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Abstract Chaotic ant swarm optimization (CASO) is
a powerful chaos search algorithm for optimization
problems, but it is often easy to be premature conver-
gence. To overcome the weakness, this paper presents
a CASO with passive congregation (CASOPC). Pas-
sive congregation is one type of biological information
sharing mechanisms that allow animals to aggregate
into groups and help to enhance the exploitation of
animals. By introducing passive congregation strategy
into the CASO, a modified evolution equation based
on the CASO is proposed in the CASOPC. The mod-
ified evolution equation cannot only employ the par-
allel search of all ants and the well exploration ability
of the CASO, but also stress and control the exploita-
tion by passive congregation coefficient c in the stage
of evolution. Due to linearly increasing c in the CA-
SOPC, the exploration and exploitation ability of ants
are well balanced so that premature convergence can
be avoided and good performance can be achieved. In
order to estimate the capability of the CASOPC, it is
tested with a set of 5 benchmark functions with 30 di-
mensions and compared to the CASO. Experimental
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results indicate that the CASOPC improves the search
performance on the benchmark functions significantly.
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1 Introduction

In the past few decades, nature-inspired computation
has received increasing attention and wide applica-
tions in a variety of fields [1]. Nature serves as a fer-
tile source of concepts, principles, and mechanisms for
designing artificial intelligence computation to han-
dle complex computational problems. Nature-inspired
computation includes mainly evolutionary algorithms
(EAs) [2] and swarm intelligence (SI) [3–5]. The first
one draws inspiration from evolution by natural selec-
tion. Another one is inspired by collective animal be-
havior. Since EAs and SI were introduced, they have
been applied to many optimization problems success-
fully and many modifications have been proposed. Es-
pecially, due to simple mechanism and high perfor-
mance for global optimization, a popular SI paradigm,
namely chaotic ant swarm optimization (CASO) [6],
gradually becomes a hot topic. Until now, the CASO
has been applied in many practical systems [7–9].

The CASO, which is inspired by foraging actions of
ant colony, is a chaos search algorithm to tackle opti-
mization problems. In the CASO, the ants use chaotic
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principles to search for food. Each ant performs a
chaotic exploration of its hunting sites and interacts
with its neighbors. They search chaotically until they
have been organized via pheromone trails, and move to
the site which is the most successful among the previ-
ously met hunting sites. The principles can be used to
implement a meta-heuristic for the search of a global
optimum or near-optimum of a function in a search
space where each ant represents a solution to the prob-
lem being optimized. Therefore, the CASO can find
optimal regions of complex search spaces through the
interaction of individuals in ant swarm.

Similar to other nature-inspired computation, such
as EAs, the CASO is often easy to be premature con-
vergence. This requires us to consider the development
of a more effective CASO-based algorithm rather than
simple application of pure CASO. As for the CASO,
some modifications have been proposed recently [10].
In 1997, biologists proposed four types of biologi-
cal mechanisms that allow animals to aggregate into
groups: passive aggregation, active aggregation, pas-
sive congregation, and social congregation [11]. There
are different information sharing mechanisms inside
these forces. Passive congregation has been introduced
to particle swarm optimization (PSO)[12] and im-
proves the search performance of the standard PSO.
The research [12] about PSO with passive congrega-
tion indicates information can be transferred among
individuals that will help individuals to avoid misjudg-
ing information and becoming trapped by poor local
minima by introducing passive congregation. More-
over, we found the passive congregation is suitable to
be incorporated in the CASO. To improve the search
ability of the CASO, this paper proposes a hybrid al-
gorithm of the CASO with passive congregation to
achieve results with high quality and reliance.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the CASO. A CASO with passive
congregation is presented in Sect. 3. In Sect. 4, we
describe the test functions, experimental settings, and
the experimental results. The conclusion is given in
Sect. 5.

