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Abstract Under the assumption that the incidence

rate of the infection and the removal rate of the in-

fective by cytotoxic T lymphocytes are nonlinear, we

study the global dynamics of a HIV infection model

with the response of the immune system using char-

acteristic equation, the Fluctuation lemma, and the di-

rect Lyapunov method. The existence of a threshold

parameter, i.e., the basic reproduction number or basic

reproductive ratio is established and the global stabil-

ity of the equilibria is discussed.
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1 Introduction

A large number of mathematical models have been
proposed in [2, 3, 20–24] and have enhanced the
progress in understanding the HIV infection since
the identification of human immunodeficiency virus
(HIV) over 20 years ago. These models have been used
to explain different phenomena. For more references
and some detailed mathematical analysis on such
models, we refer to the survey papers by Kirschner
[15] and Perelson and Nelson [22].

Most existing mathematical models for HIV infec-
tion are described by systems of ordinary differential
equations (ODEs) (see, e.g. [2, 3, 14, 20, 22, 25]).
Considering Cytotoxic T Lymphocytes (CTLs) are T
cells which are capable of recognizing and killing cells
infected with HIV and are usually not susceptible to
infection since they generally lack the CD4+ recep-
tor, Cuipe et al. in [7] proposed an ODE modeling
the effect of the CTL population on HIV-1 reproduc-
tion. The model includes the response of the immune
system and it accounted for uninfected cells, infected
cells, virus, and CTL dynamics

⎧
⎪⎪⎨

⎪⎪⎩

x′ = μ − kx − αxv,

y′ = αxv − ry − βyz,

v′ = py − dv,

z′ = δy − qz,

(1.1)

where x, y, v, and z represent CD4+ cells that are sus-
ceptible to infection, productively infected cells, virus,
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and the effector population of CTLs, respectively. The
constant μ represents a source of susceptible cells, and
k is their death rate; α is the infection rate constant
and infection is assumed to occur at a rate propor-
tional to the product of the concentration of virus and
target cells, an assumption which is valid for a well-
mixed system with relatively high concentrations of
each product; r is the infected cell death rate, β deter-
mines the rate of killing of productively infected cells
by CTLs; p is the rate of virus production by infected
cells and d is the clearance rate of virus; effectors are
generated in the presence of infected cells at rate δy

and die at rate q per cell.
Based on system (1.1), low steady state viral load

is checked in [5]. A Bayesian technique was used in
[1] to estimate the parameters of the model (1.1) and
the parameters are determined. The local stability of
(1.1) is studied in [7] and some complex sufficient con-
ditions ensuing the local stability of the noninfected
equilibrium as well as the infected equilibrium are ob-
tained by Routh–Hurwitz criterion.

Obviously, an underlying assumption in such an
ODE model (1.1) is that infection of cells by virions is
instantaneous. In fact, in a real situation, there may be
a lag between the time target cells are contacted by the
virus particles and the time the contacted cells become
actively affected (the time that the contacting virions
enter cells). In general, delay-differential equations ex-
hibit much more complicated dynamics than ordinary
differential equations since a time delay could cause
a stable equilibrium to become unstable and cause the
populations to fluctuate. Hence, time delays have been
incorporated into HIV infection models by some au-
thors [8, 11, 13, 16–19, 23, 26, 28].

In this paper, we introduce a time delay in the
model (1.1) by assuming that there is a lag between
the time target cells are contacted by the virus parti-
cles and the time the contacted cells become actively
infected (including the steps of successful attachment
of virus to the cell, and penetration of virus into the
cell). Precisely, the contacted cells become actively in-
fected at time t is generated by the infection of a cell y

at time t − τ , where τ > 0 is constant. We assume that
there is a death rate factors of the form e−mτ (m > 0)
which is the surviving rate of each target cell to get in-
fected. Instead of bilinear incidence rate, two nonlin-

ear incidence rates are used in our model. The model
then becomes
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′(t) = μ − kx(t) − αx(t)f (v(t)),

y′(t) = αe−mτx(t − τ)f (v(t − τ)) − ry(t)

