation per
unit area, and since the curl is 2Ω , a lattice of quan-
tized vortices with number density n0 = curl vx/κ =
2Ω/κ (the “Feynman rule”) arranges itself parallel
to the rotation axis [31]. Such experiments were per-
formed for superfluid 4He: Packard et al. visualized
vortex lattices on the rotational axis by trapping elec-
trons along the cores [42, 43]. This idea has also been
applied to atomic Bose–Einstein condensates. Sev-
eral groups have observed vortex lattices in rotating
BECs20 [44–47].

20Among them, Madison et al. directly observed nonlinear pro-
cesses such as vortex nucleation and lattice formation in a rotat-
ing 87Rb BEC [47]. By sudden application of a rotation along
the trapping potential, an initially axi-symmetric condensate un-
dergoes a collective quadrupole oscillation to an elliptically de-
formed condensate. This oscillation continues for a few hundred
milliseconds with gradually decreasing amplitude. Then the ax-
ial symmetry of the condensate is recovered and vortices enter
the condensate through its surface, eventually settling into a lat-
tice configuration.
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Fig. 4 A typical crowd vortex lattice formation (modified and adapted from [21])

This observation has been reproduced by a simu-
lation of the Gross–Pitaevskii (GP) equation for the
macroscopic wave-function ψ(x, t) = |ψ(x, t)|eiθ(x,t)

in 2D [48, 49] and 3D [50] spaces. In a weakly in-
teracting Bose system, the macroscopic wave-function
ψ(x, t) appears as the order parameter of the Bose–
Einstein condensate (representing our quantum crowd
superfluid model) obeying the GP equation, or the
modified cubic NLS equation (extended by the linear
term −μψ ):

i�∂tψ = − �
2

2m
�ψ + V |ψ |2ψ − μψ. (10)

Writing ψ = |ψ | exp(iθ), the squared amplitude |ψ |2
is the crowd superfluid density and the gradient of
the phase θ gives the crowd superfluid velocity vx =
(�/m)∇θ , corresponding to frictionless flow of the
crowd. This relation causes quantized vortices to ap-
pear with quantized crowd circulation. The only char-
acteristic scale of the GP model is the coherence length
defined by ξ = �/(

√
2mV |ψ |), which determines the

crowd vortex core size. The GP model can explain not
only the crowd vortex dynamics but also phenomena
related to vortex cores, such as crowd reconnection
and nucleation.

A typical 2D numerical simulation of (10) (adapted
from [48, 49]) for the crowd vortex lattice formation
is shown in Fig. 4, where the crowd superfluid den-
sity and the phase are displayed together. The trapping
potential is

Vex = 1

2
mω2[(1 + εx)x

2 + (1 + εy)y
2],

where ω = 2π × 219 Hz, and the parameters εx and
εy describe small deviations from axisymmetry corre-
sponding to experiments [46, 47]. Following [21, 22],
we first prepare an equilibrium condensate trapped in a
stationary potential; the size of the condensate cloud is
determined by the Thomas–Fermi radius RTF. When
we apply a rotation with Ω = 0.7ω, the condensate
becomes elliptic and performs a quadrupole oscilla-
tion [Fig. 4(a)]. Then the boundary surface of the con-
densate becomes unstable and generates ripples that
propagate along the surface [Fig. 4(b)]. As stated pre-
viously, it is possible to identify quantized vortices in
the phase profile also. As soon as the rotation starts,
many vortices appear in the low-density region out-
side of the condensate [Fig. 4(a)]. Since quantized vor-
tices are excitations, their nucleation increases the en-
ergy of the system. Because of the low density in the
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outskirts of the condensate, however, their nucleation
contributes little to the energy and angular momen-
tum.21 Since these vortices outside of the condensate
are not observed in the density profile, they are called
“ghost vortices.” Their movement toward the Thomas–
Fermi surface excites ripples [Fig. 4(b)]. It is not easy
for these ghost vortices to enter the condensate, be-
cause that would increase both the energy and angular
momentum. Only some vortices enter the condensate
cloud to become “real vortices” wearing the usual den-
sity profile of quantized vortices [Fig. 4(d)], eventually
forming a vortex lattice [Fig. 4(e) and (f)]. The number
of vortices forming a lattice is given by “Feynman’s
rule” n0 = 2Ω/κ . The numerical results agree quanti-
tatively with these observations. Here, we remark on
the essence of nonlinear dynamics. The initial state
has no vortices in the absence of rotation. The final
state is a vortex lattice corresponding to rotational fre-
quency Ω . In order to go from the initial to the final
state, the system makes use of as many excitations as
possible, such as vortices, quadruple oscillation, and
surface waves. These experimental and theoretical re-
sults demonstrate typical behavior of quantum fluid
dynamics in atomic BECs [21, 22].