2 Chaotic ant swarm optimization

Since many search strategies based on chaos have been
found to obtain nice capabilities of hill-climbing and
escaping from local optima, and to be more effective

than random search [13], chaotic dynamics has re-
ceived particular attention. In 1991, Cole pointed out
that ant colony exhibits a periodic behavior while sin-
gle ant shows low-dimensional deterministic chaotic
activity patterns [14]. From the view of dynamics, the
chaotic behavior of single ant has some relation to the
self-organizing and foraging behaviors of ant colony.
The chaotic behavior of individual ant and the intel-
ligent organization actions of ant colony are adapta-
tions to the environment. These behaviors help the ants
to find food and survive. According to the theory of
chaotic dynamics and optimization principles, a novel
optimization algorithm, called chaotic ant swarm opti-
mization (CASO), was presented.

In the CASO, the chaotic system x(k+1) = x(k)×
eμ(1−x(k)) [15] was introduced into the heuristic equa-
tion of the CASO for obtaining the chaotic search ini-
tially. The adjustment of the chaotic behavior of indi-
vidual ant is achieved by the introduction of a succes-
sively decrement of organization variable yi and leads
the individual to move to the new site acquired with the
best fitness value eventually. (pbestid − xid) is intro-
duced to achieve the information exchange of individ-
uals and the movements to new site taken on the best
fitness value. pbestid is selected based on the fitness
theory which is very widely developed in optimization
theory such as genetic algorithm and tabu search, and
so on. xid is the location of the dth dimension of ant i.

The CASO is a kind of iterative optimization algo-
rithm, which is firstly employed in the optimization of
sequential space. In the sequential space coordinates,
the mathematic description [6] of the CASO as fol-
lows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(k + 1) = yi(k)(1+ri )

xid(k + 1)

=
(

xid(k) + 7.5
ψd

× vi

)

× e
(1−e−ayi (k+1))(3−ψd(xid(k)+ 7.5

ψd
×vi ))

− 7.5

ψd

× vi

+ (
pbestid(k) − xid(k)

)
e−2ayi (k+1)+b

(1)

where the superscripts k and k + 1 denote the time in-
dex of the current and the next iteration, respectively;
yi(k) is the ith ant’s organization variable of the cur-
rent iteration step, yi(1) = 0.999; pbestid(k) is the best
location found by the ith ant and its neighbors within k

steps; vi (0 < vi < 1) determines the search region of
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ant i; a is a sufficiently large positive constant and can
be selected as a = 200; b(0 ≤ b ≤ 2/3) is a constant;
xid(k) is the current location of the dth dimension of
ant i, xid(1) = 7.5

ψd
× (1 − vi)× rand(1), where rand(1)

is a uniformly distributed random number in (0,1).
ri and ψd are two important parameters. ri is the

organization factor of ant i, which affects the con-
vergence speed of the CASO directly. If ri is very
large, the iteration step of “chaotic” search is small
then the system converges quickly and the desired op-
tima or near-optima cannot be achieved. If ri is very
small, the iteration step of “chaotic” search is large
then the system converges slowly and the runtime will
be longer. Since small changes are desired as itera-
tion step evolves, the value of ri is chosen typically as
0 < ri ≤ 0.5. The format of ri can be designed accord-
ing to concrete problems and runtime. Each ant could
have different ri , such as ri = 0.2+0.03× rand(1). ψd

affects the search ranges of the CASO. If the interval
of the search is [−ωd

2 ,
ωd

2 ], we can obtain an approxi-
mate formula ωd ≈ 7.5

ψd
.

In the CASO, the neighbors of the ant are defined
finite ants according to their distance in space. Due
to the influence of self-organization behaviors of ants,
the impact of organization will become stronger than
before and the neighbors of the ant will increase. That
is to say, the number of nearest neighbors is dynami-
cally changed as iterative steps increase. In this paper,
we use this kind of dynamical neighbors in which the
number q of single ant increases for every T iterative
steps. In order to simulate the behaviors of ants, we use
the Euclidean distance. Supposing there are two ants
whose locations are (xi1, . . . , xiD) and (xj1, . . . , xjD)

respectively, where i, j = 1, . . . ,L (here, L is the size
of ant swarm) and i �= j , the distance between the two

ants is
√

(xi1 − xj1)2 + · · · + (xiD − xjD)2.
Equation (1) describes the search process of the

CASO. The organization variable yi is used to con-
trol the chaotic process of ant moving, and its influ-
ence on the ant’s behavior is very weak initially. That
is, initially the organization capabilities of the ants are
very weak so that a noncoordinated process occurs
which is characterized by the chaotic walking of ants.
This phase lasts until the influence of organization on
the individual behavior is sufficiently large. Then the
chaotic behavior of the individual ant disappears and a
coordination phase starts. That is, ants do some further
searches and move to the best location which they have

ever found in search space. Throughout the whole pro-
cess, these ants exchange information with other ants,
then compare and memorize the information.