− βy(t)h(z(t)),

v′(t) = py(t) − dv(t),

z′(t) = δy(t) − qz(t),

(1.2)

where all parameters are positive. The function f (ξ)

denotes the force of infection by the infective at den-
sity ξ , and h(ξ) denotes the force of CTLs to kill in-
fected cells at density ξ . The function f (ξ) and h(ξ)

are locally Lipschitz on [0,∞) and satisfy

(A1) f (0) = 0, the derivatives f ′(ξ) > 0 and
(
f (ξ)

ξ
)′ ≤ 0 in (0,∞);

(A2) The derivative h′(ξ) > 0 with h(0) = 0 in
[0,∞).

We note that our incidence rates are sufficiently
general to encompass many forms of commonly used
incidence rate, including simple mass action and satu-
ration incident rate. In fact, some virus infection model
with nonlinear incident rates have been introduced in
[4, 9, 27].

The initial conditions associated with system (1.2)
are

x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ),

z(θ) = φ4(θ), φi(θ) ≥ 0, θ ∈ [−τ,0],
i = 1,2,3,4,

(1.3)

where φ = (φ1, φ2, φ3, φ4) ∈ C([−τ,0],R
4
0+), the

Banach space of continuous functions mapping the in-
terval [−τ,0] into R

4
0+ equipped with the sup-norm.

Here, R
4
0+ = {(x1, x2, x3, x4) : xi ≥ 0, i = 1,2,3,4}.

It is well known by the fundamental theory of func-
tional differential equations [10] that system (1.2) has
a unique solution (x(t), y(t), v(t), z(t)) satisfying the
initial conditions (1.3). By a similar argument as in
[28, 29], it is easy to show that all solutions of sys-
tem (1.2) with initial conditions (1.3) are defined on
[0,+∞) and have the following properties: (i) x(t),
y(t), v(t) and z(t) are all non-negative for all t ≥ 0;
(ii) There exists an M > 0 such that x(t) < M , y(t) <

M , v(t) < M , and z(t) < M for sufficiently large time
t ; (iii) x(t), y(t) and v(t) are all positive for all t ≥ 0
if φi(0) > 0 (i = 1,2,3).

The purpose of this study is to obtain the sufficient
conditions ensuring the global stability of the nonin-
fected equilibrium as well as the infected equilibrium
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of system (1.2) and (1.3). The paper is organized as
follows: in Sect. 2, we will study the stability of the
noninfected equilibrium. In Sect. 3, we prove that the
basic productive number R0 > 1 is a threshold value
ensuring the global stability of the infected equilib-
rium. The conclusion and discussion are included in
Sect. 4.

2 Stability of the noninfected equilibrium

Let

R0 = αpμe−mτf ′(0)

krd
. (2.1)

R0 is called the basic reproductive number which ex-
plained as the average number of secondary virus pro-
duced from a single virus for system (1.2). For sys-
tem (1.2), there exists a noninfected equilibrium E0 =
(
μ
k
,0,0,0). Now we show that R0 > 1 is a sufficient

condition ensuring the existence of the infected equi-
librium (positive equilibrium) E1 = (x∗, y∗, v∗, z∗).
By a simple calculation, we know that the existence of
the infected equilibrium is equivalent to the function

L(v) = αμe−mτf (v)

k + αf (v)
− rd

p
v − βdv

p
h

(
δdv

pq

)

(2.2)

has a positive zero point. In fact, since

L(0) = 0, L′(0) = rd

p
(R0 − 1) > 0,

L(+∞) = −∞,

it follows from the continuity of the function L(v)

in [0,∞) that L(v) has at least a positive zero point.
Hence, we see that (1.2) at least has an infected equi-
librium E1 = (x∗, y∗, v∗, z∗) when R0 > 1.

