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Abstract In this note, some comments on the paper
[Chen et al. in Nonlinear Dyn. (2011). doi:10.1007/
s11071-011-0002-x] are made.
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1 Introduction

In [1], the authors have investigated chaos control of
a class of three-dimensional fractional-order chaotic
systems via sliding mode control theory. They have
proposed two similar fractional-order sliding mode
controllers to guarantee the asymptotical stability of
the following class of chaotic systems with/without
uncertainties �g(x, y, z) + ξ(t) in the second state
equation of the system (see (2) and (13) in [1]):

Dq1x = y.f (x, y, z) + z.Φ(x, y, z) − αx

Dq2y = g(x, y, z) − βx + �g(x, y, z)

+ ξ(t) + u(t)

Dq3z = y.h(x, y, z) − x.Φ(x, y, z) − γ z

(1)
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Chen et al. [1] have proposed a fractional-order sliding
surface and have claimed that the closed-loop system
is globally asymptotically stable via a sliding mode
control. They have performed some numerical sim-
ulations to show the efficiency of the proposed con-
trol scheme. Furthermore, using the Lyapunov stabil-
ity theorem, they have performed a stability analysis
to ensure the existence of the sliding motion. How-
ever, as one knows, the stability of a sliding mode con-
troller is guaranteed if (1) a suitable sliding surface is
selected to result in a stable sliding mode dynamics
and (2) a sliding mode control law is designed to force
the system trajectories to reach the prescribed stable
sliding surface in finite time [4, 5]. Moreover, since
the main results of conventional Lyapunov stability
theory are not applicable for showing the stability of
the fractional-order systems, it is more appropriate to
analysis the stability of the fractional-order systems
using the following fractional-order Lyapunov stabil-
ity theorems [2, 3].

Theorem 1 [2] Let x = 0 be an equilibrium point for
the non-autonomous fractional-order system

Dαx = f (x, t) (2)

where f (x, t) satisfies the Lipschitz condition with
Lipschitz constant l > 0 and α ∈ (0,1). Let V (t, x(t))

be a continuous differentiable function and locally
Lipschitz with respect to x such that

α1‖x‖a ≤ V (t, x) ≤ α2‖x‖ab, (3)
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DβV (t, x) ≤ −α3‖x‖ab (4)

where α1, α2, α3, a and b are arbitrary positive con-
stants and β ∈ (0,1). Then the equilibrium point of the
system (2) is Miattag–Leffler stable.

Theorem 2 [2] Let x = 0 be an equilibrium point for
the non-autonomous fractional-order system (2). As-
sume that there exists a Lyapunov function V (t, x(t))

satisfying

α1‖x‖a ≤ V (t, x) ≤ α2‖x‖, (5)

V̇ (t, x) ≤ α3‖x‖ (6)

where α1, α2, α3 and a are positive constants. Then the
equilibrium point of the system (2) is Miattag–Leffler
stable.

Theorem 3 [2] Let x = 0 be an equilibrium point for
the non-autonomous fractional-order system (2). As-
sume that there exist a Lyapunov function V (t, x(t))

and class-K functions α1, α2, α3 satisfying

α1
(‖x‖) ≤ V (t, x) ≤ α2

(‖x‖), (7)

DβV (t, x) ≤ −α3
(‖x‖) (8)

where β ∈ (0,1). Then the equilibrium point of the sys-
tem (2) is Miattag–Leffler stable.

Remark 1 [3] Mittag–Leffler stability implies asymp-
totic stability.

More details about the fractional Lyapunov stabil-
ity theory can be found in [2, 3].

In Sect. 3 of [1], the authors have defined a frac-
tional sliding surface as (see (3) in [1]):

s(t) = Dq2−1y(t) + D−1ψ(t) (9)

where ψ(t) = x.f (x, y, z) + z.h(x, y, z) + βy.
To obtain the sliding mode dynamics, we use the

well-known property of the sliding mode as follows
(see (6) in [1]):

ṡ(t) = 0 → Dq2y(t) + ψ(t) = 0 → Dq2y(t)

= −x.f (x, y, z) − z.h(x, y, z) − βy (10)

Although the authors of [1] have proved the conver-
gence of the closed-loop system state trajectories to
the sliding surface (9), but they have not obtained the

sliding mode dynamics and, therefore, have not pre-
sented any stability analysis for it. However, in order
to ensure the global stability of the closed-loop sys-
tem in [1], the sliding mode dynamics in [1] should be
stable. In this regard, to obtain the sliding mode dy-
namics, inserting Dq2y(t) from (10) into (1), we have

Dq1x = y.f (x, y, z) + z.Φ(x, y, z) − αx

Dq2y = −x.f (x, y, z) − z.h(x, y, z) − βy

Dq3z = y.h(x, y, z) − x.Φ(x, y, z) − γ z

(11)

Equation (11) describes the dynamics of the closed-
loop system on the sliding surface (9). In other word,
(11) indicates that when the state trajectories of the
system (1) reach to the sliding surface (9), the dynam-
ics of the closed-loop system is represented by (11)
(sliding mode dynamics) and the closed-loop system
is then insensitive to the system uncertainties. There-
fore, the sliding mode dynamics (11) should be stable
to guarantee the stability of the closed-loop system.
However, Chen et al. [1] have not presented any sta-
bility discussion for the stability of the sliding mode
dynamics (11). This means that there is no guarantee
that the sliding mode dynamics (11) is stable or not
and it cannot be ensured that the state trajectories of
the chaotic system (1) can converge to zero, when they
attain to the sliding surface (3) in [1]. Consequently,
the global stability of the proposed fractional sliding
mode controller in [1] cannot be guaranteed.