The procedure of the CASO can be summarized as
follows.

Step 1: Randomly initialize the locations and organi-
zation factors of all ants.

Step 2: Evaluate fitness values of all ants, let the pbest
of each ant and its fitness value equal to its current
location and fitness value.

Step 3: Update organization variable and location
vector according to (1) for each ant.

Step 4: Evaluate fitness values of all ants, and select
the pbest of each ant.

Step 5: If a predefined stopping criterion is met, then
select and output the best ant with minimal fitness
value in ant swarm and its fitness value; otherwise go
back to Step 3.

3 Chaotic ant swarm optimization with passive
congregation

As stated before, the CASO has greater exploration
ability, but the exploitation ability around the optimum
is not very good. How can we enhance the exploitation
ability of the CASO? Biologists have indicated that
passive congregation is an attraction of an individual
to other group members but where there is no display
of social behavior [11]. That is, it is one type of bi-
ological information sharing mechanisms that allow
animals to aggregate into groups and help to enhance
the exploitation of animals. Thus, passive congrega-
tion is suitable to be incorporated in the CASO model,
which is called chaotic ant swarm optimization with
passive congregation (CASOPC). In the CASOPC, the
ant swarm is manipulated according to the following
equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(k + 1) = yi(k)(1+ri )

xid(k + 1) =
(

xid(k) + 7.5

ψd

× vi

)

× e
(1−e−ayi (k+1))(3−ψd(xid(k)+ 7.5

ψd
×vi ))

− 7.5

ψd

× vi

+ c × (
Rid(k) − xid(k)

)

× e−2ayi (k+1)+b

+ (1 − c) × (
pbestid(k) − xid(k)

)

× e−2ayi (k+1)+b

(2)
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where Rid(k) is an ant randomly selected from the
swarm at the current iteration step. c is the passive
congregation coefficient which is used to adjust the ex-
ploration and exploitation of ants. It can be a positive
constant or even a positive linear or nonlinear function
of time. This value of c is discussed in Sect. 4.2. In
order to reduce the likelihood of the ant leaving the
search space, the value of xid(k + 1) is usually chosen
as xid(k + 1) = min(

ωd

2 ,max(−ωd

2 , xid(k + 1))).
The pseudocode for the CASOPC is described as

follows.

Step 1: Randomly initialize the locations and organi-
zation factors of all ants.

Step 2: Evaluate fitness values of all ants, let the
pbest of each ant and its fitness value equal to its cur-
rent location and fitness value.

Step 3: Randomly choose an ant as Ri .
Step 4: Update organization variable and location

vector according to (2) for each ant, and restrict
xid(k + 1) = min(

ωd

2 ,max(−ωd

2 , xid(k + 1))).
Step 5: Evaluate fitness values of all ants, and select

the pbest of each ant.
Step 6: If a predefined stopping criterion is met, find

the ant with minimal fitness value in all ants, noted
as gbest; otherwise go back to Step 3.

Step 7: Perform discrete recombination operator (see
Fig. 1), then output gbest that is the best ant location
with minimal fitness.

It can be seen from the above procedure that
the CASOPC cannot only retain the advantage of
the CASO, but also have three differences from the
CASO. The advantage is that all ants are analyzed in
parallel at each step from step 2. Three differences are
as follows. Firstly, from (2), instead of learning from
the pbest ant, an ant cannot only learn from the pbest
ant, but also an random ant in order to adjust the ex-
ploration and exploitation of ants. Secondly, in step 4,
xid(k + 1) = min(

ωd

2 ,max(−ωd

2 , xid(k + 1))) is ap-
plied to prevent ants moving out of the search bounds
after using (2). Finally, from step 6, the discrete re-
combination operator is employed to improve solution
quality further after stopping criterion is met.