3.3 Kolmogorov energy spectra

The Kolmogorov energy spectra were confirmed for
both decaying [56] and steady [57] QT by the GP
model. The normalized GP equation is

i∂tψ = −1

2
�ψ + V |ψ |2ψ − μψ, (11)

which determines the dynamics of the macroscopic
wave-function ψ(x, t) = f (x, t) exp[iφ(x, t)]. The
crowd superfluid dynamics in the GP model are com-
pressible. The total number of crowd agents is N =∫ |ψ |2 dx and the total crowd energy is

E(t) = 1

N

∫ ∗
ψ

(
−� + V

2
f 2

)
ψ dx,

as represented by the sum of the interaction energy
Eint(t), the quantum energy Eq(t), and the kinetic en-

21Actually the vortex–antivortex pairs are nucleated in the low-
density region. Then the vortices parallel to the rotation are
dragged into the Thomas–Fermi surface, while the antivortices
are repelled to the outskirts.

ergy Ekin(t) [58, 59],

Eint(t) = V

2N

∫
f 4 dx, Eq(t) = 1

N

∫
[∇f ]2 dx,

Ekin(t) = 1

N

∫
[f ∇φ]2dx.

The kinetic energy is further divided into a com-
pressible part Ec

kin(t) due to compressible excitations
and an incompressible part Ei

kin(t) due to vortices.
The Kolmogorov spectrum is expected for Ei

kin(t)
22

[21, 22].

4 A variety of crowd waves

4.1 Crowd shock-waves, solitons, and rogue waves

The general crowd NLS equation (1) was exactly
solved in [60, 62, 63] using the power series expansion
method of Jacobi elliptic functions [64]. Consider the
ψ -function describing a single plane wave, with the
wave number k and circular frequency ω:

ψ(x, t) = φ(ξ) ei(kx−ωt),

with ξ = x − kt and φ(ξ) ∈ R.
(12)

Its substitution into the NLS equation (1) gives the
nonlinear crowd oscillator ODE:

φ′′(ξ) +
[
ω − 1

2
k2

]
φ(ξ) − V φ3(ξ) = 0. (13)

We can seek a solution φ(ξ) for (13) as a linear
function [63]

φ(ξ) = a0 + a1sn(ξ),

22The failure to obtain a Kolmogorov law in the pure GP model
[58, 59] is attributable to the following (see [21, 22]). The sim-
ulations showed that Ei

kin(t) decreases and Ec
kin(t) increases

while the total energy E(t) is conserved because many com-
pressible excitations are created through vortex reconnections
[54, 55] and disturb the Richardson cascade of quantized vor-
tices. Kobayashi et al. overcame these difficulties and obtained
a Kolmogorov spectrum in QT that revealed an energy cascade
[56, 57]. By performing numerical calculations of the Fourier-
transformed GP equation with dissipation, they confirmed the
Kolmogorov spectra for decaying turbulence [56]. To obtain a
turbulent state, they started the calculation from an initial con-
figuration in which the density was uniform and the phase of
the wave-function had a random spatial distribution. The initial
state was dynamically unstable and soon developed turbulence
with many vortex loops. The spectrum Ei

kin(k, t) was then found
to obey the Kolmogorov law.
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where sn(x) = sn(x,m) are Jacobi elliptic sine func-
tions with elliptic modulus m ∈ [0,1], such that
sn(x,0) = sin(x) and sn(x,1) = tanh(x). The solution
of (13) was calculated in [60] to be

φ(ξ) = ±m

√
1

V
sn(ξ), for m ∈ [0,1];

and

φ(ξ) = ±
√

1

V
tanh(ξ), for m = 1.