On the other hand, in Sect. 3 of [1] the traditional
Lyapunov stability theorem has been used to show the
convergence of the system (1) trajectories to the slid-
ing surface (9). The authors of [1] have selected a Lya-
punov function as V (t) = 1/2s2 (see (11) in [1]) and
have proved that the time derivative of the selected
Lyapunov function is negative along the trajectories
of the fractional-order system (1). Thus, they have
claimed that the closed-loop system is globally asymp-
totically stable via the sliding mode control. However,
one can easily see that the dynamics of the system (1)
and sliding surface (9) involves fractional-order terms
(see (2), (3) and (13) in [1]). Therefore, it is more
appropriate to prove the existence of sliding motion
based on the fractional-order Lyapunov stability the-
orems [2, 3]. Besides, it is easy to check that the se-
lected Lyapunov function V (t) = 1/2s2 in [1] does
not satisfy the conditions of the fractional Lyapunov
stability theorems (see Theorems 1–3).
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Fig. 1 State trajectories of
the Chen system with the
controller (15) and (16)
in [1]

Fig. 2 Sliding surface (15)
in [1] applied for the Chen
system

Fig. 3 Control input (16)
in [1] applied for the Chen
system

Remark 2 It is worth noticing that for the integer-
order system (i.e. when q1 = q2 = q3 = 1) the slid-
ing mode dynamics (11) is stable for α > 0, β > 0 and
γ > 0, where the system asymptotic stability can be

verified using a Lyapunov function candidate such as
V (t) = x2 + y2 + z2. However, it is known that the
stability of an integer-order nonlinear system cannot
generally guarantee the stability of the correspond-
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Fig. 4 State trajectories of
the uncertain Chen system
with the controller (15) and
(16) in [1]

Fig. 5 Sliding surface (15)
in [1] applied for the
uncertain Chen system

Fig. 6 Control input (16)
in [1] applied for the
uncertain Chen system
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Fig. 7 State trajectories of
the Lorenz system with the
controller (18) and (19) in
[1]

Fig. 8 Sliding surface (18)
in [1] applied for the
Lorenz system

Fig. 9 Control input (19)
in [1] applied for the
Lorenz system
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ing fractional-order nonlinear system and for showing
the asymptotic stability of a fractional-order nonlin-
ear system the fractional Lyapunov stability theorems
should be adopted [2, 3].

As a result, based on the above discussions, the
global stability of the proposed fractional sliding mode
control approach in [1] cannot be ensured. To confirm
this claim, we present some numerical simulations as
in Sect. 4 in [1].

2 Simulation results

Here, we give some numerical simulations to illus-
trate that the proposed sliding mode controllers in [1]
cannot globally stabilize the fractional-order chaotic
system (1). All the system and controller parameters
are selected as those in [1] except the system’s frac-
tional orders. Numerical simulations are performed
using Matlab software with a step time of 0.001.

Case I: Consider the non-commensurate fractional-
order Chen system (14) in [1] with q1 = 0.99, q2 = 0.9
and q3 = 0.95. Figure 1 shows the state trajectories
of the Chen system with the controller (15) and (16)
in [1]. It is seen that the system trajectories go to infi-
nite as time evolves. The time responses of the sliding
surface (15) in [1] and control input (16) in [1] are il-
lustrated in Figs. 2 and 3, respectively. Obviously, the
sliding surface and control input are impractical.

Case II: Consider the uncertain non-commensurate
fractional-order Chen system (14) in [1] with
q1 = 0.99, q2 = 0.9 and q3 = 0.92. The state trajec-
tories of the system with the controller (15) and (16)
in [1] are depicted in Fig. 4. Figures 5 and 6 reveal
the time histories of the sliding surface (15) in [1] and

control input (16) in [1], respectively. One can see that
the proposed controller in [1] cannot stabilize the un-
certain Chen system.

Case III: Consider the commensurate fractional-
order Lorenz system (17) in [1] with q1 = q2 =
q3 = 0.95. The controller (18) and (19) in [1] is ap-
plied to obtain the results. Figures 7, 8, 9 illustrate the
state trajectories of the controlled Lorenz system, the
time response of the sliding surface (18) in [1] and the
time history of the control input (19) in [1], respec-
tively. It can be seen that the proposed controller (18)–
(19) in [1] does not work for stabilization of the com-
mensurate fractional-order Lorenz chaotic system.

3 Concluding remarks

In this note, we demonstrate that the proposed frac-
tional sliding mode controllers in the paper of Chen et
al. [1] are inappropriate.
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