In addition, the above CASOPC can be transferred
to two simpler approaches. For example, if c = 0 in
(2), each ant can only learn from the corresponding
pbest to make the ant generate new location, obvi-
ously, the CASOPC is changed into the CASO de-
scribed in Sect. 2. On the other hand, if c = 1 in (2),

Fig. 1 Flowchart of the discrete recombination operator

each ant can only learn form a random ant, that is,
the CASOPC makes the ant swarm fail to search for
a good location.

4 Experimental studies

In the CASOPC, the newly introduced passive con-
gregation coefficient c is important for balancing the
exploration and exploitation of ant swarm. Thus, the
value of c should be suitably selected according to the
concrete optimization problems. The section discusses
the influence of c on the search result of the CASOPC,
and compares the CASOPC with the CASO.

4.1 Test functions

In our experimental studies, a set of 5 benchmark func-
tions, with the global minimum fitness value 0 (this pa-
per defined fi(x) (i = 1,2,3,4,5) as fitness function),
was employed to evaluate the CASOPC in comparison
with the CASO.
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The first function is the Sphere function:

f1(x) =
D∑

i=1

x2
i , s.t. xi ∈ [−50,50]. (3)

The second function is the DeJongF4 function:

f2(x) =
D∑

i=1

ix2
i , s.t. xi ∈ [−20,20]. (4)

The third test function is the Rosenbrock function:

f3(x) =
D−1∑

i=1

(
100(xi+1 − x2

i )2 + (xi − 1)2),

s.t. xi ∈ [−100,100]. (5)

The fourth test function is the Griewank function:

f4(x) = 1 +
D∑

i=1

(
x2
i

4000

)

−
D∏

i=1

cos

(
xi

2
√

i

)

,

s.t. xi ∈ [−600,600]. (6)

The fifth test function is the Rastrigin function:

f5(x) =
D∑

i=1

(
10 + x2

i − 10 cos(2πxi)
)
,

s.t. xi ∈ [−5.12,5.12]. (7)

The above benchmark functions were tested widely
by EAs and SI, such as evolutionary programming,
simulated annealing, genetic algorithms, and parti-
cle swarm optimization. The first two are unimodal
while the last two are multimodal. Rosenbrock func-
tion is multimodal as soon as the dimension is more
than 3. Sphere function is an easy, unimodal func-
tion that any optimization technique should be able
to solve with a good degree of resolution. It helps
to identify good local optimizers. DeJongF4 function
is unimodal. Rosenbrock function is generally diffi-
cult to optimize even for gradient-based algorithms.
The last two are multimodal functions where the num-
ber of local minima increases exponentially with the
problem dimension. These two functions help to test
the global optimization capabilities of tested algo-
rithms.

4.2 Experimental setting

To evaluate the performance of the proposed CA-
SOPC, the CASO [6] were used for comparisons. The
parameters to the two algorithms ((1) and (2)) are set:
a = 200, b = 1

2 , y(1) = 0.999, ri = 0.01 + 0.00001 ×
rand(1), vi = rand(1), D = 30, L = 20. This kind of
dynamical neighbor is selected. At the first step, the
number of neighbors is two. The number of neighbors
will increase one every two iterative steps. The max
number of neighbors is 19. The value of parameter ψd

can be selected according to the ranges of intervals [6].
A fixed number of maximum iterations 1000 was ap-
plied. All experiments were repeated for 50 runs and
the results were averaged to account for stochastic dif-
ferences. The experiments were performed on a com-
puter with 2.93 GHz Intel(R) Pentium(R) 4 processor
and 512 MB of RAM using Matlab 7.6.