The characteristic equation associates with the
equilibrium E0 is

(λ + k)(λ + q)

(

λ2 + (r + d)λ + rd

− αpμf ′(0)e−(λ+m)τ

k

)

= 0. (2.3)

The stability of E0 is determined by the sign of real
parts of the roots of (2.3): if all roots of (2.3) have
negative real parts, then E0 is asymptotically stable; if
there is at least one root of (2.3) has positive real part,

then E0 is unstable. Obviously, the stability of E0 is
totally determined by the roots of

λ2 + (r + d)λ + rd − αpμf ′(0)e−(λ+m)τ

k
= 0. (2.4)

Note that (2.4) can be written as

R0 = eλτ

(
λ

r
+ 1

)(
λ

d
+ 1

)

. (2.5)

We claim that all roots of (2.5) have negative real parts
under the condition R0 < 1. By way of contradiction,
if λ = σ + iω (σ > 0) is a root of (2.5). Taking moduli
in both sides of (2.5) gives

R0 = eστ

√
[(

σ

r
+ 1

)2

+ ω2

r2

][(
σ

d
+ 1

)2

+ ω2

d2

]

> 1.

It contradicts the fact R0 < 1, showing that all roots of
(2.4) remain in the left plane for all τ > 0 as long as
R0 < 1.

On the other hand, when R0 > 1, (2.4) has a pos-
itive root. This can be easily seen by looking at the

function H(u) = u2 +(r +d)u+rd − αpμf ′(0)e−(u+m)τ

k
,

which satisfies that H(0) = rd(1 − R0) < 0 and
H(+∞) = +∞.

From the above analysis, we see that R0 = 1 plays
a role of threshold: if R0 < 1, the non-infected equi-
librium E0 is locally asymptotically stable; if R0 > 1,
the noninfected equilibrium E0 is unstable. Indeed,
we can show that if R0 < 1, the noninfected equilib-
rium is global asymptotically stable. To prove this, we
only need to show that E0 is also globally attractive if
R0 < 1.

Following the convention, we use the following no-
tations: for a continuous and bounded function l(t) de-
fined on [0,∞),

l∞ def= lim sup
t→∞

l(t) and l∞
def= lim inf

t→∞ l(t).

Now, let (x(t), y(t), v(t), z(t)) be any solution of (1.2)
and (1.3). By the previous arguments, we know

0 ≤ x∞ ≤ x∞ < ∞; 0 ≤ y∞ ≤ y∞ < ∞;
0 ≤ v∞ ≤ v∞ < ∞; and 0 ≤ z∞ ≤ z∞ < ∞.

(2.6)

By the fluctuation lemma in [12], there is a sequence
{tn} with tn → ∞ as n → ∞ such that

x(tn) → x∞, x′(tn) → 0 as n → ∞.
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Substituting the sequence {tn} into the first equation of
(1.2) and taking limit give

kx∞ ≤ μ. (2.7)

Applying a similar argument to the second and third
equations of (1.2), we have

ry∞ ≤ αe−mτx∞f (v∞), (2.8)

dv∞ ≤ py∞, (2.9)

and

qz∞ ≤ δy∞. (2.10)

Combining (2.7)–(2.9) with Assumption (A1), we ob-
tain

ry∞ ≤ αpμe−mτf ′(0)y∞

kd
.

If y∞ > 0, then the above inequality yields

r ≤ αpμe−mτf ′(0)

kd
,

contradicting R0 < 1. Therefore, y∞ = 0, imply-
ing limt→∞ y(t) = y∞ = y∞ = 0 by (2.6). By (2.9)
and (2.10), this in turn implies v∞ = z∞ = 0, and
limt→∞ v(t) = v∞ = v∞ = 0, limt→∞ z(t) = z∞ =
z∞ = 0 by (2.6). Finally, applying the theory of
asymptotically autonomous system in [6] to the first
equation of (1.2), we conclude that limt→∞ x(t) = μ

k
.

Summarizing the above, we have proved the fol-
lowing theorem.

Theorem 2.1 Let R0 be the basic reproduction num-
ber given by (2.1). The following two statements are
true.

(i) If R0 < 1, then the noninfected equilibrium E0 is
globally asymptotically stable.