This gives the exact periodic solution of (1) as [60]

ψ1(x, t) = ±m

√
1

V (w)
sn(x − kt) ei[kx− 1

2 t (1+m2+k2)],

for m ∈ [0,1);
(14)

ψ2(x, t) = ±
√

1

V (w)
tanh(x − kt) ei[kx− 1

2 t (2+k2)],

for m = 1,

(15)

where (14) defines the general solution, while (15) de-
fines the crowd envelope shock-wave23 (or, “dark soli-
ton”) solution of the crowd NLS equation (1).

Alternatively, if we seek a solution φ(ξ) as a linear
function of Jacobi elliptic cosine functions, such that
cn(x,0) = cos(x) and cn(x,1) = sech(x),24

φ(ξ) = a0 + a1cn(ξ),

23A shock wave is a type of fast-propagating nonlinear distur-
bance that carries energy and can propagate through a medium
(or field). It is characterized by an abrupt, nearly discontinu-
ous change in the characteristics of the medium. The energy
of a shock wave dissipates relatively quickly with distance and
its entropy increases. On the other hand, a soliton is a self-
reinforcing nonlinear solitary wave packet that maintains its
shape while it travels at constant speed. It is caused by a can-
celation of nonlinear and dispersive effects in the medium (or
field).
24A closely related solution of an anharmonic oscillator ODE:

φ′′(s) + φ(s) + φ3(s) = 0

is given by

φ(s) =
√

2m

1 − 2m
cn

(√
1 + 2m

1 − 2m
s, m

)
.

then we get [60]

ψ3(x, t) = ∓m

√
1

V (w)
cn(x −kt)ei[kx− 1

2 t (1−2m2+k2)],

for m ∈ [0,1);
(16)

ψ4(x, t) = ∓
√

1

V (w)
sech(x − kt) ei[kx− 1

2 t (k2−1)],

for m = 1,

(17)

where (16) defines the general solution, while (17)
defines the crowd envelope solitary-wave (or “bright
soliton”) solution of the crowd NLS equation (1).

In all four solution expressions (14), (15), (16),
and (17), the adaptive crowd potential V (w) is yet
to be calculated using either unsupervised Hebbian
learning, or supervised Levenberg–Marquardt algo-
rithm (see, e.g., [11]). In this way, the NLS equa-
tion (1) becomes a quantum neural network [10]. Any
kind of numerical analysis can be easily performed us-
ing above closed-form crowd solutions ψi(x, t) (i =
1, . . . ,4) as initial conditions.

In addition, two new wave-solutions of the crowd
NLS equation (1) have been recently provided in [65],
in the form of rogue waves,25 using the deformed Dar-
boux transformation method developed in [68, 69]:
1. The one-rogon crowd solution:

ψ1rogon(x, t)

= α

√
1

2V

[
1 − 4(1 + α2t)

1 + 2α2(x − kt)2 + σ 2α4t2

]

× ei[kx+1/2(α2−k2)t], V > 0, (18)

where α and k denote the crowd scaling and gauge.
2. The two-rogon crowd solution:

ψ2rogon(x, t)

= α

√
1

2V

[
1 + P2(x, t) + iQ2(x, t)

R2(x, t)

]

× ei[kx+1/2(α2−k2)t], V > 0, (19)

25Rogue waves are also known as freak waves, monster waves,
killer waves, giant waves, and extreme waves. They are found
in various media, including optical fibers [66]. The basic rogue
wave solution was first presented by Peregrine [67] to de-
scribe the phenomenon known as Peregrine soliton (or Peregrine
breather).



298 V.G. Ivancevic, D.J. Reid

Fig. 5 Hypothetical
crowd-collision scenario of
the Manakov 2-soliton (23).
Due to symmetry of the
Manakov system, the two
crowds (ψ and σ ) can
exchange their roles

where P2,Q2,R2 are certain polynomial functions
of x and t .

Both rogon crowd solutions can be easily made
adaptive by introducing a set of “synaptic weights” for
nonlinear data fitting, in the same way as before.