Because the newly introduced passive congregation
coefficient c is crucial for enhancing the search per-
formance of the CASO, experiments were executed to
select a proper value of c. All functions were tested
with different values of c. The average test results ob-
tained from 50 runs are listed in Table 1 and 3.81E−01
is defined 3.81 × 10−1. From Table 1, when c = 0.6,
the CASOPC generated good results on Sphere func-
tion and Rosenbrock function. When c = 0.5, on De-
JongF4 function. For Griewank function, the best re-
sults were generated at the point c = 0.4. For the Ras-
trigin function, at the point c = 0.7. When c = 1.0, the
search performance of the CASOPC on all functions
is deteriorated from Table 1. Therefore, a generic c for
all functions should be equal or smaller than 0.7.

It is our interest to investigate whether the CA-
SOPC with a linear increasing c generates better re-
sults on the benchmark functions than the CASOPC
with a fixed value of c. Therefore, Rastrigin function
was selected and tested with different ranges of lin-
early increasing c. The results are tabulated in Table 2.
The best result was generated by the CASOPC with
a linearly increasing passive congregation coefficient
c which started at 0.0 and ended at 0.6, and it was
better than the best result generated by the CASOPC
with different fixed value of c. From Table 1 and Ta-
ble 3, we could see that linearly increasing c from 0.0
to 0.6 gives the CASOPC the better performance com-
pared with all fixed c values on most of five bench-
mark functions. The exception is Sphere function be-
cause the best mean value is achieved when c = 0.6.
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Table 1 Average fitness values of all test functions with different c

Value of c Sphere DeJongF4 Rosenbrock Griewank Rastrigin

c = 0.0 3.81E−01 1.61E−02 2.34E+01 4.66E−01 2.26E+01

c = 0.1 5.20E−03 1.83E−05 3.13E+01 1.12E−01 2.48E−02

c = 0.2 5.20E−03 1.83E−05 3.77E+01 1.58E−01 1.34E−02

c = 0.3 9.38E−03 1.34E−05 4.26E+01 1.56E−01 2.61E−02

c = 0.4 6.93E−03 1.17E−05 2.78E+01 6.69E−02 9.80E−03

c = 0.5 3.49E−03 4.79E−06 2.89E+01 8.18E−02 1.58E−02

c = 0.6 3.44E−03 8.51E−04 2.48E+01 1.00E−01 7.23E−03

c = 0.7 1.27E−02 8.55E−06 3.59E+01 1.04E−01 6.28E−03

c = 0.8 3.47E−03 1.85E−05 8.82E+01 1.34E−01 1.00E−02

c = 0.9 3.96E−02 1.84E−04 3.24E+02 2.54E−01 9.90E−02

c = 1.0 1.95E+04 1.11E+07 8.08E+10 8.37E+02 2.27E+02

Table 2 Average fitness value of Rastrigin function with different linearly increasing c

cmax cmin

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 7.44E−03 NA NA NA NA NA NA NA

0.2 1.11E−02 9.06E−03 NA NA NA NA NA NA

0.3 1.87E−01 1.41E−02 4.43E−02 NA NA NA NA NA

0.4 1.02E−02 1.95E−02 1.88E−02 1.23E−02 NA NA NA NA

0.5 9.56E−03 9.37E−03 8.02E−03 9.18E−03 1.00E−02 NA NA NA

0.6 3.49E−03 1.05E−02 7.26E−03 2.13E−02 1.21E−02 1.30E−02 NA NA

0.7 2.26E−02 8.33E−03 7.84E−03 8.32E−03 1.79E−02 8.85E−03 9.96E−03 NA

0.8 8.08E−03 1.34E−02 1.12E−02 2.58E−02 1.74E−01 1.88E−02 1.93E−01 3.21E−02

0.9 8.80E−03 3.29E−02 3.32E−02 6.67E−03 3.18E−02 6.43E−03 3.27E−02 7.03E−02

Table 3 Comparison between the CASOPC and the CASO

Function Mean Variance Mean runtime (s)