(ii) If R0 > 1, then the noninfected equilibrium E0 is
unstable.

3 Stability of the infected equilibrium

Let

F(w) = f (v∗w)

f (v∗)

and

g(u) = u − 1 − lnu.

We note that g : R+ 	→ R+ has the strict global mini-
mum g(1) = 0. In order to prove the globally asymp-
totical stability of the infected equilibrium, we need
the following lemma.

Lemma 3.1 If f (ξ) satisfies Assumption (A1), then

g(F (w)) ≤ g(w) for w > 0

with equality only if w = 1.

Proof Since F(1) = 1 and the derivative of g(w)

has the same sign as w − 1 for w > 0, we only
need to show that w ≤ F(w) ≤ 1 for w ∈ (0,1) and
1 ≤ F(w) ≤ w for w ∈ [1,∞). The proofs of both
cases are similar so we only consider the case where
w ∈ (0,1). Note that w ≤ F(w) ≤ 1 is equivalent to
f (v∗)

v∗ ≤ f (v∗w)
v∗w ≤ f (v∗)

v∗w for w ∈ (0,1). This fact is easy
to verify from Assumption (A1) and we complete the
proof. �

Theorem 3.1 If R0 > 1, then E1 is globally asymp-
totically stable if φi(0) > 0 (i = 1,2,3).

Proof Note that

μ = kx∗ + αx∗f (v∗), (3.1)

αe−mτx∗f (v∗) = ry∗ + βy∗h(z∗), (3.2)

py∗ = dv∗ (3.3)

and

δy∗ = qz∗. (3.4)

The solution of (1.2) associated with (1.3) and
φi(0) > 0 (i = 1,2,3) are bounded above and x, y, v

bounded away from zero implies the following func-
tions:

V1(t) = g

(
x(t)

x∗

)

, V2(t) = g

(
y(t)

y∗

)

,

V3(t) = g

(
v(t)

v∗

)

,

V4(t) =
∫ z(t)

z∗
[h(ξ) − h(z∗)]dξ,

V5(t) =
∫ t

t−τ

g

(
x(s)f (v(s))

x∗f (v∗)

)

ds

(3.5)
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are defined for all t ≥ 0.
Define

V (t) = x∗V1(t) + emτ y∗V2(t) + αx∗f (v∗)
d

V3(t)

+ βemτ

δ
V4 + αx∗f (v∗)V5(t). (3.6)

Obviously, V (t) ≥ 0 with equality if and only if x(t)
x∗ =

y(t)
y∗ = v(t)

v∗ = z(t)
z∗ = 1 and v(s)

v∗ = 1 for s ∈ [t − τ, t].

For clarity, the derivatives of V1, V2, V3, V4 and
V5, will be calculated separately and then combined to
obtain V ′(t).

V ′
1(t) = 1

x∗

(

1 − x∗

x(t)

)

x′(t)

= 1

x∗

(

1 − x∗

x(t)

)

(μ − kx(t) − αx(t)f (v(t))).

Using (3.1) to replace μ gives

V ′
1(t) = 1

x∗

(

1 − x∗

x(t)

)

[k(x∗ − x(t)) + α(x∗f (v∗) − x(t)f (v(t)))]

= −k(x(t) − x∗)2

x∗x(t)
+ αf (v∗)

(

1 − x∗

x(t)
− x(t)f (v(t))

x∗f (v∗)
+ f (v(t))

f (v∗)

)

. (3.7)

Next, we calculate V ′
2(t).

V ′
2(t) = 1

y∗

(

1 − y∗

y(t)

)

y′(t)

= 1

y∗

(

1 − y∗

y(t)

)

(αe−mτx(t − τ)f (v(t − τ)) − ry(t) − βy(t)h(z(t)))

= αe−mτx∗f (v∗)
y∗

[
x(t − τ)f (v(t − τ))

x∗f (v∗)
− x(t − τ)y∗f (v(t − τ))

x∗y(t)f (v∗)

]

− r

(
y(t)

y∗ − 1

)

− βh(z∗)
(

y(t)h(z(t))

y∗h(z∗)
− h(z(t))

h(z∗)

)

.