4.2 Collision of two crowds

Next, a bidirectional quantum neural network resem-
bling the strong crowd coupling model (3) has been
formulated in [60] as a self-organized system of two
coupled NLS equations:

Red NLS: i∂tσ = −1

2
∂xxσ + V (w)

× (|σ |2 + |ψ |2)σ, (20)

Blue NLS: i∂tψ = −1

2
∂xxψ + V (w)

× (|σ |2 + |ψ |2)ψ. (21)

In this coupled model, the σ -NLS (20) governs the
(x, t)-evolution of the red crowd, which plays the role
of a nonlinear coefficient in the blue crowd (21); the
ψ -NLS (21) defines the (x, t)-evolution of the blue
crowd, which plays the role of a nonlinear coeffi-
cient in the red crowd (20). The purpose of this cou-
pling is to generate the crowd leverage effect (similar
to stock leverage effect) in which stock volatility is
(negatively) correlated to stock returns. This bidirec-
tional associative memory effectively performs quan-
tum neural computation [10], by giving a spatiotempo-
ral and quantum generalization of Kosko’s BAM fam-
ily of neural networks [70, 71]. In addition, the shock-
wave and solitary-wave nature of the coupled NLS
equations may describe brain-like effects frequently
occurring in crowd dynamics: propagation, reflection
and collision of shock and solitary waves (see [61]).

The coupled crowd NLS-system (20)–(21), with-
out an embedded w-learning (i.e., for constant V ),
actually defines the well-known Manakov system,26

proven by Manakov in 1973 [72] to be completely in-
tegrable, by the existence of infinite number of involu-
tive integrals of motion. Manakov’s own method was
based on the Lax pair representation.27 It admits both
“bright” and “dark” soliton solutions. The simplest so-
lution of (20)–(21), the so-called Manakov bright 2-
soliton (see Fig. 5), has the form resembling that of
the sech-solution (17) (see [75–81]), and is formally
defined by

ψxol(x, t)

= 2b c sech
[
2b(x + 4at)

]
e−2i(2a2t+ax−2b2t), (23)

where ψxol(x, t) = ( σ(x,t)

ψ(x,t)

)
, c = (c1, c2)

T is a unit

vector such that |c1|2 + |c2|2 = 1. Real-valued param-
eters a and b are some simple functions of (V , k),

26Manakov system has been used to describe the interaction
between wave packets in dispersive conservative media, and
also the interaction between orthogonally polarized components
in nonlinear optical fibres (see, e.g., [73, 74] and references
therein).
27The Manakov system (20)–(21) has the following Lax pair
[82] representation:

∂xφ = Mφ and ∂tφ = Bφ,

or ∂xB − ∂tM = [M,B], (22)

with

M(λ) =
( −iλ ψ1 ψ2

−ψ1 iλ 0
−ψ2 0 iλ

)

and

B(λ) = −i

⎛
⎝ 2λ2 − |ψ1|2 − |ψ2|2 2iψ1λ − ∂xψ1 2iψ2λ − ∂xψ2

−2iψ∗
1 λ − ∂xψ∗

1 −2λ2 + |ψ1|2 ψ∗
1 ψ2

−2iψ∗
2 λ − ∂xψ∗

2 ψ1ψ∗
2 −2λ2 + |ψ2|2

⎞
⎠.
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which can be determined by the Levenberg–Marquardt
algorithm.

4.3 Quantum linear crowd waves

In the case of very weak crowd heat potential
V (w) � 1, we have V (ψ) → 0 and, therefore, (1)
can be approximated by a quantum-like crowd wave
packet. It is defined by a continuous superposition of
de Broglie’s plane waves, “physically” associated with
a free quantum particle of unit mass. This linear wave
packet, given by the time-dependent complex-valued
wave function ψ = ψ(x, t), is a solution of the linear
Schrödinger equation with zero potential energy and
the crowd Hamiltonian operator Ĥ . This equation can
be written as

i∂tψ = Ĥψ, where Ĥ = −1

2
∂xx. (24)