CASOPC CASO CASOPC CASO CASOPC CASO

Sphere 6.97E−03 3.81E−01 3.35E−04 5.33E−02 81.24 80.15

DeJongF4 3.34E−06 1.61E−02 6.19E−11 1.62E−03 88.39 87.30

Rosenbrock 2.17E+01 2.34E+01 7.70E+02 1.37E+04 84.72 83.26

Griewank 5.44E−02 4.66E−01 2.27E−02 1.82E−01 90.89 89.78

Rastrigin 3.49E−03 2.26E+01 7.25E−05 1,10E+03 86.76 85.45

Although linearly increasing c gets worse mean value
than c = 0.6 for Sphere function, still it achieves the
result in the same rank as c = 0.6. Moreover, linearly
increasing c tends to have more global search ability
at the beginning of the run while having more local
search ability near the end of the run. Thus, we choose
linearly increasing c from 0.0 to 0.6 in this paper.

4.3 Experimental results and comparison

The experimental results (i.e., the mean and the devia-
tion of the fitness values found in 50 runs) for the CA-
SOPC and the CASO on each test function are listed
in Table 3. All the settings are the same as mentioned
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in Sect. 4.2. Here, the results of the CASO are from
[6].

From Table 3, we observe that the CASOPC
achieves better results in the mean and variance than
the CASO on all five test functions because of em-
ploying passive congregation strategy in the CASOPC.
Especially, four orders of magnitude are improved in
the mean while eight orders of magnitude in the vari-
ance for DeJongF4 and Rastrigin function. Although
Rosenbrock function has not change the order of mag-
nitude in the mean, it improves two orders of mag-
nitude in the variance. That is, the stability of Rosen-
brock function is enhanced in the CASOPC. For others
functions, the mean and variance both are improved.
Such as, Sphere function both increases two orders of
magnitude in the mean and variance. Griewank func-
tion both improves one order of magnitude in the mean
and variance. According to the mean, the CASOPC is
more efficient to improve solution search ability than
the CASO. Such as, from the results of Sphere func-
tion, the CASOPC increases the local search ability of
the CASO; as seen in Griewank and Rastrigin func-
tion, the CASOPC enhances the global search ability
of the CASO. Depending on the variance, solution sta-
bility is enhanced in the CASOPC compared with the
CASO. Thus, the CASOPC improves the performance
of the CASO in solution search ability and solution
stability.

From Table 3, note that the CASOPC takes a lit-
tle higher mean runtime than the CASO because of
using passive congregation strategy in the CASOPC.
However, from experimental results (see Table 3), we
could see that the CASOPC outperforms the CASO on
all five benchmark functions. So, we could say it is ef-
ficient. Moreover, with the rapid development of com-
puter, the tradeoff between high-quality solutions and
computational time tends to the former. So, the qual-
ity of solutions preponderates when problems could be
solved by algorithms in rational time.

In order to more clearly observe the convergence
trend of the CASOPC and the CASO, the two algo-
rithms are run for 1500 iterations in Figs. 2, 3, 4, 5, 6.
These figures show the convergence curve of the CA-
SOPC and the CASO in one run for each test function.
And we can see that the CASOPC has better search
ability and solution stability than the CASO from these
figures.

In a word, the overall results of Table 3 and
Figs. 2–6 substantiate our claim that the introduction

Fig. 2 Convergence curves for Sphere function

Fig. 3 Convergence curves for DeJongF4 function

Fig. 4 Convergence curves for Rosenbrock function

Fig. 5 Convergence curves for Griewank function

of passive congregation strategy enhances the perfor-
mance of the CASO.

5 Conclusion

By simply incorporating passive congregation strategy
into the CASO, we propose an effective hybrid al-
gorithm named CASOPC for optimization problems.
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Fig. 6 Convergence curves for Rastrigin function

On one hand, the parallel searching structure and the
well exploration ability of the CASO are employed;
on the other hand, the exploitation is stressed in the
stage of evolution and is controlled by passive congre-
gation coefficient c. Due to linearly increasing of c,
exploration and exploitation ability are well balanced
so that premature convergence can be avoided and
good performance can be achieved. Simulation results
and comparisons based on five benchmark functions
demonstrate the effectiveness and efficiency of the
CASOPC for optimization problems. The future work
is to apply the CASOPC for other kinds of optimiza-
tion problems including real applications.
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