Using (3.2), we obtain

V ′
2(t) = αe−mτx∗f (v∗)

y∗

[
x(t − τ)f (v(t − τ))

x∗f (v∗)
− x(t − τ)y∗f (v(t − τ))

x∗y(t)f (v∗)

]

− r

(
y(t)

y∗ − 1

)

−
(

αe−mτx∗f (v∗)
y∗ − r

)(
y(t)h(z(t))

y∗h(z∗)
− h(z(t))

h(z∗)

)

= αe−mτx∗f (v∗)
y∗

[
x(t − τ)f (v(t − τ))

x∗f (v∗)
− x(t − τ)y∗f (v(t − τ))

x∗y(t)f (v∗)
− y(t)h(z(t))

y∗h(z∗)
+ h(z(t))

h(z∗)

]

+ r

(

1 − y(t)

y∗ + y(t)h(z(t))

y∗h(z∗)
− h(z(t))

h(z∗)

)

. (3.8)

We now calculate the derivatives of V3(t) and V4(t):

V ′
3(t) = 1

v∗

(

1 − v∗

v(t)

)

v′(t) = d

(

1 − v(t)

v∗ + y(t)

y∗ − v∗y(t)

v(t)y∗

)

, (3.9)

V ′
4(t) = [h(z(t)) − h(z∗)][δy(t) − qz(t)]

= −q[z(t) − z∗][h(z(t)) − h(z∗)] + δy∗h(z∗)
(

1 − y(t)

y∗ + y(t)h(z(t))

y∗h(z∗)
− h(z(t))

h(z∗)

)

. (3.10)
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The derivative of V5(t) is

V ′
5(t) = g

(
x(t)f (v(t))

x∗f (v∗)

)

− g

(
x(t − τ)v(t − τ)

x∗f (v∗)

)

= x(t)f (v(t))

x∗f (v∗)
− x(t − τ)f (v(t − τ))

x∗f (v∗)
− ln

x(t)f (v(t))

x∗f (v∗)
+ ln

x(t − τ)f (v(t − τ))

x∗f (v∗)
. (3.11)

Combining (3.7)–(3.11) and multiplying appropriately by coefficients determined by (3.6), we obtain

V ′(t) = −k(x(t) − x∗)2

x(t)
− βqemτ

δ
[z(t) − z∗][h(z(t)) − h(z∗)]

+ αx∗f (v∗)
(

1 − x∗

x(t)
− x(t)f (v(t))

x∗f (v∗)
+ f (v(t))

f (v∗)
+ x(t − τ)f (v(t − τ))

x∗f (v∗)

− x(t − τ)y∗f (v(t − τ))

x∗y(t)f (v∗)
+ h(z(t))

h(z∗)
− y(t)h(z(t))

y∗h(z∗)

)

+ remτ y∗
(

1 − y(t)

y∗ + y(t)h(z(t))

y∗h(z∗)
− h(z(t))

h(z∗)

)

+ αx∗f (v∗)
[

1 − v(t)

v∗ + y(t)

y∗ − v∗y(t)

v(t)y∗

]

+ βemτy∗h(z∗)
[

1 − y(t)

y∗ + y(t)h(z(t))

y∗h(z∗)
− h(z(t))

h(z∗)

]

+ αx∗f (v∗)
[
x(t)f (v(t))

x∗f (v∗)
− x(t − τ)f (v(t − τ))

x∗f (v∗)
− ln

x(t)f (v(t))

x∗f (v∗)
+ ln

x(t − τ)f (v(t − τ))

x∗f (v∗)

]

,

which, together with (3.3), implies that

V ′(t) = −k(x(t) − x∗)2

x(t)
− βqemτ

δ
[z(t) − z∗][h(z(t)) − h(z∗)] + αx∗f (v∗)

(

3 − x∗

x(t)
+ f (v(t))

f (v∗)