Thus, we consider the ψ -function describing a sin-
gle de Broglie’s plane wave, with the wave number k,
linear momentum p = k, wavelength λk = 2π/k, an-
gular frequency ωk = k2/2, and oscillation period
Tk = 2π/ωk = 4π/k2. It is defined by (compare with
[83–85])

ψk(x, t) = Aei(kx−ωkt)

= Aei(kx− k2
2 t)

= A cos

(
kx − k2

2
t

)
+ Ai sin

(
kx − k2

2
t

)
,

(25)

where A is the amplitude of the wave, the angle (kx −
ωkt) = (kx − k2

2 t) represents the phase of the wave ψk

with the crowd phase velocity: vk = ωk/k = k/2.
The space-time wave function ψ(x, t) that satisfies

the linear Schrödinger equation (24) can be decom-
posed (using Fourier’s separation of variables) into the
spatial part φ(x), and the temporal part e−iωt as

ψ(x, t) = φ(x) e−iωt = φ(x) e−iEt = φ(x) e− i
2 k2t ,

where Planck’s energy quantum of the crowd wave ψk

is given by: Ek = ωk = 1
2k2.

The spatial part, representing stationary (or, ampli-
tude) wave function, φ(x) = Aeikx , satisfies the crowd

harmonic oscillator, which can be formulated in sev-
eral equivalent forms:

φ′′ + k2φ = 0, φ′′ +
(

ωk

vk

)2

φ = 0,

φ′′ + 2Ekφ = 0.

(26)

From the plane-wave expressions (25), we have:
ψk(x, t) = Aei(px−Ekt)—for the wave going to the
“right” and ψk(x, t) = Ae−i(px+Ekt)—for the wave
going to the “left.”

The general solution to (24) is formulated as a lin-
ear combination of de Broglie’s planar waves (25),
comprising the crowd wave-packet:

ψ(x, t) =
n∑

i=0

ciψki
(x, t), (with n ∈ N). (27)

Its absolute square, |ψ(x, t)|2, represents crowd’s
probability density function at a time t .

The crowd group velocity is given by: vg = dωk/dk.
It is related to the crowd phase velocity vk : vg =
vk − λk dvk/dλk . Closely related is the center of the
crowd wave-packet (the point of maximum crowd am-
plitude), given by: x = t dωk/dk.

The following quantum-motivated assertions can
be stated:

1. The total energy E of an crowd wave-packet is (in
the case of similar plane waves) given by Planck’s
superposition of the energies Ek of n individual
agents’ waves: E = nωk = n

2 k2, where L = n de-
notes the angular momentum of the crowd wave-
packet, representing the shift between its growth
and decay, and vice versa.

2. The average energy 〈E〉 of an crowd wave-packet
is given by Boltzmann’s partition function:

〈E〉 =
∑∞

n=0 nEke− nEk
bT

∑∞
n=0 e− nEk

bT

= Ek

e
Ek
bT − 1

,

where b is the Boltzmann-like kinetic constant and
T is the crowd “temperature.”

3. The energy form of the Schrödinger equation (24)
reads: Eψ = i∂tψ .

4. The eigenvalue equation for the crowd Hamiltonian
operator Ĥ is the stationary Schrödinger equa-
tion:

Ĥφ(x) = Eφ(x), or Eφ(x) = −1

2
∂xxφ(x),
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which is just another form of the harmonic oscilla-
tor (26). It has oscillatory solutions of the form:

φE(x) = c1ei
√

2Ek x + c2e−i
√

2Ek x,

called energy eigen-states with energies Ek and de-
noted by: ĤφE(x) = EkφE(x).

Now, given some initial crowd wave function,
ψ(x,0) = ψ0(x), a solution to the initial-value prob-
lem for the linear Schrödinger equation (24) is, in
terms of the pair of Fourier transforms (F , F −1),
given by (see [84])

ψ(x, t) = F −1[e−iωt F (ψ0)
]

= F −1[e−i k2
2 t F (ψ0)

]
. (28)

For example (see [84]), suppose we have an ini-
tial crowd wave-function at time t = 0 given by the
complex-valued Gaussian function:

ψ(x,0) = e−ax2/2eikx,

where a is the width of the Gaussian, while p is the
average momentum of the wave. Its Fourier transform,
ψ̂0(k) = F [ψ(x,0)], is given by

ψ̂0(k) = e− (k−p)2

2a√
a

.

