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Abstract This paper is a Response to the comment by
M.P. Aghababa (Nonlinear Dyn. 2001, doi:10.1007/
s11071-011-0216-y). Some ideas are proposed to re-
but the Comments.
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First of all, the authors are most grateful to the au-
thors of comments for pointing out the mistakes in our
published paper in Nonlinear Dynamics. The authors
acknowledge their contribution.

1. As pointed out in [1], the Lyapunov stability the-
ory used in [2] cannot be used for an integer-order sys-
tem mixed with a fractional-order system. In fact, we
did not apply the traditional Lyapunov stability theory
to prove the asymptotic stability of an integer-order
system mixed with a fractional-order system.

Actually, according to s = Dα−1
t z + ∫ t

0 cz(τ ) dτ

and our paper [2], we find that s is a function about
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z, and

ṡ = f2(x, z) + cz − k|z|sign(s) (1)

and k is adapted according to the following update
law:

k̇ = θ |z||s| (θ > 0). (2)

Let the system (1) and (2) be the augment system.
Consider the following Lyapunov function candidate

V (s, k) = 1

2
s2 + 1

2θ
(k − k∗)2 (k∗ > λ2 + c).

Taking the derivative of V (s, k) with respect to time,
one has

V̇ (s, k) = sṡ + (k − k∗)k̇/θ

= s
(
Dα

t z + cz
) + (k − k∗)k̇/θ

= s
(
f2(x, z) − k|z|sign(s) + cz

)

+ (k − k∗)|z||s|
≤ (λ2 + c)|z||s| − k|z||s| + (k − k∗)|z||s|
= −(k∗ − λ2 − c)|z||s| ≤ 0.

So, a Lyapunov function has been found that satis-
fies the conditions of the Lyapunov theorem (V > 0;
V̇ < 0). Thus, the closed-loop system in the presence
of the controller (1) is globally asymptotically stable.

Actually, if x = 0 be an equilibrium point of a non-
linear system ẋ = f (x), V (x) > 0 and V̇ (x) > 0, then
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x = 0 is stable even if x includes the fractional term.
See [3–7].

Therefore, the main results of our paper [2] are cor-
rect.

2. In the proof approach of the closed-loop system
in [2], the condition k∗ > λ2 of (10) in [2] should be
replaced by k∗ > λ2 + c. Remark 2 presented in the
Comment is acknowledged here.

3. The controller, which is selected as (6) or (13)
in [1], contains large enough but unknown constants
k1 and k2. The method to find the suitable feedback
constants k1 and k2 is to test again and again. However,
our paper investigates the adaptive control for a class
of three-dimensional fractional-order chaotic systems.
In our paper [2], the feedback gain k is unknown in
advance, but it automatically converges to a suitable
constant k∗. So, we think the critical arguments stated
in Theorem 3 and 4 in the Comment are irrelevant or
incorrect.

4. We have first proposed an appropriate fractional-
order sliding surface as s = Dα−1

t z + ∫ t
0 cz(τ ) dτ

in [2]. Recently, we found that the author of [1] pro-
posed the same sliding surface in [8]. The author of [1]
claimed that he proposed the fractional-order sliding
surface, see (9) in [8]. We cannot understand that.
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