− x(t − τ)y∗f (v(t − τ))

x∗y(t)f (v∗)
− v(t)

v∗ − v∗y(t)

v(t)y∗ − ln
x(t)f (v(t))

x∗f (v∗)
+ ln

x(t − τ)f (v(t − τ))

x∗f (v∗)

)

= −k(x(t) − x∗)2

x(t)
− βqemτ

δ
[z(t) − z∗][h(z(t)) − h(z∗)]

− αx∗f (v∗)
[

g

(
x∗

x(t)

)

+ g

(
x(t − τ)y∗f (v(t − τ))

x∗y(t)f (v∗)

)

+ g

(
v∗y(t)

v(t)y∗

)]

+ αx∗f (v∗)
[
f (v(t))

f (v∗)
− ln

f (v(t))

f (v∗)
− v(t)

v∗ + ln
v(t)

v∗

]

≤ αx∗f (v∗)(g(F (w)) − g(w)),

where w = v(t)
v∗ . Using the fact in Lemma 3.1, we

see that V ′(t) ≤ 0 with equality only if the argument
x(t)
x∗ = z(t)

z∗ = y∗x(t−τ)f (v(t−τ))
y(t)x∗f (v∗) = v∗y(t)

v(t)y∗ = v(t)
v∗ = 1. By

Theorem 5.3.1 of [10], solutions limit to B , the largest

invariant subset of {V ′(t) = 0}. We note that V ′(t) is

only zero if x(t) = x∗, y(t) = y∗, v(t) = v∗, z(t) = z∗

for all t , and so B consists of the single point E1. Thus,

the infected equilibrium E1 is globally asymptotically
stable. �

Remark 3.1 Applying the Routh–Hurwitz criterion of
linearized system of (1.1), the stability of system (1.1)
has been studied in [7] and some sufficient conditions
ensuring the local stability of the noninfected equilib-
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rium as well as the infected equilibrium are obtained.
Compared our global stability to the local stability in
[7], our condition is only determined by the basic re-
productive number and it is very easy to verify. How-
ever, the condition for the local stability of the infected
equilibrium [7] is very complex because it includes
several inequalities. Furthermore, since a general non-
linear incident rate and a delay between the time target
cells contacted by the virus particles and the time the
contacted cells become actively affected is included in
system (1.2), our results obtained in the paper improve
and extend some existing ones.

4 Conclusion and discussion

In this paper, modeling the effect of the CTL, a de-
layed HIV infection model with nonlinear incidence
rates is studied. We have identified the basic reproduc-
tion number R0 and proved that if R0 < 1, the non-
infected equilibrium is global asymptotically stable;
if R0 > 1, the noninfected equilibrium becomes un-
stable and there occurs an infected equilibrium which
is global asymptotically stable. Thus, R0 = 1 plays a
role of threshold value that determines whether or not
the HIV virus in host will be persistent or will go to
extinction.

From our results, we conclude that to control the
concentrations of the virus and the infected cells, a
strategy should aim to reduce the value of the basic
reproduction number to below one. By the explicit ex-
pression of R0, we see the values of parameters β ,
δ, and q have no impact on the value of R0 since
R0 is independent of those parameters. This fact indi-
cates CTL does not play a role in eliminating the virus
load. However, from the expression of L in (2.2), we
see that v∗ can be decreased by increasing β and δ

or decreasing q . This suggests CTL can increase the
healthy cells population and maintain low steady state
viral load when R0 > 1.

Our results imply that the intracellular delay de-
scribing the time between viral entry into a target cell
and the production of new virus particles does not af-
fect the stability of the feasible equilibria and, there-
fore, does not induce periodic oscillations and the pos-
sibility of Hopf bifurcations is therefore ruled out.
However, once a delay is introduced in CTL produc-
tion, numerical simulations illustrate the solutions of
(1.2) may oscillate around the infection equilibrium

even if R0 > 1. It would be very interesting when a
delay is incorporated into CTL production. Such mod-
ifications should more precisely describe the reality
and give us more insights into the infection process,
but would lead to much more challenging mathemati-
cal problems.
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