The solution at time t of the initial value problem is
given by

ψ(x, t) = 1√
2πa

∫ +∞

−∞
ei(kx− k2

2 t) e− a(k−p)2

2a dk,

which, after some algebra becomes

ψ(x, t) = exp(− ax2−2ixp+ip2t
2(1+iat)

)√
1 + iat

, (with p = k).

As a simpler example,28 if we have an initial crowd
wave-function given by the real-valued Gaussian func-

28An example of a more general Gaussian wave-packet solution
of (24) is given by

ψ(x, t) =
√ √

a/π

1 + iat

× exp

(− 1
2 a(s − s0)

2 − i
2 p2

0 t + ip0(s − s0)

1 + iat

)
,

tion,

ψ(x,0) = e−x2/2

4
√

π
,

the solution of (24) is given by the complex-valued

ψ -function,

ψ(x, t) = exp(− x2

2(1+it) )

4
√

π
√

1 + it
.

From (28), it follows that a stationary crowd wave-

packet is given by:

φ(x) = 1√
2π

∫ +∞

−∞
eikx ψ̂(k) dk, where

ψ̂(k) = F
[
φ(x)

]
.

As |φ(x)|2 is the stationary crowd PDF, we can calcu-

late the crowd expectation values and the wave num-

ber of the whole crowd wave-packet, consisting of n

measured plane waves, as

〈x〉 =
∫ +∞

−∞
x
∣∣φ(x)

∣∣2
dx and

〈k〉 =
∫ +∞

−∞
k
∣∣ψ̂(k)

∣∣2
dk.

(29)

The recordings of n individual crowd plane waves

(25) will be scattered around the mean values (29).

The width of the distribution of the recorded x- and

k-values are uncertainties �x and �k, respectively.

where s0,p0 are initial stock-price and average momentum,
while a is the width of the Gaussian. At time t = 0, the “parti-
cle” is at rest around s = 0, its average momentum p0 = 0. The
wave function spreads with time while its maximum decreases
and stays put at the origin. At time −t , the wave packet is the
complex-conjugate of the wave-packet at time t .
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They satisfy the crowd indeterminacy relation:29

�x �k ≥ �

2
, (30)

which implies the corresponding indeterminacy rela-
tion for the total crowd energy and time:

�E �t ≥ �.

5 Conclusion

In this paper, we gave a formal mathematical and
physical description of nonlinear phenomena in dy-
namics of human crowds. While Helbing discovered
a phenomenon of crowd turbulence (see Introduction),
we felt that equally important would be to model re-
lated but different crowd phenomena, such as solitons,
rogue waves, and shock waves. Our proposal, includ-
ing both classical and quantum description of crowd
turbulence, as well as both nonlinear and quantum
crowd waves, provides a new basis for studying all
these nonlinear phenomena in crowds.

Appendix: Basic Lie algebra mechanics

A manifold M is a topological space that on a small
scale (locally) resembles the Euclidean space. Mani-
folds are usually endowed with a differentiable struc-
ture that allows one to do calculus and differential
equations, as well as a Riemannian metric that allows
one to measure distances and angles. For example,
Riemannian manifolds are the configuration spaces for
Lagrangian mechanics, while symplectic manifolds
are the phase spaces in the Hamiltonian mechanics.
A diffeomorphism is an invertible function that maps

29Note that an improved version of the quantum crowd inequal-
ity (30) uses the Shannon entropy Hx of the random crowd dis-
tribution, given by

Hx = −
∫

|ψ(x)|2 logn |ψ(x)|2 dx,

which is a measure of the uncertainty in a quantum variable de-
scribed by the crowd probability density function. This implies
the logarithmic crowd indeterminacy relation:

logn(�x�k) > 0,

for which the lower bound is not clear, though.

one smooth (differentiable) manifold to another, such
that both the function and its inverse are smooth.

A Lie group G is a smooth manifold M that has at
the same time a group G-structure consistent with its
manifold M-structure in the sense that group multipli-
cation μ : G × G → G, (g,h) �→ gh and the group
inversion ν : G → G, g �→ g−1 are smooth maps.
A point e ∈ G is called the group identity element.

A Lie group can act on a smooth manifold M by
moving the points of M , denoted by G × M → M .
Group action on a manifold defines the orbit of a point
m on a manifold M , which is the set of points on
M to which m can be moved by the elements of a
Lie group G. The orbit of a point m is denoted by
Gm = {g · m|g ∈ G}.

Let G be a real Lie group. Its Lie algebra g is the
tangent space T Ge to the group G at the identity e

provided with the Lie bracket (commutator) operation
[X,Y ], which is bilinear, skew-symmetric, and sat-
isfies the Jacobi identity (for any three vector fields
X,Y,Z ∈ g):

[[X,Y ],Z] = [
X, [Y,Z]] − [

X, [Y,Z]].
Note that in Hamiltonian mechanics, Jacobi identity is
satisfied by Poisson brackets, while in quantum me-
chanics it is satisfied by operator commutators.

For example, G = SO(3) is the group of rotations
of 3D Euclidean space, i.e., the configuration space of
a rigid body fixed at a point. A motion of the body is
then described by a curve g = g(t) in the group SO(3).
Its Lie algebra g = so(3) is the 3D vector space of an-
gular velocities of all possible rotations. The commu-
tator in this algebra is the usual vector (cross) product.

A Lie group G acts on itself by left and right trans-
lations: every element g ∈ G defines diffeomorphisms
of the group onto itself (for every h ∈ G):

Lg : G → G, Lgh = gh;
Rg : G → G, Rgh = hg.

The induced maps of the tangent spaces are denoted
by

Lg∗ : T Gh → T Ggh, Rg∗ : T Gh → T Ghg.

The diffeomorphism Rg−1Lg is an inner automor-
phism of the group G. It leaves the group identity e
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fixed. Its derivative at the identity e is a linear map
from the Lie algebra g to itself:

Adg : g → g, Adg(Rg−1Lg)∗e

is called the adjoint representation of the Lie group G.
Referring to the previous example, a rotation ve-

locity ġ of the rigid body (fixed at a point) is a tangent
vector to the Lie group G = SO(3) at the point g ∈ G.
To get the angular velocity, we must carry this vector
to the tangent space T Ge of the group at the identity,
i.e., to its Lie algebra g = so(3). This can be done in
two ways: by left and right translation, Lg and Rg . As
a result, we obtain two different vector fields in the Lie
algebra so(3):

ωc = Lg−1∗ġ ∈ so(3)

and

ωx = Rg−1∗ġ ∈ so(3),

which are called the “angular velocity in the body” and
the “angular velocity in space,” respectively.

Now, left and right translations induce operators on
the cotangent space T ∗Gg dual to Lg∗ and Rg∗, de-
noted by (for every h ∈ G):

L∗
g : T ∗Ggh → T ∗Gh, R∗

g : T ∗Ghg → T ∗Gh.

The transpose operators Ad∗
g : g → g satisfy the rela-

tions Ad∗
gh = Ad∗

hAd∗
g (for every g,h ∈ G) and consti-

tute the coadjoint representation of the Lie group G.
The coadjoint representation plays an important role
in all questions related to (left) invariant metrics on
the Lie group. According to Kirillov, the orbit of any
vector field X in a Lie algebra g in a coadjoint rep-
resentation Ad∗

g is itself a symplectic manifold and,
therefore, a phase space for a Hamiltonian mechanical
system.

A Riemannian metric on a Lie group G is called
left-invariant if it is preserved by all left translations
Lg , i.e., if the derivative of left translation carries ev-
ery vector to a vector of the same length. Similarly, a
vector field X on G is called left-invariant if (for every
g ∈ G) L∗

gX = X.
Again referring to the previous example of the rigid

body, the dual space g∗ to the Lie algebra g = so(3) is
the space of angular momenta π . The kinetic energy
T of a body is determined by the vector field of an-
gular velocity in the body and does not depend on the

position of the body in space. Therefore, kinetic en-
ergy gives a left-invariant Riemannian metric on the
rotation group G = SO(3).
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